Skip to main content

The Role of Endothelial Surface Glycocalyx in Mechanosensing and Transduction

  • Chapter
  • First Online:
Molecular, Cellular, and Tissue Engineering of the Vascular System

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1097))

Abstract

The endothelial cells (ECs) forming the inner wall of every blood vessel are constantly exposed to the mechanical forces generated by blood flow. The EC responses to these hemodynamic forces play a critical role in the homeostasis of the circulatory system. A variety of mechanosensors and transducers, locating on the EC surface, intra- and trans-EC membrane, and within the EC cytoskeleton, have thus been identified to ensure proper functions of ECs. Among them, the most recent candidate is the endothelial surface glycocalyx (ESG), which is a matrix-like thin layer covering the luminal surface of the EC. It consists of various proteoglycans, glycosaminoglycans, and plasma proteins and is close to other prominent EC mechanosensors and transducers. This chapter summarizes the ESG composition, thickness, and structure observed by different labeling and visualization techniques and in different types of vessels. It also presents the literature in determining the ESG mechanical properties by atomic force microscopy and optical tweezers. The molecular mechanisms by which the ESG plays the role in EC mechanosensing and transduction are described as well as the ESG remodeling by shear stress, the actin cytoskeleton, the membrane rafts, the angiogenic factors, and the sphingosine-1-phosphate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achen MG, Stacker SA (1998) The vascular endothelial growth factor family; proteins which guide the development of the vasculature. Int J Exp Pathol 79(5):255–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adamson RH, Clough G (1992) Plasma proteins modify the endothelial cell glycocalyx of frog mesenteric microvessels. J Physiol 445:473–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adyshev DM, Moldobaeva NK, Elangovan VR, Garcia JG, Dudek SM (2011) Differential involvement of ezrin/radixin/moesin proteins in sphingosine 1-phosphate-induced human pulmonary endothelial cell barrier enhancement. Cell Signal 23(12):2086–2096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alexopoulou AN, Multhaupt HA, Couchman JR (2007) Syndecans in wound healing, inflammation and vascular biology. Int J Biochem Cell Biol 39(3):505–528

    Article  CAS  PubMed  Google Scholar 

  • Andersen NF, Kristensen IB, Preiss BS, Christensen JH, Abildgaard N (2015) Upregulation of Syndecan-1 in the bone marrow microenvironment in multiple myeloma is associated with angiogenesis. Eur J Haematol 95(3):211–217

    Article  CAS  PubMed  Google Scholar 

  • Arisaka T, Mitsumata M, Kawasumi M, Tohjima T, Hirose S, Yoshida Y (1995) Effects of shear stress on glycosaminoglycan synthesis in vascular endothelial cells. Ann N Y Acad Sci 748:543–554

    Article  CAS  PubMed  Google Scholar 

  • Arkill KP, Knupp C, Michel CC, Neal CR, Qvortrup K, Rostgaard J, Squire JM (2011) Similar endothelial glycocalyx structures in microvessels from a range of mammalian tissues: evidence for a common filtering mechanism? Biophys J 101(5):1046–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arkill KP, Neal CR, Mantell JM, Michel CC, Qvortrup K, Rostgaard J, Bates DO, Knupp C, Squire JM (2012) 3D reconstruction of the glycocalyx structure in mammalian capillaries using electron tomography. Microcirculation 19(4):343–351

    Article  PubMed  Google Scholar 

  • Baeyens N, Mulligan-Kehoe MJ, Corti F, Simon DD, Ross TD, Rhodes JM, Wang TZ, Mejean CO, Simons M, Humphrey J, Schwartz MA (2014) Syndecan 4 is required for endothelial alignment in flow and atheroprotective signaling. Proc Natl Acad Sci U S A 111(48):17308–17313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai K, Wang W (2012) Spatio-temporal development of the endothelial glycocalyx layer and its mechanical property in vitro. J R Soc Interface 9(74):2290–2298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baldwin AL, Winlove CP (1984) Effects of perfusate composition on binding of ruthenium red and gold colloid to glycocalyx of rabbit aortic endothelium. The journal of histochemistry and cytochemistry: official journal of the. Hist Soc 32(3):259–266

    CAS  Google Scholar 

  • Bartosch AMW, Mathews R, Tarbell JM (2017) Endothelial glycocalyx-mediated nitric oxide production in response to selective AFM pulling. Biophys J 113(1):101–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bashkin P, Neufeld G, Gitay-Goren H, Vlodavsky I (1992) Release of cell surface-associated basic fibroblast growth factor by glycosylphosphatidylinositol-specific phospholipase C. J Cell Physiol 151(1):126–137

    Article  CAS  PubMed  Google Scholar 

  • Bernatchez PN, Soker S, Sirois MG (1999) Vascular endothelial growth factor effect on endothelial cell proliferation, migration, and platelet-activating factor synthesis is Flk-1-dependent. J Biol Chem 274(43):31047–31054

    Article  CAS  PubMed  Google Scholar 

  • Bernfield M, Gotte M, Park PW, Reizes O, Fitzgerald ML, Lincecum J, Zako M (1999) Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 68:729–777

    Article  CAS  PubMed  Google Scholar 

  • Betteridge KB, Arkill KP, Neal CR, Harper SJ, Foster RR, Satchell SC, Bates DO, Salmon AHJ (2017) Sialic acids regulate microvessel permeability, revealed by novel in vivo studies of endothelial glycocalyx structure and function. J Physiol 595(15):5015–5035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brands J, Van Teeffelen JWGE, Van den Berg BM, Vink H (2007) Role for glycocalyx perturbation in atherosclerosis development and associated microvascular dysfunction. Futur Lipidol 2(5):527–534

    Article  CAS  Google Scholar 

  • Cai B, Fan J, Zeng M, Zhang L, Fu BM (2012) Adhesion of malignant mammary tumor cells MDA-MB-231 to microvessel wall increases microvascular permeability via degradation of endothelial surface glycocalyx. J Appl Physiol (1985) 113(7):1141–1153

    Article  CAS  Google Scholar 

  • Cantalupo A, Gargiulo A, Dautaj E, Liu C, Zhang Y, Hla T, Di Lorenzo A (2017) S1PR1 (Sphingosine-1-Phosphate Receptor 1) signaling regulates blood flow and pressure. Hypertension 70(2):426–434

    Article  CAS  PubMed  Google Scholar 

  • Carey DJ, Bendt KM, Stahl RC (1996) The cytoplasmic domain of syndecan-1 is required for cytoskeleton association but not detergent insolubility. Identification of essential cytoplasmic domain residues. J Biol Chem 271(25):15253–15260

    Article  CAS  PubMed  Google Scholar 

  • Chakravarti R, Sapountzi V, Adams JC (2005) Functional role of syndecan-1 cytoplasmic V region in lamellipodial spreading, actin bundling, and cell migration. Mol Biol Cell 16(8):3678–3691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chappell JC, Cluceru JG, Nesmith JE, Mouillesseaux KP, Bradley VB, Hartland CM, Hashambhoy-Ramsay YL, Walpole J, Peirce SM, Mac Gabhann F, Bautch VL (2016) Flt-1 (VEGFR-1) coordinates discrete stages of blood vessel formation. Cardiovasc Res 111(1):84–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chien S (2007) Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am J Physiol Heart Circ Physiol 292(3):H1209–H1224

    Article  CAS  PubMed  Google Scholar 

  • Conway DE, Breckenridge MT, Hinde E, Gratton E, Chen CS, Schwartz MA (2013) Fluid shear stress on endothelial cells modulates mechanical tension across VE-cadherin and PECAM-1. Curr Biol 23(11):1024–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Couchman JR (2010) Transmembrane signaling proteoglycans. Annu Rev Cell Dev Biol 26:89–114

    Article  CAS  PubMed  Google Scholar 

  • Curry FE, Adamson RH (2012) Endothelial glycocalyx: permeability barrier and mechanosensor. Ann Biomed Eng 40(4):828–839

    Article  CAS  PubMed  Google Scholar 

  • Curry FR, Adamson RH (2013) Tonic regulation of vascular permeability. Acta Physiol (Oxf) 207(4):628–649

    Article  CAS  Google Scholar 

  • Dabagh M, Jalali P, Butler PJ, Randles A, Tarbell JM (2017) Mechanotransmission in endothelial cells subjected to oscillatory and multi-directional shear flow. J R Soc Interface 14(130):pii: 20170185

    Article  Google Scholar 

  • Davies PF (2009) Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat Clin Pract Cardiovasc Med 6(1):16–26

    Article  CAS  PubMed  Google Scholar 

  • Davies PF, Dewey CF Jr, Bussolari SR, Gordon EJ, Gimbrone MA Jr (1984) Influence of hemodynamic forces on vascular endothelial function. In vitro studies of shear stress and pinocytosis in bovine aortic cells. J Clin Invest 73(4):1121–1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Haan L, Hirst TR (2004) Cholera toxin: a paradigm for multi-functional engagement of cellular mechanisms (review). Mol Membr Biol 21(2):77–92

    Article  CAS  PubMed  Google Scholar 

  • De Rossi G, Whiteford JR (2013) A novel role for syndecan-3 in angiogenesis. F1000 Res 2:270

    Google Scholar 

  • De Rossi G, Evans AR, Kay E, Woodfin A, McKay TR, Nourshargh S, Whiteford JR (2014) Shed syndecan-2 inhibits angiogenesis. J Cell Sci 127(Pt 21):4788–4799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deepa SS, Yamada S, Zako M, Goldberger O, Sugahara K (2004) Chondroitin sulfate chains on syndecan-1 and syndecan-4 from normal murine mammary gland epithelial cells are structurally and functionally distinct and cooperate with heparan sulfate chains to bind growth factors. A novel function to control binding of midkine, pleiotrophin, and basic fibroblast growth factor. J Biol Chem 279(36):37368–37376

    Article  CAS  PubMed  Google Scholar 

  • van den Berg BM, Vink H, Spaan JA (2003) The endothelial glycocalyx protects against myocardial edema. Circ Res 92(6):592–594

    Article  CAS  PubMed  Google Scholar 

  • van den Berg BM, Spaan JA, Vink H (2009) Impaired glycocalyx barrier properties contribute to enhanced intimal low-density lipoprotein accumulation at the carotid artery bifurcation in mice. Pflugers Arch 457(6):1199–1206

    Article  CAS  PubMed  Google Scholar 

  • Dudek SM, Jacobson JR, Chiang ET, Birukov KG, Wang P, Zhan X, Garcia JG (2004) Pulmonary endothelial cell barrier enhancement by sphingosine 1-phosphate: roles for cortactin and myosin light chain kinase. J Biol Chem 279(23):24692–24700

    Article  CAS  PubMed  Google Scholar 

  • Dyer DP, Salanga CL, Volkman BF, Kawamura T, Handel TM (2016) The dependence of chemokine-glycosaminoglycan interactions on chemokine oligomerization. Glycobiology 26(3):312–326

    CAS  PubMed  Google Scholar 

  • Ebong EE, Macaluso FP, Spray DC, Tarbell JM (2011) Imaging the endothelial glycocalyx in vitro by rapid freezing/freeze substitution transmission electron microscopy. Arterioscler Thromb Vasc Biol 31(8):1908–1915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebong EE, Lopez-Quintero SV, Rizzo V, Spray DC, Tarbell JM (2014) Shear-induced endothelial NOS activation and remodeling via heparan sulfate, glypican-1, and syndecan-1. Integr Biol 6(3):338–347

    Article  CAS  Google Scholar 

  • Egorova AD, van der Heiden K, Poelmann RE, Hierck BP (2012) Primary cilia as biomechanical sensors in regulating endothelial function. Differentiation 83(2):S56–S61

    Article  CAS  PubMed  Google Scholar 

  • Eshtehardi P, Brown AJ, Bhargava A, Costopoulos C, Hung OY, Corban MT, Hosseini H, Gogas BD, Giddens DP, Samady H (2017) High wall shear stress and high-risk plaque: an emerging concept. Int J Cardiovasc Imaging 33(7):1089–1099

    Article  PubMed  PubMed Central  Google Scholar 

  • Fels J, Jeggle P, Liashkovich I, Peters W, Oberleithner H (2014) Nanomechanics of vascular endothelium. Cell Tissue Res 355(3):727–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleming I, Fisslthaler B, Dixit M, Busse R (2005) Role of PECAM-1 in the shear-stress-induced activation of Akt and the endothelial nitric oxide synthase (eNOS) in endothelial cells. J Cell Sci 118(Pt 18):4103–4111

    Article  CAS  PubMed  Google Scholar 

  • Florian JA, Kosky JR, Ainslie K, Pang Z, Dull RO, Tarbell JM (2003) Heparan sulfate proteoglycan is a mechanosensor on endothelial cells. Circ Res 93(10):e136–e142

    Article  CAS  PubMed  Google Scholar 

  • Folkman J (2007) Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 6(4):273–286

    Article  CAS  PubMed  Google Scholar 

  • Fong GH, Rossant J, Gertsenstein M, Breitman ML (1995) Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376(6535):66–70

    Article  CAS  PubMed  Google Scholar 

  • Fu BM, Tarbell JM (2013) Mechano-sensing and transduction by endothelial surface glycocalyx: composition, structure, and function. Wiley Interdiscip Rev Syst Biol Med 5(3):381–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fung YC (1997) Biomechanics: circulation. Springer, New York, p 571

    Book  Google Scholar 

  • Gautam M, Shen Y, Thirkill TL, Douglas GC, Barakat AI (2006) Flow-activated chloride channels in vascular endothelium. Shear stress sensitivity, desensitization dynamics, and physiological implications. J Biol Chem 281(48):36492–36500

    Article  CAS  PubMed  Google Scholar 

  • Gengrinovitch S, Berman B, David G, Witte L, Neufeld G, Ron D (1999) Glypican-1 is a VEGF165 binding proteoglycan that acts as an extracellular chaperone for VEGF165. J Biol Chem 274(16):10816–10822

    Article  CAS  PubMed  Google Scholar 

  • Gitay-Goren H, Soker S, Vlodavsky I, Neufeld G (1992) The binding of vascular endothelial growth factor to its receptors is dependent on cell surface-associated heparin-like molecules. J Biol Chem 267(9):6093–6098

    CAS  PubMed  Google Scholar 

  • Gitay-Goren H, Cohen T, Tessler S, Soker S, Gengrinovitch S, Rockwell P, Klagsbrun M, Levi BZ, Neufeld G (1996) Selective binding of VEGF121 to one of the three vascular endothelial growth factor receptors of vascular endothelial cells. J Biol Chem 271(10):5519–5523

    Article  CAS  PubMed  Google Scholar 

  • Gojova A, Barakat AI (2005) Vascular endothelial wound closure under shear stress: role of membrane fluidity and flow-sensitive ion channels. J Appl Physiol 98(6):2355–2362

    Article  PubMed  Google Scholar 

  • Gotlieb AI (1990) The endothelial cytoskeleton: organization in normal and regenerating endothelium. Toxicol Pathol 18(4 Pt 1):603–617

    CAS  PubMed  Google Scholar 

  • Gouverneur M, Spaan JA, Pannekoek H, Fontijn RD, Vink H (2006) Fluid shear stress stimulates incorporation of hyaluronan into endothelial cell glycocalyx. Am J Physiol Heart Circ Physiol 290(1):H458–H452

    Article  CAS  PubMed  Google Scholar 

  • Haddad O, Guyot E, Marinval N, Chevalier F, Maillard L, Gadi L, Laguillier-Morizot C, Oudar O, Sutton A, Charnaux N, Hlawaty H (2015) Heparanase and Syndecan-4 are involved in low molecular weight Fucoidan-induced angiogenesis. Mar Drugs 13(11):6588–6608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haeren RH, van de Ven SE, van Zandvoort MA, Vink H, van Overbeeke JJ, Hoogland G, Rijkers K (2016) Assessment and imaging of the cerebrovascular Glycocalyx. Curr Neurovasc Res 13(3):249–260

    Article  PubMed  Google Scholar 

  • Haidekker MA, L'Heureux N, Frangos JA (2000) Fluid shear stress increases membrane fluidity in endothelial cells: a study with DCVJ fluorescence. Am J Physiol Heart Circ Physiol 278(4):H1401–H1406

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Weinbaum S, Spaan JAE, Vink H (2016) Large deformation analysis of the elastic recoil of fiber layers in a brinkman medium with application to the endothelial glycocalyx. J Fluid Mech 554:217–235

    Article  CAS  Google Scholar 

  • Huxley VH, Williams DA (2000) Role of a glycocalyx on coronary arteriole permeability to proteins: evidence from enzyme treatments. Am J Physiol Heart Circ Physiol 278(4):H1177–H1185

    Article  CAS  PubMed  Google Scholar 

  • Ingber DE (2003) Mechanobiology and diseases of mechanotransduction. Ann Med 35(8):564–577

    Article  PubMed  Google Scholar 

  • Jing Z, Wei-Jie Y, Yi-Feng ZG, Jing H (2016) Downregulation of Syndecan-1 induce glomerular endothelial cell dysfunction through modulating internalization of VEGFR-2. Cell Signal 28(8):826–837

    Article  CAS  PubMed  Google Scholar 

  • Joseph-Silverstein J, Rifkin DB (1987) Endothelial cell growth factors and the vessel wall. Semin Thromb Hemost 13(4):504–513

    Article  CAS  PubMed  Google Scholar 

  • Jung B, Obinata H, Galvani S, Mendelson K, Ding BS, Skoura A, Kinzel B, Brinkmann V, Rafii S, Evans T, Hla T (2012) Flow-regulated endothelial S1P receptor-1 signaling sustains vascular development. Dev Cell 23(3):600–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung O, Trapp-Stamborski V, Purushothaman A, Jin H, Wang H, Sanderson RD, Rapraeger AC (2016) Heparanase-induced shedding of syndecan-1/CD138 in myeloma and endothelial cells activates VEGFR2 and an invasive phenotype: prevention by novel synstatins. Oncogene 5:e202

    Article  CAS  Google Scholar 

  • Kimura T, Watanabe T, Sato K, Kon J, Tomura H, Tamama K, Kuwabara A, Kanda T, Kobayashi I, Ohta H, Ui M, Okajima F (2000) Sphingosine 1-phosphate stimulates proliferation and migration of human endothelial cells possibly through the lipid receptors, Edg-1 and Edg-3. Biochem J 348(Pt 1):71–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kindt TJ, Osborne BA, Goldsby RA (2007) Kuby immunology, 6th edn. W. H. Freeman & Company, New York

    Google Scholar 

  • Klitzman B, Duling BR (1979) Microvascular hematocrit and red cell flow in resting and contracting striated muscle. Am J Phys 237(4):H481–H490

    CAS  Google Scholar 

  • Kono M, Mi Y, Liu Y, Sasaki T, Allende ML, Wu YP, Yamashita T, Proia RL (2004) The sphingosine-1-phosphate receptors S1P1, S1P2, and S1P3 function coordinately during embryonic angiogenesis. J Biol Chem 279(28):29367–29373

    Article  CAS  PubMed  Google Scholar 

  • Koo A, García-Cardeña G, Dewey CF Jr (2011) Flow regulated endothelial glycocalyx expression and its function as a protective barrier against leukocyte adhesion. In: Annual meeting of Biomedical Engineering Society. Connecticut, Harford

    Google Scholar 

  • Koo A, Dewey CF Jr, Garcia-Cardena G (2013) Hemodynamic shear stress characteristic of atherosclerosis-resistant regions promotes glycocalyx formation in cultured endothelial cells. Am J Physiol Cell Physiol 304(2):C137–C146

    Article  CAS  PubMed  Google Scholar 

  • Kuchan MJ, Jo H, Frangos JA (1994) Role of G proteins in shear stress-mediated nitric oxide production by endothelial cells. Am J Phys 267(3 Pt 1):C753–C758

    Article  CAS  Google Scholar 

  • dela Paz NG, Melchior B, Shayo FY, Frangos JA (2014) Heparan sulfates mediate the interaction between platelet endothelial cell adhesion molecule-1 (PECAM-1) and the Galphaq/11 subunits of heterotrimeric G proteins. J Biol Chem 289(11):7413–7424

    Article  CAS  Google Scholar 

  • Lee MJ, Thangada S, Paik JH, Sapkota GP, Ancellin N, Chae SS, Wu M, Morales-Ruiz M, Sessa WC, Alessi DR, Hla T (2001) Akt-mediated phosphorylation of the G protein-coupled receptor EDG-1 is required for endothelial cell chemotaxis. Mol Cell 8(3):693–704

    Article  CAS  PubMed  Google Scholar 

  • Li W, Wang W (2018) Structural alteration of the endothelial glycocalyx: contribution of the actin cytoskeleton. Biomech Model Mechanobiol 17(1): 147–158

    Article  PubMed  PubMed Central  Google Scholar 

  • Li YS, Haga JH, Chien S (2005) Molecular basis of the effects of shear stress on vascular endothelial cells. J Biomech 38(10):1949–1971

    Article  PubMed  Google Scholar 

  • Lindner R, Naim HY (2009) Domains in biological membranes. Exp Cell Res 315(17):2871–2878

    Article  CAS  PubMed  Google Scholar 

  • Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327(5961):46–50

    Article  CAS  PubMed  Google Scholar 

  • Lipowsky HH (2011) Protease activity and the role of the endothelial glycocalyx in inflammation. Drug Discov Today Dis Models 8(1):57–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipowsky HH (2012) The endothelial glycocalyx as a barrier to leukocyte adhesion and its mediation by extracellular proteases. Ann Biomed Eng 40(4):840–848

    Article  PubMed  Google Scholar 

  • Lisanti MP, Scherer PE, Vidugiriene J, Tang Z, Hermanowski-Vosatka A, Tu YH, Cook RF, Sargiacomo M (1994) Characterization of caveolin-rich membrane domains isolated from an endothelial-rich source: implications for human disease. J Cell Biol 126(1):111–126

    Article  CAS  PubMed  Google Scholar 

  • Liu JX, Yan ZP, Zhang YY, Wu J, Liu XH, Zeng Y (2016) Hemodynamic shear stress regulates the transcriptional expression of heparan sulfate proteoglycans in human umbilical vein endothelial cell. Cell Mol Biol (Noisy-le-Grand) 62(8):28–34

    Google Scholar 

  • Long DS, Smith ML, Pries AR, Ley K, Damiano ER (2004) Microviscometry reveals reduced blood viscosity and altered shear rate and shear stress profiles in microvessels after hemodilution. Proc Natl Acad Sci U S A 101(27):10060–10065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long M, Huang SH, Wu CH, Shackleford GM, Jong A (2012) Lipid raft/caveolae signaling is required for Cryptococcus neoformans invasion into human brain microvascular endothelial cells. J Biomed Sci 19:19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopes CC, Dietrich CP, Nader HB (2006) Specific structural features of syndecans and heparan sulfate chains are needed for cell signaling. Braz J Med Biol Res 39(2):157–167

    Article  CAS  PubMed  Google Scholar 

  • Luft JH (1966) Fine structures of capillary and endocapillary layer as revealed by ruthenium red. Fed Proc 25(6):1773–1783

    CAS  PubMed  Google Scholar 

  • Malek AM, Izumo S (1996) Mechanism of endothelial cell shape change and cytoskeletal remodeling in response to fluid shear stress. J Cell Sci 109(Pt 4):713–726

    CAS  PubMed  Google Scholar 

  • Mammoto A, Mammoto T, Ingber DE (2012) Mechanosensitive mechanisms in transcriptional regulation. J Cell Sci 125(Pt 13):3061–3073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marsh G, Waugh RE (2013) Quantifying the mechanical properties of the endothelial glycocalyx with atomic force microscopy. J Vis Exp 72:e50163

    Google Scholar 

  • Matsui TS, Kaunas R, Kanzaki M, Sato M, Deguchi S (2011) Non-muscle myosin II induces disassembly of actin stress fibres independently of myosin light chain dephosphorylation. Interface focus 1(5):754–766

    Article  PubMed  PubMed Central  Google Scholar 

  • McAlpine CS, Swirski FK (2016) Circadian influence on metabolism and inflammation in atherosclerosis. Circ Res 119(1):131–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGuire PG, Castellot JJ Jr, Orkin RW (1987) Size-dependent hyaluronate degradation by cultured cells. J Cell Physiol 133(2):267–276

    Article  CAS  PubMed  Google Scholar 

  • Megens RT, Reitsma S, Schiffers PH, Hilgers RH, De Mey JG, Slaaf DW, oude Egbrink MG, van Zandvoort MA (2007) Two-photon microscopy of vital murine elastic and muscular arteries. Combined structural and functional imaging with subcellular resolution. J Vasc Res 44(2):87–98

    Article  CAS  PubMed  Google Scholar 

  • Meyer zu Heringdorf D, Jakobs KH (2007) Lysophospholipid receptors: signalling, pharmacology and regulation by lysophospholipid metabolism. Biochim Biophys Acta 1768(4):923–940

    Article  CAS  PubMed  Google Scholar 

  • Michel CC, Phillips ME, Turner MR (1985) The effects of native and modified bovine serum albumin on the permeability of frog mesenteric capillaries. J Physiol 360:333–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moon JJ, Matsumoto M, Patel S, Lee L, Guan JL, Li S (2005) Role of cell surface heparan sulfate proteoglycans in endothelial cell migration and mechanotransduction. J Cell Physiol 203(1):166–176

    Article  CAS  PubMed  Google Scholar 

  • Morgan JT, Pfeiffer ER, Thirkill TL, Kumar P, Peng G, Fridolfsson HN, Douglas GC, Starr DA, Barakat AI (2011) Nesprin-3 regulates endothelial cell morphology, perinuclear cytoskeletal architecture, and flow-induced polarization. Mol Biol Cell 22(22):4324–4334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller S, Labrador V, Da Isla N, Dumas D, Sun R, Wang X, Wei L, Fawzi-Grancher S, Yang W, Traore M, Boura C, Bensoussan D, Eljaafari A, Stoltz JF (2004) From hemorheology to vascular mechanobiology: an overview. Clin Hemorheol Microcirc 30(3–4):185–200

    CAS  PubMed  Google Scholar 

  • Navarro A, Anand-Apte B, Parat MO (2004) A role for caveolae in cell migration. FASEB J 18(15):1801–1811

    Article  CAS  PubMed  Google Scholar 

  • Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z (1999) Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 13(1):9–22

    Article  CAS  PubMed  Google Scholar 

  • Nichols B (2003) Caveosomes and endocytosis of lipid rafts. J Cell Sci 116(Pt 23):4707–4714

    Article  CAS  PubMed  Google Scholar 

  • Nijenhuis N, Mizuno D, Spaan JA, Schmidt CF (2009) Viscoelastic response of a model endothelial glycocalyx. Phys Biol 6(2):025014

    Article  CAS  PubMed  Google Scholar 

  • Oberleithner H, Peters W, Kusche-Vihrog K, Korte S, Schillers H, Kliche K, Oberleithner K (2011) Salt overload damages the glycocalyx sodium barrier of vascular endothelium. Pflugers Arch 462(4):519–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O'Callaghan R, Job KM, Dull RO, Hlady V (2011) Stiffness and heterogeneity of the pulmonary endothelial glycocalyx measured by atomic force microscopy. Am J Physiol Lung Cell Mol Physiol 301(3):L353–L360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohlson M, Sorensson J, Haraldsson B (2001) A gel-membrane model of glomerular charge and size selectivity in series. Am J Physiol Renal Physiol 280(3):F396–F405

    Article  CAS  PubMed  Google Scholar 

  • Ono K, Hattori H, Takeshita S, Kurita A, Ishihara M (1999) Structural features in heparin that interact with VEGF165 and modulate its biological activity. Glycobiology 9(7):705–711

    Article  CAS  PubMed  Google Scholar 

  • Pahakis MY, Kosky JR, Dull RO, Tarbell JM (2007) The role of endothelial glycocalyx components in mechanotransduction of fluid shear stress. Biochem Biophys Res Commun 355(1):228–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parton RG (1994) Ultrastructural localization of gangliosides; GM1 is concentrated in caveolae. J Histochem Cytochem 42(2):155–166

    Article  CAS  PubMed  Google Scholar 

  • Parton RG, del Pozo MA (2013) Caveolae as plasma membrane sensors, protectors and organizers. Nat Rev Mol Cell Biol 14(2):98–112

    Article  CAS  PubMed  Google Scholar 

  • Potente M, Gerhardt H, Carmeliet P (2011) Basic and therapeutic aspects of angiogenesis. Cell 146(6):873–887

    Article  CAS  PubMed  Google Scholar 

  • Poti F, Gualtieri F, Sacchi S, Weissen-Plenz G, Varga G, Brodde M, Weber C, Simoni M, Nofer JR (2013) KRP-203, sphingosine 1-phosphate receptor type 1 agonist, ameliorates atherosclerosis in LDL-R−/− mice. Arterioscler Thromb Vasc Biol 33(7):1505–1512

    Article  CAS  PubMed  Google Scholar 

  • Pries AR, Secomb TW, Gaehtgens P (2000) The endothelial surface layer. Pflugers Arch 440(5):653–666

    Article  CAS  PubMed  Google Scholar 

  • Qiao D, Meyer K, Mundhenke C, Drew SA, Friedl A (2003) Heparan sulfate proteoglycans as regulators of fibroblast growth factor-2 signaling in brain endothelial cells. Specific role for glypican-1 in glioma angiogenesis. J Biol Chem 278(18):16045–16053

    Article  CAS  PubMed  Google Scholar 

  • Rapraeger AC, Ell BJ, Roy M, Li X, Morrison OR, Thomas GM, Beauvais DM (2013) Vascular endothelial-cadherin stimulates syndecan-1-coupled insulin-like growth factor-1 receptor and cross-talk between alphaVbeta3 integrin and vascular endothelial growth factor receptor 2 at the onset of endothelial cell dissemination during angiogenesis. FEBS J 280(10):2194–2206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Razani B, Woodman SE, Lisanti MP (2002) Caveolae: from cell biology to animal physiology. Pharmacol Rev 54(3):431–467

    Article  CAS  PubMed  Google Scholar 

  • Reitsma S, Slaaf DW, Vink H, van Zandvoort MA, oude Egbrink MG (2007) The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch 454(3):345–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reitsma S, oude Egbrink MG, Vink H, van den Berg BM, Passos VL, Engels W, Slaaf DW, van Zandvoort MA (2011) Endothelial glycocalyx structure in the intact carotid artery: a two-photon laser scanning microscopy study. J Vasc Res 48(4):297–306

    Article  CAS  PubMed  Google Scholar 

  • Rizzo V, Morton C, DePaola N, Schnitzer JE, Davies PF (2003) Recruitment of endothelial caveolae into mechanotransduction pathways by flow conditioning in vitro. Am J Physiol Heart Circ Physiol 285(4):H1720–H1729

    Article  CAS  PubMed  Google Scholar 

  • Rostgaard J, Qvortrup K (1997) Electron microscopic demonstrations of filamentous molecular sieve plugs in capillary fenestrae. Microvasc Res 53(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Russell-Puleri S, Dela Paz NG, Adams D, Chattopadhyay M, Cancel L, Ebong E, Orr AW, Frangos JA, Tarbell JM (2017) Fluid shear stress induces upregulation of COX-2 and PGI2 release in endothelial cells via a pathway involving PECAM-1, PI3K, FAK, and p38. Am J Physiol Heart Circ Physiol 312(3):H485–H500

    Article  PubMed  Google Scholar 

  • Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saksela O, Rifkin DB (1990) Release of basic fibroblast growth factor-heparan sulfate complexes from endothelial cells by plasminogen activator-mediated proteolytic activity. J Cell Biol 110(3):767–775

    Article  CAS  PubMed  Google Scholar 

  • Sanchez T (2016) Sphingosine-1-phosphate signaling in endothelial disorders. Curr Atheroscler Rep 18(6):31

    Article  CAS  PubMed  Google Scholar 

  • Sanger JM, Sanger JW (1980) Banding and polarity of actin filaments in interphase and cleaving cells. J Cell Biol 86(2):568–575

    Article  CAS  PubMed  Google Scholar 

  • Sarrazin S, Lamanna WC, Esko JD (2011) Heparan sulfate proteoglycans. Cold Spring Harb Perspect Biol 3(7):pii: a004952

    Article  CAS  Google Scholar 

  • Satcher R, Dewey CF Jr, Hartwig JH (1997) Mechanical remodeling of the endothelial surface and actin cytoskeleton induced by fluid flow. Microcirculation 4(4):439–453

    Article  CAS  PubMed  Google Scholar 

  • Schnitzer JE, McIntosh DP, Dvorak AM, Liu J, Oh P (1995a) Separation of caveolae from associated microdomains of GPI-anchored proteins. Science 269(5229):1435–1439

    Article  CAS  PubMed  Google Scholar 

  • Schnitzer JE, Oh P, Jacobson BS, Dvorak AM (1995b) Caveolae from luminal plasmalemma of rat lung endothelium: microdomains enriched in caveolin, Ca(2+)-ATPase, and inositol trisphosphate receptor. Proc Natl Acad Sci U S A 92(5):1759–1763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schubert W, Frank PG, Razani B, Park DS, Chow CW, Lisanti MP (2001) Caveolae-deficient endothelial cells show defects in the uptake and transport of albumin in vivo. J Biol Chem 276(52):48619–48622

    Article  CAS  PubMed  Google Scholar 

  • Schwartz MA, DeSimone DW (2008) Cell adhesion receptors in mechanotransduction. Curr Opin Cell Biol 20(5):551–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Secomb TW, Hsu R, Pries AR (2001) Motion of red blood cells in a capillary with an endothelial surface layer: effect of flow velocity. Am J Physiol Heart Circ Physiol 281(2):H629–H636

    Article  CAS  PubMed  Google Scholar 

  • Sha T, Qi C, Fu W, Hao JI, Gong L, Wu H, Zhang Q (2016) Experimental study of USPIO-enhanced MRI in the detection of atherosclerotic plaque and the intervention of atorvastatin. Exp Ther Med 12(1):141–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silver FH, Siperko LM (2003) Mechanosensing and mechanochemical transduction: how is mechanical energy sensed and converted into chemical energy in an extracellular matrix? Crit Rev Biomed Eng 31(4):255–331

    Article  PubMed  Google Scholar 

  • Simons K, Sampaio JL (2011) Membrane organization and lipid rafts. Cold Spring Harb Perspect Biol 3(10):a004697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sims DE, Horne MM (1993) Non-aqueous fixative preserves macromolecules on the endothelial cell surface: an in situ study. Eur J Morphol 31(4):251–255

    CAS  PubMed  Google Scholar 

  • Smith ML, Long DS, Damiano ER, Ley K (2003) Near-wall micro-PIV reveals a hydrodynamically relevant endothelial surface layer in venules in vivo. Biophys J 85(1):637–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soker S, Gollamudi-Payne S, Fidder H, Charmahelli H, Klagsbrun M (1997) Inhibition of vascular endothelial growth factor (VEGF)-induced endothelial cell proliferation by a peptide corresponding to the exon 7-encoded domain of VEGF165. J Biol Chem 272(50):31582–31588

    Article  CAS  PubMed  Google Scholar 

  • Song JW, Zullo J, Lipphardt M, Dragovich M, Zhang FX, Fu B, Goligorsky MS (2018) Endothelial glycocalyx-the battleground for complications of sepsis and kidney injury. Nephrol Dial Transplant 33(2):203–211

    Article  PubMed Central  Google Scholar 

  • Sorci-Thomas MG, Thomas MJ (2016) Microdomains, inflammation, and atherosclerosis. Circ Res 118(4):679–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorensson J, Ohlson M, Haraldsson B (2001) A quantitative analysis of the glomerular charge barrier in the rat. Am J Physiol Renal Physiol 280(4):F646–F656

    Article  CAS  PubMed  Google Scholar 

  • Squire S (2001) A chance to grow. Prof Nurse 16(8 Suppl):S2

    CAS  PubMed  Google Scholar 

  • Steinfeld R, Van Den Berghe H, David G (1996) Stimulation of fibroblast growth factor receptor-1 occupancy and signaling by cell surface-associated syndecans and glypican. J Cell Biol 133(2):405–416

    Article  CAS  PubMed  Google Scholar 

  • Stevens HY, Melchior B, Bell KS, Yun S, Yeh JC, Frangos JA (2008) PECAM-1 is a critical mediator of atherosclerosis. Dis Model Mech 1(2–3):175–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stringer SE (2006) The role of heparan sulphate proteoglycans in angiogenesis. Biochem Soc Trans 34(Pt 3):451–453

    Article  CAS  PubMed  Google Scholar 

  • Surya VN, Michalaki E, Huang EY, Fuller GG, Dunn AR (2016) Sphingosine 1-phosphate receptor 1 regulates the directional migration of lymphatic endothelial cells in response to fluid shear stress. J R Soc Interface 13(125):pii:20160823

    Article  CAS  Google Scholar 

  • Tabouillot T, Muddana HS, Butler PJ (2011) Endothelial cell membrane sensitivity to shear stress is lipid domain dependent. Cell Mol Bioeng 4(2):169–181

    Article  CAS  PubMed  Google Scholar 

  • Taleb S (2016) Inflammation in atherosclerosis. Arch Cardiovasc Dis 109(12):708–715

    Article  PubMed  Google Scholar 

  • Tang GL, Weitz K (2015) Impaired arteriogenesis in syndecan-1(−/−) mice. J Surg Res 193(1):22–27

    Article  CAS  PubMed  Google Scholar 

  • Tarbell JM, Cancel LM (2016) The glycocalyx and its significance in human medicine. J Intern Med 280(1):97–113

    Article  CAS  PubMed  Google Scholar 

  • Tarbell JM, Ebong EE (2008) The endothelial glycocalyx: a mechano-sensor and -transducer. Sci Signal 1(40):pt8

    Article  PubMed  Google Scholar 

  • Tarbell JM, Pahakis MY (2006) Mechanotransduction and the glycocalyx. J Intern Med 259(4):339–350

    Article  CAS  PubMed  Google Scholar 

  • Teran M, Nugent MA (2015) Synergistic binding of vascular endothelial growth factor-a and its receptors to heparin selectively modulates complex affinity. J Biol Chem 290(26):16451–16462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thi MM, Tarbell JM, Weinbaum S, Spray DC (2004) The role of the glycocalyx in reorganization of the actin cytoskeleton under fluid shear stress: a “bumper-car” model. Proc Natl Acad Sci U S A 101(47):16483–16488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomsen P, Roepstorff K, Stahlhut M, van Deurs B (2002) Caveolae are highly immobile plasma membrane microdomains, which are not involved in constitutive endocytic trafficking. Mol Biol Cell 13(1):238–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vink H, Duling BR (1996) Identification of distinct luminal domains for macromolecules, erythrocytes, and leukocytes within mammalian capillaries. Circ Res 79(3):581–589

    Article  CAS  PubMed  Google Scholar 

  • Waltenberger J, Claesson-Welsh L, Siegbahn A, Shibuya M, Heldin CH (1994) Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J Biol Chem 269(43):26988–26995

    CAS  PubMed  Google Scholar 

  • Wang Y, Shyy JY, Chien S (2008) Fluorescence proteins, live-cell imaging, and mechanobiology: seeing is believing. Annu Rev Biomed Eng 10:1–38

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Tytell JD, Ingber DE (2009) Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat Rev Mol Cell Biol 10(1):75–82

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Iring A, Strilic B, Albarran Juarez J, Kaur H, Troidl K, Tonack S, Burbiel JC, Muller CE, Fleming I, Lundberg JO, Wettschureck N, Offermanns S (2015) P2Y(2) and Gq/G(1)(1) control blood pressure by mediating endothelial mechanotransduction. J Clin Invest 125(8):3077–3086

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Qiu J, Luo S, Xie X, Zheng Y, Zhang K, Ye Z, Liu W, Gregersen H, Wang G (2016) High shear stress induces atherosclerotic vulnerable plaque formation through angiogenesis. Regen Biomater 3(4):257–267

    Article  PubMed  PubMed Central  Google Scholar 

  • Weber AMT, Mathews R, Haq Z, Cancel LM, Tarbell JM (2017) The short term response of PECAM-1 to mechanical loading: Cyclooxygenase-2 and nitric oxide production with AFM pulling and shear stress. Biophys J 112(3):311a–311a

    Article  Google Scholar 

  • Weinbaum S, Zhang X, Han Y, Vink H, Cowin SC (2003) Mechanotransduction and flow across the endothelial glycocalyx. Proc Natl Acad Sci U S A 100(13):7988–7995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinbaum S, Tarbell JM, Damiano ER (2007) The structure and function of the endothelial glycocalyx layer. Annu Rev Biomed Eng 9:121–167

    Article  CAS  PubMed  Google Scholar 

  • Xu S, Ha CH, Wang W, Xu X, Yin M, Jin FQ, Mastrangelo M, Koroleva M, Fujiwara K, Jin ZG (2016) PECAM1 regulates flow-mediated Gab1 tyrosine phosphorylation and signaling. Cell Signal 28(3):117–124

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto K, Ando J (2011) New molecular mechanisms for cardiovascular disease: blood flow sensing mechanism in vascular endothelial cells. J Pharmacol Sci 116(4):323–331

    Article  CAS  PubMed  Google Scholar 

  • Yan Z, Liu J, Xie L, Liu X, Zeng Y (2016) Role of heparan sulfate in mediating CXCL8-induced endothelial cell migration. Peer J 4:e1669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao Y, Rabodzey A, Dewey CF Jr (2007) Glycocalyx modulates the motility and proliferative response of vascular endothelium to fluid shear stress. Am J Physiol Heart Circ Physiol 293(2):H1023–H1030

    Article  CAS  PubMed  Google Scholar 

  • Yen WY, Cai B, Zeng M, Tarbell JM, Fu BM (2012) Quantification of the endothelial surface glycocalyx on rat and mouse blood vessels. Microvasc Res 83(3):337–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yen W, Cai B, Yang J, Zhang L, Zeng M, Tarbell JM, Fu BM (2015) Endothelial surface glycocalyx can regulate flow-induced nitric oxide production in microvessels in vivo. PLoS One 10(1):e0117133

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu J, Bergaya S, Murata T, Alp IF, Bauer MP, Lin MI, Drab M, Kurzchalia TV, Stan RV, Sessa WC (2006) Direct evidence for the role of caveolin-1 and caveolae in mechanotransduction and remodeling of blood vessels. J Clin Invest 116(5):1284–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yurdagul A Jr, Finney AC, Woolard MD, Orr AW (2016) The arterial microenvironment: the where and why of atherosclerosis. Biochem J 473(10):1281–1295

    Article  CAS  PubMed  Google Scholar 

  • Zeng Y (2017) Endothelial glycocalyx as a critical signalling platform integrating the extracellular haemodynamic forces and chemical signalling. J Cell Mol Med 21(8):1457–1462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng Y, Liu J (2016) Role of glypican-1 in endothelial NOS activation under various steady shear stress magnitudes. Exp Cell Res 348(2):184–189

    Article  CAS  PubMed  Google Scholar 

  • Zeng Y, Tarbell JM (2014) The adaptive remodeling of endothelial glycocalyx in response to fluid shear stress. PLoS One 9(1):e86249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng Y, Ebong EE, Fu BM, Tarbell JM (2012) The structural stability of the endothelial glycocalyx after enzymatic removal of glycosaminoglycans. PLoS One 7(8):e43168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng Y, Waters M, Andrews A, Honarmandi P, Ebong E, Rizzo V, Tarbell JM (2013) Fluid shear stress induces the clustering of Heparan sulfate via mobility of Glypican-1 in lipid rafts. Am J Physiol Heart Circ Physiol 305(6):H811–H820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng Y, Adamson RH, Curry FR, Tarbell JM (2014) Sphingosine-1-phosphate protects endothelial glycocalyx by inhibiting syndecan-1 shedding. Am J Physiol Heart Circ Physiol 306(3):H363–H372

    Article  CAS  PubMed  Google Scholar 

  • Zeng Y, Liu XH, Tarbell J, Fu B (2015) Sphingosine 1-phosphate induced synthesis of glycocalyx on endothelial cells. Exp Cell Res 339(1):90–95

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Li YS, Chien S (2014) Shear stress-initiated signaling and its regulation of endothelial function. Arterioscler Thromb Vasc Biol 34(10):2191–2198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zullo JA, Fan J, Azar TT, Yen W, Zeng M, Chen J, Ratliff BB, Song J, Tarbell JM, Goligorsky MS, Fu BM (2016) Exocytosis of endothelial lysosome-related organelles hair-triggers a patchy loss of Glycocalyx at the onset of Sepsis. Am J Pathol 186(2):248–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the support from the National Natural Science Foundation of China [Grant no. 11402153(YZ)], National Institutes of Health [grant nos. SC1CA153325 (BF), RO1HL094889 (JT, BF), and RO1CA204949 (JT)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Zeng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zeng, Y., Zhang, X.F., Fu, B.M., Tarbell, J.M. (2018). The Role of Endothelial Surface Glycocalyx in Mechanosensing and Transduction. In: Fu, B., Wright, N. (eds) Molecular, Cellular, and Tissue Engineering of the Vascular System. Advances in Experimental Medicine and Biology, vol 1097. Springer, Cham. https://doi.org/10.1007/978-3-319-96445-4_1

Download citation

Publish with us

Policies and ethics