Skip to main content

Bone Mechanical Function and the Gut Microbiota

  • Chapter
  • First Online:
Understanding the Gut-Bone Signaling Axis

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1033))

Abstract

The primary function of bone in the body is to resist mechanical forces. Impairment of the mechanical performance of bone is therefore the primary clinical challenge presented by bone disease. Failure to resist forces associated with activities of daily living leads to fragility fracture. In this chapter we review the characteristics of bone that influence mechanical performance and fracture risk, how bone remodeling and modeling alter mechanically relevant characteristics of bone, and the potential for the gut microbiome to alter bone mechanical performance and risk of fragility fracture. The ability of bone to resist fragility fracture is determined by characteristics of bone tissue at scales ranging from nanometers to centimeters. Bone remodeling and modeling can influence whole bone shape and density, but the effects of bone remodeling on bone tissue mechanical properties are not as well understood. The gut microbiome may influence bone by altering nutrient absorption, stimulating the immune system or through translocation of microbes and microbial products across the gut endothelium. Although there is evidence that the microbiome can alter bone density and bone remodeling, the ability of the microbiome to cause changes in tissue material properties, whole bone strength, and fragility fracture remains to be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hernandez CJ, Beaupre GS, Carter DR. A theoretical analysis of the relative influences of peak BMD, age-related bone loss and menopause on the development of osteoporosis. Osteoporos Int. 2003;14(10):843–7.

    Article  CAS  PubMed  Google Scholar 

  2. Marcus R, Dempster DW, Bouxsein ML. The nature of osteoporosis. In: Marcus R, Feldman D, Dempster DW, Luckey M, Cauley JA, editors. Osteoporosis. 1. 4th ed. Waltham: Academic; 2013. p. 21–30.

    Chapter  Google Scholar 

  3. Hui SL, Slemenda CW, Johnston CC Jr. Age and bone mass as predictors of fracture in a prospective study. J Clin Invest. 1988;81(6):1804–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes – a meta-analysis. Osteoporos Int. 2007;18(4):427–44.

    Article  CAS  PubMed  Google Scholar 

  5. Karim L, Bouxsein ML. Effect of type 2 diabetes-related non-enzymatic glycation on bone biomechanical properties. Bone. 2016;82:21–7.

    Article  CAS  PubMed  Google Scholar 

  6. Ali T, Lam D, Bronze MS, Humphrey MB. Osteoporosis in inflammatory bowel disease. Am J Med. 2009;122(7):599–604.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Byrne FR, Morony S, Warmington K, Geng Z, Brown HL, Flores SA, et al. CD4+CD45RBHi T cell transfer induced colitis in mice is accompanied by osteopenia which is treatable with recombinant human osteoprotegerin. Gut. 2005;54(1):78–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–31.

    Article  PubMed  Google Scholar 

  9. Tang WHW, Hazen SL. The contributory role of gut microbiota in cardiovascular disease. J Clin Invest. 2014;124(10):4204–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hernandez CJ, Guss JD, Luna M, Goldring SR. Links between the microbiome and bone. J Bone Miner Res. 2016;31(9):1638–46.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Whealan KM, Kwak SD, Tedrow JR, Inoue K, Snyder BD. Noninvasive imaging predicts failure load of the spine with simulated osteolytic defects. J Bone Joint Surg Am. 2000;82(9):1240–51.

    Article  CAS  PubMed  Google Scholar 

  12. Crawford RP, Keaveny TM. Relationship between axial and bending behaviors of the human thoracolumbar vertebra. Spine. 2004;29(20):2248–55.

    Article  PubMed  Google Scholar 

  13. van der Meulen MC, Jepsen KJ, Mikic B. Understanding bone strength: size isn’t everything. Bone. 2001;29(2):101–4.

    Article  PubMed  Google Scholar 

  14. Cooper C, Atkinson EJ, O’Fallon WM, Melton LJ. Incidence of clinically diagnosed vertebral fractures: a population-based study in Rochester, Minnesota, 1985–1989. J Bone Miner Res. 1992;7:221–7.

    Article  CAS  PubMed  Google Scholar 

  15. Hernandez CJ, van der Meulen MC. Understanding bone strength is not enough. J Bone Miner Res. 2017;32(6):1157–62. doi:10.1002/jbmr.3078.

  16. Dowling NE. Mechanical behaviour of materials. 3rd ed. Upper Saddle River: Pearson Prentice Hall; 2007.

    Google Scholar 

  17. Ettinger B, Burr DB, Ritchie RO. Proposed pathogenesis for atypical femoral fractures: lessons from material research. Bone. 2013;55(2):495–500.

    Article  CAS  PubMed  Google Scholar 

  18. Poundarik AA, Diab T, Sroga GE, Ural A, Boskey AL, Gundberg CM, et al. Dilatational band formation in bone. Proc Natl Acad Sci U S A. 2012;109(47):19178–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Torres AM, Matheny JB, Keaveny TM, Taylor D, Rimnac CM, Hernandez CJ. Material heterogeneity in cancellous bone promotes deformation recovery after mechanical failure. Proc Natl Acad Sci U S A. 2016;113(11):2892–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ritchie RO. The conflicts between strength and toughness. Nat Mater. 2011;10(11):817–-22. doi:10.1038/nmat3115.

  21. Courtney AC, Wachtel EF, Myers ER, Hayes WC. Age-related reductions in the strength of the femur tested in a fall loading configuration. Trans Orthop Res Soc. 1994;19:188.

    Google Scholar 

  22. Moro M, Hecker AT, Bouxsein ML, Myers ER. Failure load of thoracic vertebrae correlates with lumbar bone-mineral density measured by Dxa. Calcif Tissue Int. 1995;56(3):206–9.

    Article  CAS  PubMed  Google Scholar 

  23. Lotz JC, Cheal EJ, Hayes WC. Stress distributions within the proximal femur during gait and falls: implications for osteoporotic fracture. Osteoporos Int. 1995;5(4):252–61.

    Article  CAS  PubMed  Google Scholar 

  24. Van Rietbergen B, Huiskes R, Eckstein F, Ruegsegger P. Trabecular bone tissue strains in the healthy and osteoporotic human femur. J Bone Miner Res. 2003;18(10):1781–8.

    Article  PubMed  Google Scholar 

  25. Eswaran SK, Gupta A, Adams MF, Keaveny TM. Cortical and trabecular load sharing in the human vertebral body. J Bone Miner Res. 2006;21(2):307–14.

    Article  PubMed  Google Scholar 

  26. Crawford RP, Cann CE, Keaveny TM. Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone. 2003;33(4):744–50.

    Article  PubMed  Google Scholar 

  27. Hussein AI, Jackman TM, Morgan SR, Barest GD, Morgan EF. The intravertebral distribution of bone density: correspondence to intervertebral disc health and implications for vertebral strength. Osteoporos Int. 2013;24(12):3021–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hussein AI, Morgan EF. The effect of intravertebral heterogeneity in microstructure on vertebral strength and failure patterns. Osteoporos Int. 2013;24(3):979–89.

    Article  CAS  PubMed  Google Scholar 

  29. Keaveny TM. Biomechanical computed tomography-noninvasive bone strength analysis using clinical computed tomography scans. Ann N Y Acad Sci. 2010;1192:57–65.

    Article  PubMed  Google Scholar 

  30. Hernandez CJ. How can bone turnover modify bone strength independent of bone mass? Bone. 2008;42(6):1014–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hernandez CJ, Beaupre GS, Keller TS, Carter DR. The influence of bone volume fraction and ash fraction on bone strength and modulus. Bone. 2001;29(1):74–8.

    Article  CAS  PubMed  Google Scholar 

  32. Bartel DL, Davy DT, Keaveny TM. Orthopaedic biomechanics: mechanics and design in musculoskeletal systems. Upper Saddle River: Prentice Hall; 2006.

    Google Scholar 

  33. Karim L, Hussein AI, Morgan EF, Bouxsein ML. The mechanical behavior of bone. In: Marcus R, Feldman D, Dempster DW, Luckey M, Cauley JA, editors. Osteoporosis. 4th ed. San Diego: Academic; 2013. p. 431–52.

    Chapter  Google Scholar 

  34. Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Muller R. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res. 2010;25(7):1468–86.

    Article  PubMed  Google Scholar 

  35. Goff MG, Slyfield CR, Kummari SR, Tkachenko EV, Fischer SE, Yi YH, et al. Three-dimensional characterization of resorption cavity size and location in human vertebral trabecular bone. Bone. 2012;51(1):28–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lambers FM, Bouman AR, Tkachenko EV, Keaveny TM, Hernandez CJ. The effects of tensile-compressive loading mode and microarchitecture on microdamage in human vertebral cancellous bone. J Biomech. 2014;47(15):3605–12.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Goff MG, Lambers FM, Nguyen TM, Sung J, Rimnac CM, Hernandez CJ. Fatigue-induced microdamage in cancellous bone occurs distant from resorption cavities and trabecular surfaces. Bone. 2015;79:8–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nishiyama KK, Macdonald HM, Buie HR, Hanley DA, Boyd SK. Postmenopausal women with osteopenia have higher cortical porosity and thinner cortices at the distal radius and tibia than women with normal aBMD: an in vivo HR-pQCT study. J Bone Miner Res. 2010;25(4):882–90.

    PubMed  Google Scholar 

  39. Patsch JM, Burghardt AJ, Yap SP, Baum T, Schwartz AV, Joseph GB, et al. Increased cortical porosity in type 2 diabetic postmenopausal women with fragility fractures. J Bone Miner Res. 2013;28(2):313–24.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lloyd AA, Wang ZX, Donnelly E. Multiscale contribution of bone tissue material property heterogeneity to trabecular bone mechanical behavior. J Biomech Eng. 2015;137(1): 0108011–18.

    Google Scholar 

  41. van der Linden JC, Birkenhager-Frenkel DH, Verhaar JA, Weinans H. Trabecular bone’s mechanical properties are affected by its non-uniform mineral distribution. J Biomech. 2001;34(12):1573–80.

    Article  PubMed  Google Scholar 

  42. Jaasma MJ, Bayraktar HH, Niebur GL, Keaveny TM. The effects of intraspecimen variations in tissue modulus on the apparent mechanical properties of trabecular bone. Trans Orthop Res Soc; 2001; San Francisco.

    Google Scholar 

  43. Bourne BC, van der Meulen MC. Finite element models predict cancellous apparent modulus when tissue modulus is scaled from specimen CT-attenuation. J Biomech. 2004;37(5):613–21.

    Article  PubMed  Google Scholar 

  44. Yerramshetty JS, Akkus O. The associations between mineral crystallinity and the mechanical properties of human cortical bone. Bone. 2008;42(3):476–82.

    Article  CAS  PubMed  Google Scholar 

  45. Bi X, Patil CA, Lynch CC, Pharr GM, Mahadevan-Jansen A, Nyman JS. Raman and mechanical properties correlate at whole bone- and tissue-levels in a genetic mouse model. J Biomech. 2011;44(2):297–303.

    Article  PubMed  Google Scholar 

  46. Hernandez CJ, Tang SY, Baumbach BM, Hwu PB, Sakkee AN, van der Ham F, et al. Trabecular microfracture and the influence of pyridinium and non-enzymatic glycation-mediated collagen cross-links. Bone. 2005;37(6):825–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Vashishth D. The role of the collagen matrix in skeletal fragility. Curr Osteoporos Rep. 2007;5(2):62–6.

    Article  PubMed  Google Scholar 

  48. Horch RA, Gochberg DF, Nyman JS, Does MD. Non-invasive predictors of human cortical bone mechanical properties: T(2)-discriminated H NMR compared with high resolution x-ray. PLoS One. 2011;6(1):e16359.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Granke M, Does MD, Nyman JS. The role of water compartments in the material properties of cortical bone. Calcif Tissue Int. 2015;97(3):292–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Granke M, Makowski AJ, Uppuganti S, Does MD, Nyman JS. Identifying novel clinical surrogates to assess human bone fracture toughness. J Bone Miner Res. 2015;30(7):1290–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Manhard MK, Uppuganti S, Granke M, Gochberg DF, Nyman JS, Does MD. MRI-derived bound and pore water concentrations as predictors of fracture resistance. Bone. 2016;87:1–10.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Currey JD. Bones: structure and mechanics. Princeton: Princeton University Press; 2002.

    Google Scholar 

  53. Hernandez CJ, Keaveny TM. A biomechanical perspective on bone quality. Bone. 2006;39(6):1173–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Parfitt AM. Misconceptions (2): turnover is always higher in cancellous than in cortical bone. Bone. 2002;30(6):807–9.

    Article  CAS  PubMed  Google Scholar 

  55. Hernandez CJ, Beaupré GS, Marcus R, Carter DR. A theoretical analysis of the contributions of remodeling space, mineralization and bone balance to changes in bone mineral density during alendronate treatment. Bone. 2001;29(6):511–6.

    Article  CAS  PubMed  Google Scholar 

  56. Akkus O, Polyakova-Akkus A, Adar F, Schaffler MB. Aging of microstructural compartments in human compact bone. J Bone Miner Res. 2003;18(6):1012–9.

    Article  CAS  PubMed  Google Scholar 

  57. Fuchs RK, Allen MR, Ruppel ME, Diab T, Phipps RJ, Miller LM, et al. In situ examination of the time-course for secondary mineralization of Haversian bone using synchrotron Fourier transform infrared microspectroscopy. Matrix Biol. 2008;27(1):34–41.

    Google Scholar 

  58. Hernandez CJ, Lopez HK, Lane JM. Theoretical consideration of the effect of drug holidays on BMD and tissue age. Osteoporos Int. 2014;25(5):1577–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kostic AD, Xavier RJ, Gevers D. The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology. 2014;146(6):1489–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chassaing B, Aitken JD, Gewirtz AT, Vijay-Kumar M. Gut microbiota drives metabolic disease in immunologically altered mice. Adv Immunol. 2012;116:93–112.

    Article  CAS  PubMed  Google Scholar 

  61. Kane AV, Dinh DM, Ward HD. Childhood malnutrition and the intestinal microbiome malnutrition and the microbiome. Pediatr Res. 2015;77(0):256–62.

    Article  PubMed  Google Scholar 

  62. Wang Y, Kasper LH. The role of microbiome in central nervous system disorders. Brain Behav Immun. 2014;38:1–12.

    Article  PubMed  CAS  Google Scholar 

  63. Schwabe RF, Jobin C. The microbiome and cancer. Nat Rev Cancer. 2013;13(11):800–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Stewart EJ. Growing unculturable bacteria. J Bacteriol. 2012;194(16):4151–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chaffron S, Rehrauer H, Pernthaler J, von Mering C. A global network of coexisting microbes from environmental and whole-genome sequence data. Genome Res. 2010;20(7):947–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R, et al. Human genetics shape the gut microbiome. Cell. 2014;159(4):789–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489(7415):220–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Moya A, Ferrer M. Functional redundancy-induced stability of gut microbiota subjected to disturbance. Trends Microbiol. 2016;24(5):402–13.

    Article  CAS  PubMed  Google Scholar 

  69. David LA, Materna AC, Friedman J, Campos-Baptista MI, Blackburn MC, Perrotta A, et al. Host lifestyle affects human microbiota on daily timescales. Genome Biol. 2014;15(7):R89.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Dethlefsen L, Relman DA. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4554–61.

    Article  CAS  PubMed  Google Scholar 

  71. Jukes TH, Williams WL. Nutritional effects of antibiotics. Pharmacol Rev. 1953;5(4):381–420.

    CAS  PubMed  Google Scholar 

  72. Ross E, Yacowitz H. Effect of penicillin on growth and bone ash of chicks fed different levels of vitamin-D and phosphorus. Poult Sci. 1954;33(2):262–5.

    Article  CAS  Google Scholar 

  73. Rusoff LL, Fussell JM, Hyde CE, Crown RM, Gall LS. Parenteral administration of aureomycin to young calves with a note on mode of action. J Dairy Sci. 1954;37(5):488–97.

    Article  CAS  Google Scholar 

  74. Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI. Human nutrition, the gut microbiome and the immune system. Nature. 2011;474(7351):327–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486(7402):222–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014;157(1):121–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, de Roos P, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504(7480):451–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504(7480):446–50.

    Article  CAS  PubMed  Google Scholar 

  79. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly YM, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013;341(6145):569–73.

    Article  CAS  PubMed  Google Scholar 

  80. Schroeder BO, Backhed F. Signals from the gut microbiota to distant organs in physiology and disease. Nat Med. 2016;22(10):1079–89.

    Article  CAS  PubMed  Google Scholar 

  81. Li Y, Toraldo G, Li A, Yang X, Zhang H, Qian WP, et al. B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo. Blood. 2007;109(9):3839–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Pacifici R. T cells, osteoblasts, and osteocytes: interacting lineages key for the bone anabolic and catabolic activities of parathyroid hormone. Ann N Y Acad Sci. 2016;1364:11–24.

    Google Scholar 

  83. Fung TC, Artis D, Sonnenberg GF. Anatomical localization of commensal bacteria in immune cell homeostasis and disease. Immunol Rev. 2014;260(1):35–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Amar J, Chabo C, Waget A, Klopp P, Vachoux C, Bermudez-Humaran LG, et al. Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Mol Med. 2011;3(9):559–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Takami M, Kim N, Rho J, Choi Y. Stimulation by toll-like receptors inhibits osteoclast differentiation. J Immunol. 2002;169(3):1516–23.

    Article  CAS  PubMed  Google Scholar 

  86. Zou W, Bar-Shavit Z. Dual modulation of osteoclast differentiation by lipopolysaccharide. J Bone Miner Res. 2002;17(7):1211–8.

    Article  CAS  PubMed  Google Scholar 

  87. Itoh K, Udagawa N, Kobayashi K, Suda K, Li X, Takami M, et al. Lipopolysaccharide promotes the survival of osteoclasts via Toll-like receptor 4, but cytokine production of osteoclasts in response to lipopolysaccharide is different from that of macrophages. J Immunol. 2003;170(7):3688–95.

    Article  CAS  PubMed  Google Scholar 

  88. Chamberlain ND, Vila OM, Volin MV, Volkov S, Pope RM, Swedler W, et al. TLR5, a novel and unidentified inflammatory mediator in rheumatoid arthritis that correlates with disease activity score and joint TNF-alpha levels. J Immunol. 2012;189(1):475–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kim SJ, Chen Z, Chamberlain ND, Essani AB, Volin MV, Amin MA, et al. Ligation of TLR5 promotes myeloid cell infiltration and differentiation into mature osteoclasts in rheumatoid arthritis and experimental arthritis. J Immunol. 2014;193(8):3902–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kassem A, Henning P, Kindlund B, Lindholm C, Lerner UH. TLR5, a novel mediator of innate immunity-induced osteoclastogenesis and bone loss. FASEB J. 2015;29(11):4449–60.

    Article  CAS  PubMed  Google Scholar 

  91. Mariat D, Firmesse O, Levenez F, Guimaraes V, Sokol H, Dore J, et al. The firmicutes/bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 2009;9:123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Jackson M, Jeffery IB, Beaumont M, Bell JT, Clark AG, Ley RE, et al. Signatures of early frailty in the gut microbiota. Genome Med. 2016;8(1):8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Blanton LV, Charbonneau MR, Salih T, Barratt MJ, Venkatesh S, Ilkaveya O, et al. Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children. Science. 2016;351:6275.

    Article  CAS  Google Scholar 

  94. Schwarzer M, Makki K, Storelli G, Machuca-Gayet I, Srutkova D, Hermanova P, et al. Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition. Science. 2016;351(6275):854–7.

    Article  CAS  PubMed  Google Scholar 

  95. Li JY, Chassaing B, Tyagi AM, Vaccaro C, Luo T, Adams J, et al. Sex steroid deficiency-associated bone loss is microbiota dependent and prevented by probiotics. J Clin Invest. 2016;126:2049.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Britton RA, Irwin R, Quach D, Schaefer L, Zhang J, Lee T, et al. Probiotic L. reuteri treatment prevents bone loss in a menopausal ovariectomized mouse model. J Cell Physiol. 2014;229(11):1822–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ohlsson C, Engdahl C, Fak F, Andersson A, Windahl SH, Farman HH, et al. Probiotics protect mice from ovariectomy-induced cortical bone loss. PLoS One. 2014;9(3):e92368.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Pytlik M, Folwarczna J, Janiec W. Effects of doxycycline on mechanical properties of bones in rats with ovariectomy-induced osteopenia. Calcif Tissue Int. 2004;75(3):225–30.

    Article  CAS  PubMed  Google Scholar 

  99. Williams S, Wakisaka A, Zeng QQ, Barnes J, Martin G, Wechter WJ, et al. Minocycline prevents the decrease in bone mineral density and trabecular bone in ovariectomized aged rats. Bone. 1996;19(6):637–44.

    Article  CAS  PubMed  Google Scholar 

  100. Sjogren K, Engdahl C, Henning P, Lerner UH, Tremaroli V, Lagerquist MK, et al. The gut microbiota regulates bone mass in mice. J Bone Miner Res. 2012;27(6):1357–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Yan J, Herzog JW, Tsang K, Brennan CA, Bower MA, Garrett WS, et al. Gut microbiota induce IGF-1 and promote bone formation and growth. Proc Natl Acad Sci U S A. 2016;22:113.

    Google Scholar 

  102. Cho I, Yamanishi S, Cox L, Methe BA, Zavadil J, Li K, et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature. 2012;488(7413):621–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Cox LM, Yamanishi S, Sohn J, Alekseyenko AV, Leung JM, Cho I, et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell. 2014;158(4):705–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Nobel YR, Cox LM, Kirigin FF, Bokulich NA, Yamanishi S, Teitler I, et al. Metabolic and metagenomic outcomes from early-life pulsed antibiotic treatment. Nat Commun. 2015;6:7486.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L, Stonebraker AC, et al. Innate immunity and intestinal microbiota in the development of type 1 diabetes. Nature. 2008;455(7216):1109–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 2009;139(3):485–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Servick K. Mouse microbes may make scientific studies harder to replicate Science News. 2016. Available from: http://www.sciencemag.org/news/2016/08/mouse-microbes-may-make-scientific-studies-harder-replicate.

  108. Laukens D, Brinkman BM, Raes J, De Vos M, Vandenabeele P. Heterogeneity of the gut microbiome in mice: guidelines for optimizing experimental design. FEMS Microbiol Rev. 2016;40(1):117–32.

    Article  CAS  PubMed  Google Scholar 

  109. Ericsson AC, Franklin CL. Manipulating the gut microbiota: methods and challenges. ILAR J. 2015;56(2):205–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. O’Connor A, Quizon PM, Albright JE, Lin FT, Bennett BJ. Responsiveness of cardiometabolic-related microbiota to diet is influenced by host genetics. Mamm Genome. 2014;25(11–12):583–99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Cosman F, de Beur SJ, LeBoff MS, Lewiecki EM, Tanner B, Randall S, et al. Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int. 2014;25(10):2359–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Claesson MJ, Jeffery IB, Conde S, Power SE, O’Connor EM, Cusack S, et al. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012;488(7410):178–84.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. Hernandez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hernandez, C.J. (2017). Bone Mechanical Function and the Gut Microbiota. In: McCabe, L., Parameswaran, N. (eds) Understanding the Gut-Bone Signaling Axis. Advances in Experimental Medicine and Biology, vol 1033. Springer, Cham. https://doi.org/10.1007/978-3-319-66653-2_12

Download citation

Publish with us

Policies and ethics