Skip to main content

Virtual PET Images from CT Data Using Deep Convolutional Networks: Initial Results

  • Conference paper
  • First Online:
Simulation and Synthesis in Medical Imaging (SASHIMI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10557))

Included in the following conference series:

Abstract

In this work we present a novel system for PET estimation using CT scans. We explore the use of fully convolutional networks (FCN) and conditional generative adversarial networks (GAN) to export PET data from CT data. Our dataset includes 25 pairs of PET and CT scans where 17 were used for training and 8 for testing. The system was tested for detection of malignant tumors in the liver region. Initial results look promising showing high detection performance with a TPR of 92.3% and FPR of 0.25 per case. Future work entails expansion of the current system to the entire body using a much larger dataset. Such a system can be used for tumor detection and drug treatment evaluation in a CT-only environment instead of the expansive and radioactive PET-CT scan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adelson, E.H., Anderson, C.H., Bergen, J.R., Burt, P.J., Ogden, J.M.: Pyramid methods in image processing. RCA Eng. 29(6), 33–41 (1984)

    Google Scholar 

  2. Ben-Cohen, A., Diamant, I., Klang, E., Amitai, M., Greenspan, H.: Fully convolutional network for liver segmentation and lesions detection. In: Carneiro, G., et al. (eds.) LABELS/DLMIA -2016. LNCS, vol. 10008, pp. 77–85. Springer, Cham (2016). doi:10.1007/978-3-319-46976-8_9

    Google Scholar 

  3. Christ, P.F., Ettlinger, F., Grün, F., Elshaera, M.E.A., Lipkova, J., Schlecht, S., Rempfler, M.: Automatic liver and tumor segmentation of CT and MRI Volumes using cascaded fully convolutional neural networks. arXiv preprint (2017). arXiv:1702.05970

  4. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Bengio, Y.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  5. Higashi, K., Clavo, A.C., Wahl, R.L.: Does FDG uptake measure the proliferative activity of human cancer cells? In vitro comparison with DNA flow cytometry and tritiated thymidine uptake. J. Nuclear Med. 34, 414 (1993)

    Google Scholar 

  6. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. arXiv preprint (2016). arXiv:1611.07004

  7. Kelloff, G.J., Hoffman, J.M., Johnson, B., Scher, H.I., Siegel, B.A., Cheng, E.Y., Shankar, L.: Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clin. Cancer Res. 11(8), 2785–2808 (2005)

    Article  Google Scholar 

  8. Kinehan, P.E., Fletcher, J.W.: PET/CT standardized uptake values (SUVs) in clinical practice and assessing response to therapy. Semin. Ultrasound CT MRI 31(6), 496–505 (2010)

    Article  Google Scholar 

  9. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  10. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). doi:10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  11. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39, 640–651 (2016)

    Article  Google Scholar 

  12. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint (2014). arXiv:1409.1556

  13. Weber, W.A., Grosu, A.L., Czernin, J.: Technology insight: advances in molecular imaging and an appraisal of PET/CT scanning. Nature Clin. Pract. Oncol. 5(3), 160–170 (2008)

    Article  Google Scholar 

  14. Weber, W.A.: Assessing tumor response to therapy. J. Nucl. Med. 50(Suppl 1), 1S–10S (2009)

    Article  Google Scholar 

Download references

Acknowledgment

This research was supported by the Israel Science Foundation (grant No. 1918/16).

Part of this work was funded by the INTEL Collaborative Research Institute for Computational Intelligence (ICRI-CI).

Avi Ben-Cohen’s scholarship was funded by the Buchmann Scholarships Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avi Ben-Cohen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ben-Cohen, A., Klang, E., Raskin, S.P., Amitai, M.M., Greenspan, H. (2017). Virtual PET Images from CT Data Using Deep Convolutional Networks: Initial Results. In: Tsaftaris, S., Gooya, A., Frangi, A., Prince, J. (eds) Simulation and Synthesis in Medical Imaging. SASHIMI 2017. Lecture Notes in Computer Science(), vol 10557. Springer, Cham. https://doi.org/10.1007/978-3-319-68127-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68127-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68126-9

  • Online ISBN: 978-3-319-68127-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics