Skip to main content

Brain Cancer Imaging Phenomics Toolkit (brain-CaPTk): An Interactive Platform for Quantitative Analysis of Glioblastoma

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2017)

Abstract

Quantitative research, especially in the field of radio(geno)mics, has helped us understand fundamental mechanisms of neurologic diseases. Such research is integrally based on advanced algorithms to derive extensive radiomic features and integrate them into diagnostic and predictive models. To exploit the benefit of such complex algorithms, their swift translation into clinical practice is required, currently hindered by their complicated nature. brain-CaPTk is a modular platform, with components spanning across image processing, segmentation, feature extraction, and machine learning, that facilitates such translation, enabling quantitative analyses without requiring substantial computational background. Thus, brain-CaPTk can be seamlessly integrated into the typical quantification, analysis and reporting workflow of a radiologist, underscoring its clinical potential. This paper describes currently available components of brain-CaPTk and example results from their application in glioblastoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aerts, H.J.: The potential of radiomic-based phenotyping in precision medicine: a review. JAMA Oncol. 2, 1636–1642 (2016)

    Article  Google Scholar 

  2. Zinn, P.O., Mahajan, B., Sathyan, P., Singh, S.K., Majumder, S., Jolesz, F.A., Colen, R.R.: Radiogenomic mapping of edema/cellular invasion MRI-phenotypes in glioblastoma multiforme. PLoS One 6, e25451 (2011)

    Article  Google Scholar 

  3. Gevaert, O., Mitchell, L.A., Achrol, A.S., Xu, J., Echegaray, S., Steinberg, G.K., Cheshier, S.H., Napel, S., Zaharchuk, G., Plevritis, S.K.: Glioblastoma multiforme: exploratory radiogenomic analysis by using quantitative image features. Radiology 273, 168–174 (2014)

    Article  Google Scholar 

  4. Jain, R., Poisson, L.M., Gutman, D., Scarpace, L., Hwang, S.N., Holder, C.A., Wintermark, M., Rao, A., Colen, R.R., Kirby, J., Freymann, J., Jaffe, C.C., Mikkelsen, T., Flanders, A.: Outcome prediction in patients with glioblastoma by using imaging, clinical, and genomic biomarkers: focus on the nonenhancing component of the tumor. Radiology 272, 484–493 (2014)

    Article  Google Scholar 

  5. Ellingson, B.M.: Radiogenomics and imaging phenotypes in glioblastoma: novel observations and correlation with molecular characteristics. Curr. Neurol. Neurosci. Rep. 15, 506 (2015)

    Article  Google Scholar 

  6. Bakas, S., Akbari, H., Pisapia, J., Martinez-Lage, M., Rozycki, M., Rathore, S., Dahmane, N., O’Rourke, D.M., Davatzikos, C.: In vivo detection of EGFRvIII in glioblastoma via perfusion magnetic resonance imaging signature consistent with deep peritumoral infiltration: the φ index. Clin. Cancer Res. 23, 4724–4734 (2017)

    Article  Google Scholar 

  7. Bakas, S., Binder, Z.A., Akbari, H., Martinez-Lage, M., Rozycki, M., Morrissette, J.J.D., Dahmane, N., O’Rourke, D.M., Davatzikos, C.: Highly-expressed wild-type EGFR and EGFRvIII mutant glioblastomas have similar MRI signature, consistent with deep peritumoral infiltration. Neuro-Oncol. 18, vi125 (2016)

    Google Scholar 

  8. Akbari, H., Bakas, S., Rozycki, M., Da, X., Pisapia, J., Bilello, M., O’Rourke, D., Davatzikos, C.: Non-invasive determination of epidermal growth factor receptor variant III expression in glioblastoma through analysis of multi-parametric magnetic resonance imaging. In: Oral Presentation in 101st Scientific Assembly and Annual Meeting of the Radiological Society of North America (RSNA) (2015)

    Google Scholar 

  9. Macyszyn, L., Akbari, H., Pisapia, J.M., Da, X., Attiah, M., Pigrish, V., Bi, Y., Pal, S., Davuluri, R.V., Roccograndi, L., Dahmane, N., Biros, G., Wolf, R.L., Bilello, M., O’Rourke, D.M., Davatzikos, C.: Imaging patterns predict patient survival and molecular subtype in glioblastoma via machine learning techniques. Neuro-Oncol. 18, 417–425 (2016)

    Article  Google Scholar 

  10. Bakas, S., Akbari, H., Pisapia, J., Rozycki, M., O’Rourke, D., Davatzikos, C.: Identification of imaging signatures of the epidermal growth factor receptor variant III (EGFRvIII) in glioblastoma. Neuro-Oncol. 17, 154 (2015)

    Article  Google Scholar 

  11. Fedorov, A., Beichel, R., Kalpathy-Cramer, J., Finet, J., Fillion-Robin, J.C., Pujol, S., Bauer, C., Jennings, D., Fennessy, F., Sonka, M., Buatti, J., Aylward, S., Miller, J.V., Pieper, S., Kikinis, R.: 3D slicer as an image computing platform for the quantitative imaging network. Magn. Reson. Imaging 30, 1323–1341 (2012)

    Article  Google Scholar 

  12. Jenkinson, M., Beckmann, C.F., Behrens, T.E.J., Woolrich, M.W., Smith, S.M.: FSL. NeuroImage 62, 782–790 (2012)

    Article  Google Scholar 

  13. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.180.3343

  14. https://mipav.cit.nih.gov/

  15. Smith, S.M., Brady, J.M.: SUSAN - a new approach to low level image processing. Int. J. Comput. Vis. 23, 45–78 (1997)

    Article  Google Scholar 

  16. Tustison, N.J., Avants, B.B., Cook, P.A., Zheng, Y., Egan, A., Yushkevich, P.A., Gee, J.C.: N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29, 1310–1320 (2010)

    Article  Google Scholar 

  17. Nyul, L.G., Udupa, J.K., Zhang, X.: New variants of a method of MRI scale standardization. IEEE Trans. Med. Imaging 19, 143–150 (2000)

    Article  Google Scholar 

  18. Bakas, S., Zeng, K., Sotiras, A., Rathore, S., Akbari, H., Gaonkar, B., Rozycki, M., Pati, S., Davatzikos, C.: GLISTRboost: combining multimodal MRI segmentation, registration, and biophysical tumor growth modeling with gradient boosting machines for glioma segmentation. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Handels, H. (eds.) BrainLes 2015. LNCS, vol. 9556, pp. 144–155. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30858-6_13

    Chapter  Google Scholar 

  19. Bakas, S., Zeng, K., Sotiras, A., Rathore, S., Akbari, H., Gaonkar, B., Rozycki, M., Pati, S., Davatzikos, C.: Segmentation of gliomas in multimodal magnetic resonance imaging volumes based on a hybrid generative-discriminative framework. In: Menze, B., Reyes, M., Farahani, K., Kalpathy-Cramer, J., Kwon, D. (eds.) Proceedings of the Multimodal Brain Tumor Image Segmentation Challenge Held in Conjunction with MICCAI 2015 (MICCAI-BRATS 2015), 5–9 October 2015, pp. 5–12. Technische Universität München (T.U.M.), Munich, Germany (2015)

    Google Scholar 

  20. Gaonkar, B., Macyszyn, L., Bilello, M., Sadaghiani, M.S., Akbari, H., Atthiah, M.A., Ali, Z.S., Da, X., Zhan, Y., Rourke, D.O., Grady, S.M., Davatzikos, C.: Automated tumor volumetry using computer-aided image segmentation. Acad. Radiol. 22, 653–661 (2015)

    Article  Google Scholar 

  21. Hogea, C., Davatzikos, C., Biros, G.: An image-driven parameter estimation problem for a reaction-diffusion glioma growth model with mass effects. J. Math. Biol. 56, 793–825 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Friedman, J.H.: Stochastic gradient boosting. Comput. Statist. Data Anal. 38, 367–378 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Bakas, S., Chatzimichail, K., Hunter, G., Labbe, B., Sidhu, P.S., Makris, D.: Fast semi-automatic segmentation of focal liver lesions in contrast-enhanced ultrasound, based on a probabilistic model. In: TCIV Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization (2015). ePub-ahead-of-print

    Google Scholar 

  24. Akbari, H., Macyszyn, L., Da, X., Wolf, R.L., Bilello, M., Verma, R., O’Rourke, D.M., Davatzikos, C.: Pattern analysis of dynamic susceptibility contrast MRI reveals peritumoral tissue heterogeneity. Radiology 273, 502–510 (2014)

    Article  Google Scholar 

  25. Haralick, R.M., Shanmugam, K., Dinstein, I.H.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 3, 610–621 (1973)

    Article  Google Scholar 

  26. Galloway, M.M.: Texture analysis using grey level run lengths. Comput. Graph. Image Process. 4, 172–179 (1975)

    Article  Google Scholar 

  27. Tang, X.: Texture information in run-length matrices. IEEE Trans. Image Process. 7, 1602–1609 (1998)

    Article  Google Scholar 

  28. Amadasun, M., King, R.: Textural features corresponding to textural properties. IEEE Trans. Syst. Man Cybern. 19, 1264–1274 (1989)

    Article  Google Scholar 

  29. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24, 971–987 (2002)

    Article  MATH  Google Scholar 

  30. Thibault, G., Fertil, B., Navarro, C., Pereira, S., Cau, P., Levy, N., Sequeira, J., Mari, J.-L.: Shape and texture indexes application to cell nuclei classification. Int. J. Pattern Recognit. Artif. Intell. 27, 1357002 (2013)

    Article  MathSciNet  Google Scholar 

  31. Vallières, M., Freeman, C., Skamene, S., El Naqa, I.: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol. 60, 5471 (2015)

    Article  Google Scholar 

  32. Lecoeur, J., Caruyer, E., Elliott, M., Brem, S., Macyszyn, L., Verma, R.: Addressing the challenge of edema in fiber tracking. In: Medical Image Computing and Computer-Assisted Intervention MICCAI 2014, DTI Tractography Challenge, Boston, MA (2014)

    Google Scholar 

  33. Lecoeur, J., Caruyer, E., Macyszyn, L., Verma, R.: Improving white matter tractography by resolving the challenges of edema. In: MICCAI Workshop: DTI Challenge 2013 (2013)

    Google Scholar 

  34. Tunc, B., Ingalhalikar, M., Parker, D., Lecoeur, J., Singh, N., Wolf, R.L., Macyszyn, L., Brem, S., Verma, R.: Individualized map of white matter pathways: connectivity-based paradigm for neurosurgical planning. Neurosurgery 79, 568–577 (2016)

    Article  Google Scholar 

  35. Tunc, B., Parker, W.A., Ingalhalikar, M., Verma, R.: Automated tract extraction via atlas based adaptive clustering. NeuroImage 102P2, 596–607 (2014)

    Google Scholar 

  36. Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., Burren, Y., Porz, N., Slotboom, J., Wiest, R., Lanczi, L., Gerstner, E., Weber, M.A., Arbel, T., Avants, B.B., Ayache, N., Buendia, P., Collins, D.L., Cordier, N., Corso, J.J., Criminisi, A., Das, T., Delingette, H., Ç, D., Durst, C.R., Dojat, M., Doyle, S., Festa, J., Forbes, F., Geremia, E., Glocker, B., Golland, P., Guo, X., Hamamci, A., Iftekharuddin, K.M., Jena, R., John, N.M., Konukoglu, E., Lashkari, D., Mariz, J.A., Meier, R., Pereira, S., Precup, D., Price, S.J., Raviv, T.R., Reza, S.M.S., Ryan, M., Sarikaya, D., Schwartz, L., Shin, H.C., Shotton, J., Silva, C.A., Sousa, N., Subbanna, N.K., Szekely, G., Taylor, T.J., Thomas, O.M., Tustison, N.J., Unal, G., Vasseur, F., Wintermark, M., Ye, D.H., Zhao, L., Zhao, B., Zikic, D., Prastawa, M., Reyes, M., Leemput, K.V.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34, 1993–2024 (2015)

    Google Scholar 

  37. Bilello, M., Akbari, H., Da, X., Pisapia, J.M., Mohan, S., Wolf, R.L., O’Rourke, D.M., Martinez-Lage, M., Davatzikos, C.: Population-based MRI atlases of spatial distribution are specific to patient and tumor characteristics in glioblastoma. Neuroimage Clin. 12, 34–40 (2016)

    Article  Google Scholar 

  38. Aerts, H.J., Velazquez, E.R., Leijenaar, R.T., Parmar, C., Grossmann, P., Carvalho, S., Bussink, J., Monshouwer, R., Haibe-Kains, B., Rietveld, D., Hoebers, F., Rietbergen, M.M., Leemans, C.R., Dekker, A., Quackenbush, J., Gillies, R.J., Lambin, P.: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 5, 4006 (2014)

    Google Scholar 

  39. Gevaert, O., Xu, J., Hoang, C.D., Leung, A.N., Xu, Y., Quon, A., Rubin, D.L., Napel, S., Plevritis, S.K.: Non-small cell lung cancer: identifying prognostic imaging biomarkers by leveraging public gene expression microarray data–methods and preliminary results. Radiology 264, 387–396 (2012)

    Article  Google Scholar 

  40. Diehn, M., Nardini, C., Wang, D.S., McGovern, S., Jayaraman, M., Liang, Y., Aldape, K., Cha, S., Kuo, M.D.: Identification of noninvasive imaging surrogates for brain tumor gene-expression modules. Proc. Natl. Acad. Sci. USA 105, 5213–5218 (2008)

    Article  Google Scholar 

  41. Rathore, S., Akbari, H., Rozycki, M., Bakas, S., Davatzikos, C.: Imaging pattern analysis reveals three distinct phenotypic subtypes of GBM with different survival rates. Neuro-Oncol. 18, vi128 (2016)

    Google Scholar 

  42. Akbari, H., Macyszyn, L., Da, X., Bilello, M., Wolf, R.L., Martinez-Lage, M., Biros, G., Alonso-Basanta, M., O’Rourke, D.M., Davatzikos, C.: Imaging surrogates of infiltration obtained via multiparametric imaging pattern analysis predict subsequent location of recurrence of glioblastoma. Neurosurgery 78, 572–580 (2016)

    Article  Google Scholar 

  43. Akbari, H., Macyszyn, L., Pisapia, J., Da, X., Attiah, M., Bi, Y., Pal, S., Davuluri, R., Roccograndi, L., Dahmane, N., Wolf, R., Bilello, M., O’Rourke, D., Davatzikos, C.: Survival Prediction in Glioblastoma Patients Using Multi-parametric MRI Biomarkers and Machine Learning Methods. ASNR, Chicago, IL (2015)

    Google Scholar 

  44. Binder, Z.A., Bakas, S., Wileyto, E.P., Akbari, H., Rathore, S., Rozycki, M., Morrissette, J.J.D., Martinez-Lage, M., Dahmane, N., Davatzikos, C., O’Rourke, D.M.: Extracellular EGFR289 activating mutations confer poorer survival and exhibit radiographic signature of enhanced motility in primary glioblastoma. Neuro-Oncol. 18, vi105–vi106 (2016)

    Google Scholar 

  45. Assefa, D., Keller, H., Ménard, C., Laperriere, N., Ferrari, R.J., Yeung, I.: Robust texture features for response monitoring of glioblastoma multiforme on T1-weighted and T2-FLAIR MR images: a preliminary investigation in terms of identification and segmentation. Med. Phys. 37, 1722–1736 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the NIH grants R01-NS042645 and U24-CA189523.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saima Rathore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rathore, S. et al. (2018). Brain Cancer Imaging Phenomics Toolkit (brain-CaPTk): An Interactive Platform for Quantitative Analysis of Glioblastoma. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2017. Lecture Notes in Computer Science(), vol 10670. Springer, Cham. https://doi.org/10.1007/978-3-319-75238-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75238-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75237-2

  • Online ISBN: 978-3-319-75238-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics