Skip to main content

Intestinal Regulation of Calcium: Vitamin D and Bone Physiology

  • Chapter
  • First Online:
Understanding the Gut-Bone Signaling Axis

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1033))

Abstract

The principal function of vitamin D in the maintenance of calcium homeostasis is to increase intestinalĀ calcium absorption. This conclusion was made from studies in vitamin D receptor (VDR) null mice which showed that rickets and osteomalacia were prevented when VDR null mice were fed a rescue diet that included high calcium, indicating that the skeletal abnormalities of the VDR null mice are primarily the result of impaired intestinal calcium absorption. Although vitamin D is critical for controlling intestinal calcium absorption, the mechanisms involved have remained incomplete. This chapter reviews studies, including studies in genetically modified mice, that have provided new insight and have challenged the traditional model of VDR-mediated calcium absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Peacock M. Calcium metabolism in health and disease. Clin J Am Soc Nephrol. 2010;5(Suppl 1):S23ā€“30.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  2. Bouillon R, Bischoff-Ferrari H, Willett W. Vitamin D and health: perspectives from mice and man. J Bone Miner Res. 2008;23(7):974ā€“9.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  3. Holick MF. Resurrection of vitamin D deficiency and rickets. J Clin Invest. 2006;116(8):2062ā€“72.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  4. Lips P. Vitamin D deficiency and secondary hyperparathyroidism in the elderly: consequences for bone loss and fractures and therapeutic implications. Endocr Rev. 2001;22(4):477ā€“501.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  5. Deluca HF. History of the discovery of vitamin D and its active metabolites. Bonekey Rep. 2014;3:479.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  6. DeLuca HF. Evolution of our understanding of vitamin D. Nutr Rev. 2008;66(10 Suppl 2):S73ā€“87.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  7. Webb AR, Kline L, Holick MF. Influence of season and latitude on the cutaneous synthesis of vitamin D3: exposure to winter sunlight in Boston and Edmonton will not promote vitamin D3 synthesis in human skin. J Clin Endocrinol Metab. 1988;67(2):373ā€“8.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  8. Christakos S, et al. Vitamin D: metabolism, molecular mechanism of action, and pleiotropic effects. Physiol Rev. 2016;96(1):365ā€“408.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  9. Christakos S, et al. Vitamin D: metabolism. Endocrinol Metab Clin N Am. 2010;39(2):243ā€“53. table of contents

    ArticleĀ  CASĀ  Google ScholarĀ 

  10. Cheng JB, et al. Genetic evidence that the human CYP2R1 enzyme is a key vitamin D 25-hydroxylase. Proc Natl Acad Sci U S A. 2004;101(20):7711ā€“5.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  11. Thacher TD, et al. CYP2R1 mutations impair generation of 25-hydroxyvitamin D and cause an atypical form of vitamin D deficiency. J Clin Endocrinol Metab. 2015;100(7):E1005ā€“13.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  12. Zhu JG, et al. CYP2R1 is a major, but not exclusive, contributor to 25-hydroxyvitamin D production in vivo. Proc Natl Acad Sci U S A. 2013;110(39):15650ā€“5.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  13. Kitanaka S, et al. Inactivating mutations in the 25-hydroxyvitamin D3 1alpha-hydroxylase gene in patients with pseudovitamin D-deficiency rickets. N Engl J Med. 1998;338(10):653ā€“61.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  14. Pike JW, Meyer MB. Fundamentals of vitamin D hormone-regulated gene expression. J Steroid Biochem Mol Biol. 2014;144(Pt A):5ā€“11.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  15. Amling M, et al. Rescue of the skeletal phenotype of vitamin D receptor-ablated mice in the setting of normal mineral ion homeostasis: formal histomorphometric and biomechanical analyses. Endocrinology. 1999;140(11):4982ā€“7.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  16. Masuyama R, et al. Dietary calcium and phosphorus ratio regulates bone mineralization and turnover in vitamin D receptor knockout mice by affecting intestinal calcium and phosphorus absorption. J Bone Miner Res. 2003;18(7):1217ā€“26.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  17. Yoshizawa T, et al. Mice lacking the vitamin D receptor exhibit impaired bone formation, uterine hypoplasia and growth retardation after weaning. Nat Genet. 1997;16(4):391ā€“6.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  18. Huang YC, et al. Effect of hormones and development on the expression of the rat 1,25-dihydroxyvitamin D3 receptor gene. Comparison with calbindin gene expression. J Biol Chem. 1989;264(29):17454ā€“61.

    CASĀ  PubMedĀ  Google ScholarĀ 

  19. Halloran BP, DeLuca HF. Calcium transport in small intestine during early development: role of vitamin D. Am J Phys. 1980;239(6):G473ā€“9.

    CASĀ  Google ScholarĀ 

  20. Dardenne O, et al. Correction of the abnormal mineral ion homeostasis with a high-calcium, high-phosphorus, high-lactose diet rescues the PDDR phenotype of mice deficient for the 25-hydroxyvitamin D-1alpha-hydroxylase (CYP27B1). Bone. 2003;32(4):332ā€“40.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  21. Panda DK, et al. Inactivation of the 25-hydroxyvitamin D 1alpha-hydroxylase and vitamin D receptor demonstrates independent and interdependent effects of calcium and vitamin D on skeletal and mineral homeostasis. J Biol Chem. 2004;279(16):16754ā€“66.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  22. Xue Y, Fleet JC. Intestinal vitamin D receptor is required for normal calcium and bone metabolism in mice. Gastroenterology. 2009;136(4):1317ā€“27. e1-2

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  23. Lieben L, et al. Normocalcemia is maintained in mice under conditions of calcium malabsorption by vitamin D-induced inhibition of bone mineralization. J Clin Invest. 2012;122(5):1803ā€“15.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  24. Wasserman RH. Vitamin D and the dual processes of intestinal calcium absorption. J Nutr. 2004;134(11):3137ā€“9.

    CASĀ  PubMedĀ  Google ScholarĀ 

  25. Christakos S. Recent advances in our understanding of 1,25-dihydroxyvitamin D(3) regulation of intestinal calcium absorption. Arch Biochem Biophys. 2012;523(1):73ā€“6.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  26. Christakos S, et al. Vitamin D endocrine system and the intestine. Bonekey Rep. 2014;3:496.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  27. Schroder B, et al. Role of calbindin-D9k in buffering cytosolic free Ca2+ ions in pig duodenal enterocytes. J Physiol. 1996;492(Pt 3):715ā€“22.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  28. Cui M, et al. Villin promoter-mediated transgenic expression of transient receptor potential cation channel, subfamily V, member 6 (TRPV6) increases intestinal calcium absorption in wild-type and vitamin D receptor knockout mice. J Bone Miner Res. 2012;27(10):2097ā€“107.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  29. Benn BS, et al. Active intestinal calcium transport in the absence of transient receptor potential vanilloid type 6 and calbindin-D9k. Endocrinology. 2008;149(6):3196ā€“205.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  30. Kutuzova GD, et al. TRPV6 is not required for 1alpha,25-dihydroxyvitamin D3-induced intestinal calcium absorption in vivo. Proc Natl Acad Sci U S A. 2008;105(50):19655ā€“9.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  31. Akhter S, et al. Calbindin D9k is not required for 1,25-dihydroxyvitamin D3-mediated Ca2+ absorption in small intestine. Arch Biochem Biophys. 2007;460(2):227ā€“32.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  32. Hirst MA, Feldman D. 1,25-Dihydroxyvitamin D3 receptors in mouse colon. J Steroid Biochem. 1981;14(4):315ā€“9.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  33. Stumpf WE, et al. Target cells for 1,25-dihydroxyvitamin D3 in intestinal tract, stomach, kidney, skin, pituitary, and parathyroid. Science. 1979;206(4423):1188ā€“90.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  34. Lee DB, et al. Intestinal and metabolic effect of 1,25-dihydroxyvitamin D3 in normal adult rat. Am J Phys. 1981;240(1):G90ā€“6.

    CASĀ  Google ScholarĀ 

  35. Favus MJ, Angeid-Backman E. Effects of 1,25(OH)2D3 and calcium channel blockers on cecal calcium transport in the rat. Am J Phys. 1985;248(6 Pt 1):G676ā€“81.

    CASĀ  Google ScholarĀ 

  36. Favus MJ, et al. Effects of diet calcium and 1,25-dihydroxyvitamin D3 on colon calcium active transport. Am J Phys. 1980;238(2):G75ā€“8.

    CASĀ  Google ScholarĀ 

  37. Christakos S, et al. Vitamin D biology revealed through the study of knockout and transgenic mouse models. Annu Rev Nutr. 2013;33:71ā€“85.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  38. Reyes-Fernandez PC, Fleet JC. Compensatory changes in calcium metabolism accompany the loss of vitamin D receptor (VDR) from the distal intestine and kidney of mice. J Bone Miner Res. 2016;31(1):143ā€“51.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  39. Wasserman RH, Kallfelz FA. Vitamin D3 and unidirectional calcium fluxes across the rachitic chick duodenum. Am J Phys. 1962;203:221ā€“4.

    CASĀ  Google ScholarĀ 

  40. Fujita H, et al. Tight junction proteins claudin-2 and -12 are critical for vitamin D-dependent Ca2+ absorption between enterocytes. Mol Biol Cell. 2008;19(5):1912ā€“21.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  41. Kutuzova GD, Deluca HF. Gene expression profiles in rat intestine identify pathways for 1,25-dihydroxyvitamin D(3) stimulated calcium absorption and clarify its immunomodulatory properties. Arch Biochem Biophys. 2004;432(2):152ā€“66.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  42. Bikle DD. Vitamin D and bone. Curr Osteoporos Rep. 2012;10(2):151ā€“9.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  43. Yasuda H, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A. 1998;95(7):3597ā€“602.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  44. Prince CW, Butler WT. 1,25-Dihydroxyvitamin D3 regulates the biosynthesis of osteopontin, a bone-derived cell attachment protein, in clonal osteoblast-like osteosarcoma cells. Coll Relat Res. 1987;7(4):305ā€“13.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  45. Fretz JA, et al. 1,25-Dihydroxyvitamin D3 regulates the expression of low-density lipoprotein receptor-related protein 5 via deoxyribonucleic acid sequence elements located downstream of the start site of transcription. Mol Endocrinol. 2006;20(9):2215ā€“30.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  46. Boros S, Bindels RJ, Hoenderop JG. Active Ca(2+) reabsorption in the connecting tubule. Pflugers Arch. 2009;458(1):99ā€“109.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  47. Lambers TT, et al. Calbindin-D28K dynamically controls TRPV5-mediated Ca2+ transport. EMBO J. 2006;25(13):2978ā€“88.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  48. de Groot T, et al. Parathyroid hormone activates TRPV5 via PKA-dependent phosphorylation. J Am Soc Nephrol. 2009;20(8):1693ā€“704.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  49. Ensrud KE, et al. Low fractional calcium absorption increases the risk for hip fracture in women with low calcium intake. Study of Osteoporotic Fractures Research Group. Ann Intern Med. 2000;132(5):345ā€“53.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  50. van Abel M, et al. Age-dependent alterations in Ca2+ homeostasis: role of TRPV5 and TRPV6. Am J Physiol Ren Physiol. 2006;291(6):F1177ā€“83.

    ArticleĀ  Google ScholarĀ 

  51. Brown AJ, Krits I, Armbrecht HJ. Effect of age, vitamin D, and calcium on the regulation of rat intestinal epithelial calcium channels. Arch Biochem Biophys. 2005;437(1):51ā€“8.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  52. Cauley JA, et al. Serum 25-hydroxyvitamin D concentrations and risk for hip fractures. Ann Intern Med. 2008;149(4):242ā€“50.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  53. Armbrecht HJ, Zenser TV, Davis BB. Effect of age on the conversion of 25-hydroxyvitamin D3 to 1,25-dihydroxyvitamin D3 by kidney of rat. J Clin Invest. 1980;66(5):1118ā€“23.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  54. Matkovits T, Christakos S. Variable in vivo regulation of rat vitamin D-dependent genes (osteopontin, Ca,Mg-adenosine triphosphatase, and 25-hydroxyvitamin D3 24-hydroxylase): implications for differing mechanisms of regulation and involvement of multiple factors. Endocrinology. 1995;136(9):3971ā€“82.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  55. Johnson JA, et al. Age and gender effects on 1,25-dihydroxyvitamin D3-regulated gene expression. Exp Gerontol. 1995;30(6):631ā€“43.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  56. Francis RM, et al. Calcium malabsorption in elderly women with vertebral fractures: evidence for resistance to the action of vitamin D metabolites on the bowel. Clin Sci (Lond). 1984;66(1):103ā€“7.

    ArticleĀ  CASĀ  Google ScholarĀ 

  57. Ebeling PR, et al. Evidence of an age-related decrease in intestinal responsiveness to vitamin D: relationship between serum 1,25-dihydroxyvitamin D3 and intestinal vitamin D receptor concentrations in normal women. J Clin Endocrinol Metab. 1992;75(1):176ā€“82.

    CASĀ  PubMedĀ  Google ScholarĀ 

  58. Wood RJ, et al. Intestinal calcium absorption in the aged rat: evidence of intestinal resistance to 1,25(OH)2 vitamin D. Endocrinology. 1998;139(9):3843ā€“8.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  59. Ross AC, et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin Endocrinol Metab. 2011;96(1):53ā€“8.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  60. Gallagher JC. Vitamin D and aging. Endocrinol Metab Clin N Am. 2013;42(2):319ā€“32.

    ArticleĀ  Google ScholarĀ 

  61. Casagrande DS, et al. Changes in bone mineral density in women following 1-year gastric bypass surgery. Obes Surg. 2012;22(8):1287ā€“92.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  62. Fleischer J, et al. The decline in hip bone density after gastric bypass surgery is associated with extent of weight loss. J Clin Endocrinol Metab. 2008;93(10):3735ā€“40.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  63. Schafer AL, et al. Intestinal calcium absorption decreases dramatically after gastric bypass surgery despite optimization of vitamin D status. J Bone Miner Res. 2015;30(8):1377ā€“85.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  64. Abegg K, et al. Roux-en-Y gastric bypass surgery reduces bone mineral density and induces metabolic acidosis in rats. Am J Phys Regul Integr Comp Phys. 2013;305(9):R999ā€“R1009.

    CASĀ  Google ScholarĀ 

  65. Canales BK, et al. Gastric bypass in obese rats causes bone loss, vitamin D deficiency, metabolic acidosis, and elevated peptide YY. Surg Obes Relat Dis. 2014;10(5):878ā€“84.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  66. Bernstein CN, Leslie WD. The pathophysiology of bone disease in gastrointestinal disease. Eur J Gastroenterol Hepatol. 2003;15(8):857ā€“64.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Acknowledgements

SC receives funding from the National Institutes of Health grants AG044552, DK112365 and AI121621.

Competing Interests

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvia Christakos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Christakos, S., Veldurthy, V., Patel, N., Wei, R. (2017). Intestinal Regulation of Calcium: Vitamin D and Bone Physiology. In: McCabe, L., Parameswaran, N. (eds) Understanding the Gut-Bone Signaling Axis. Advances in Experimental Medicine and Biology, vol 1033. Springer, Cham. https://doi.org/10.1007/978-3-319-66653-2_1

Download citation

Publish with us

Policies and ethics