Skip to main content

Integrins: Targets for Anti-Angiogenic Therapy

  • Chapter
Tumor Angiogenesis

Abstract

Angiogenesis, the process responsible for the formation of new blood vessels, is an integral part of both normal development and tumor growth and metastasis. The switch of endothelial cells from a quiescent phenotype to a proangiogenic phenotype requires the upregulation of endogenous angiogenic factors such as the growth factors FGF2 and VEGF and the downregulation of endogenous inhibitors of angiogenesis such as endostatin and tumstatin. Analysis of the co-ordination between growth factors and components of the extracellular matrix in the regulation of angiogenesis has highlighted the role of the integrins (e.g. αvß3, αvß5 or α5ß1) in the process. This has been demonstrated by the anti-angiogenic effects of monoclonal antibody and smallpeptide av integrin antagonists in particular, in preclinical studies. This in turn has led to the development of av integrin antagonists as new targeted anti-cancer therapies and their investigation in clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abdollahi A, Griggs DW, Zieher H et al (2005) Inhibition of alpha(v)beta3 integrin survival signaling enhances antiangiogenic and antitumor effects of radiotherapy. Clin Cancer Res 11:6270–6279

    Article  PubMed  CAS  Google Scholar 

  • Akella NS, Twieg DB, Mikkelsen T et al (2004) Assessment of brain tumor angiogenesis inhibitors using perfusion magnetic resonance imaging:quality analysis results of a phase I trial. J Magn Reson Imaging 20:913–922

    Article  PubMed  Google Scholar 

  • Alavi A, Hood JD, Frausto R et al (2003) Role of Raf in vascular protection from distinct apoptotic stimuli. Science 301:94–96

    Article  PubMed  CAS  Google Scholar 

  • Albini A, Paglieri I, Orengo G et al (1997) The beta-core fragment of human chorionic gonadotrophin inhibits growth of Kaposi’s sarcoma-derived cells and a new immortalized Kaposi’s sarcoma cell line. Aids 11:713–721

    Article  PubMed  CAS  Google Scholar 

  • Boger DL, Goldberg J, Silletti S et al (2001) Identification of a novel class of small-molecule antiangiogenic agents through the screening of combinatorial libraries which function by inhibiting the binding and localization of proteinase MMP2 to integrin alpha(V)beta(3). J Am Chem Soc 123:1280–1288

    Article  PubMed  CAS  Google Scholar 

  • Borges E, Jan Y, Ruoslahti E (2000) Platelet-derived growth factor receptor beta and vascular endothelial growth factor receptor 2 bind to the beta 3 integrin through its extracellular domain. J Biol Chem 275:39867–39873

    Article  PubMed  CAS  Google Scholar 

  • Brakebusch C, Bouvard D, Stanchi F et al (2002) Integrins in invasive growth. J Clin Invest 109:999–1006

    Article  PubMed  CAS  Google Scholar 

  • Brooks PC, Clark RA, Cheresh DA (1994a) Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264:569–571

    Article  PubMed  CAS  Google Scholar 

  • Brooks PC, Montgomery AM, Rosenfeld M et al (1994b) Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79:1157–1164

    Article  PubMed  CAS  Google Scholar 

  • Brooks PC, Stromblad S, Klemke R et al (1995) Antiintegrin alpha v beta 3 blocks human breast cancer growth and angiogenesis in human skin. J Clin Invest 96:1815–1822

    PubMed  CAS  Google Scholar 

  • Buerkle MA, Pahernik SA, Sutter A et al (2002) Inhibition of the alpha-nu integrins with a cyclic RGD peptide impairs angiogenesis, growth and metastasis of solid tumours in vivo. Br J Cancer 86:788–795

    Article  PubMed  CAS  Google Scholar 

  • Burke PA, DeNardo SJ, Miers LA et al (2002) Cilengitide targeting of alpha(v)beta(3) integrin receptor synergizes with radioimmunotherapy to increase efficacy and apoptosis in breast cancer xenografts. Cancer Res 62:4263–4272

    PubMed  CAS  Google Scholar 

  • Byzova TV, Goldman CK, Pampori N et al (2000a) A mechanism for modulation of cellular responses to VEGF: activation of the integrins. Mol Cell 6:851–860

    PubMed  CAS  Google Scholar 

  • Byzova TV, Kim W, Midura RJ et al (2000b) Activation of integrin alpha(V)beta(3) regulates cell adhesion and migration to bone sialoprotein. Exp Cell Res 254:299–308

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9:653–660

    Article  PubMed  CAS  Google Scholar 

  • Carron CP, Meyer DM, Pegg JA et al (1998) A peptidomimetic antagonist of the integrin alpha(v)beta3 inhibits Leydig cell tumor growth and the development of hypercalcemia of malignancy. Cancer Res 58:1930–1935

    PubMed  CAS  Google Scholar 

  • Cheresh DA (1987) Human endothelial cells synthesize and express an Arg-Gly-Asp-directed adhesion receptor involved in attachment to fibrinogen and von Willebrand factor. Proc Natl Acad Sci USA 84:6471–6475

    Article  PubMed  CAS  Google Scholar 

  • Cheresh DA, Klier FG (1986) Disialoganglioside GD2 distributes preferentially into substrate-associated microprocesses on human melanoma cells during their attachment to fibronectin. J Cell Biol 102:1887–1897

    Article  PubMed  CAS  Google Scholar 

  • Claffey KP, Robinson GS (1996) Regulation of VEGF/VPF expression in tumor cells: consequences for tumor growth and metastasis. Cancer Metastasis Rev 15:165–176

    Article  PubMed  CAS  Google Scholar 

  • Coller BS (1997) Platelet GPIIb/IIIa antagonists: the first anti-integrin receptor therapeutics. J Clin Invest 100: S57–S60

    PubMed  CAS  Google Scholar 

  • Colorado PC, Torre A, Kamphaus G et al (2000) Anti-angiogenic cues from vascular basement membrane collagen. Cancer Res 60:2520–2526

    PubMed  CAS  Google Scholar 

  • Danen EH, van Rheenen J, Franken W et al (2005) Integrins control motile strategy through a Rho-cofilin pathway. J Cell Biol 169:515–526

    Article  PubMed  CAS  Google Scholar 

  • De S, Razorenova O, McCabe NP et al (2005) VEGF-integrin interplay controls tumor growth and vascularization. Proc Natl Acad Sci USA 102:7589–7594

    Article  PubMed  CAS  Google Scholar 

  • Eliceiri BP, Cheresh DA (1999) The role of alphav integrins during angiogenesis: insights into potential mechanisms of action and clinical development. J Clin Invest 103:1227–1230

    Article  PubMed  CAS  Google Scholar 

  • Eliceiri BP, Cheresh DA (2000) Role of alpha v integrins during angiogenesis. Cancer J 6[Suppl 3]:S245–S249

    PubMed  Google Scholar 

  • Eliceiri BP, Cheresh DA (2001) Adhesion events in angiogenesis. Curr Opin Cell Biol 13:563–568

    Article  PubMed  CAS  Google Scholar 

  • Eliceiri BP, Paul R, Schwartzberg PL et al (1999) Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Mol Cell 4:915–924

    Article  PubMed  CAS  Google Scholar 

  • EPILOG (1997) Platelet glycoprotein IIb/IIIa receptor blockade and low-dose heparin during percutaneous coronary revascularization. The EPILOG Investigators. N Engl J Med 336:1689–1696

    Article  Google Scholar 

  • Eskens FA, Dumez H, Hoekstra R et al (2003) Phase I and pharmacokinetic study of continuous twice weekly intravenous administration of Cilengitide (EMD 121974), a novel inhibitor of the integrins alphavbeta3 and alphavbeta5 in patients with advanced solid tumours. Eur J Cancer 39:917–926

    Article  PubMed  CAS  Google Scholar 

  • Folkman J (1992) The role of angiogenesis in tumor growth. Semin Cancer Biol 3:65–71

    PubMed  CAS  Google Scholar 

  • Folkman J, Hanahan D (1991) Switch to the angiogenic phenotype during tumorigenesis. Princess Takamatsu Symp 22:339–347

    PubMed  CAS  Google Scholar 

  • Friedlander M, Brooks PC, Shaffer RW et al (1995) Definition of two angiogenic pathways by distinct alpha v integrins. Science 270:1500–1502

    Article  PubMed  CAS  Google Scholar 

  • Friedlander M, Theesfeld CL, Sugita M et al (1996) Involvement of integrins alpha v beta 3 and alpha v beta 5 in ocular neovascular diseases. Proc Natl Acad Sci USA 93:9764–9769

    Article  PubMed  CAS  Google Scholar 

  • Friedrich EB, Liu E, Sinha S et al (2004) Integrin-linked kinase regulates endothelial cell survival and vascular development. Mol Cell Biol 24:8134–8144

    Article  PubMed  CAS  Google Scholar 

  • Garmy-Susini B, Jin H, Zhu Y et al (2005) Integrin alpha4beta1-VCAM-l-mediated adhesion between endothelial and mural cells is required for blood vessel maturation. J Clin Invest 115:1542–1551

    Article  PubMed  CAS  Google Scholar 

  • Giancotti FG, Ruoslahti E (1999) Integrin signaling. Science 285:1028–1032

    Article  PubMed  CAS  Google Scholar 

  • Good DJ, Polverini PJ, Rastinejad F et al (1990) A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc Natl Acad Sci USA 87:6624–6628

    Article  PubMed  CAS  Google Scholar 

  • Gutheil JC, Campbell TN, Pierce PR et al (2000) Targeted antiangiogenic therapy for cancer using Vitaxin: a humanized monoclonal antibody to the integrin alphavbeta3. Clin Cancer Res 6:3056–3061

    PubMed  CAS  Google Scholar 

  • Hamano Y, Kalluri R (2005) Tumstatin, the NCI domain of alpha3 chain of type IV collagen, is an endogenous inhibitor of pathological angiogenesis and suppresses tumor growth. Biochem Biophys Res Commun 333:292–298

    Article  PubMed  CAS  Google Scholar 

  • Hamano Y, Zeisberg M, Sugimoto H et al (2003) Physiological levels of tumstatin, a fragment of collagen IV alpha3 chain, are generated by MMP-9 proteolysis and suppress angiogenesis via alphaV beta3 integrin. Cancer Cell 3:589–601

    Article  PubMed  CAS  Google Scholar 

  • Hammes HP, Brownlee M, Jonczyk A et al (1996) Subcutaneous injection of a cyclic peptide antagonist of vitronectin receptor-type integrins inhibits retinal neovascularization. Nat Med 2:529–533

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364

    Article  PubMed  CAS  Google Scholar 

  • Harms JF, Welch DR, Samant RS et al (2004) A small molecule antagonist of the alpha(v)beta3 integrin suppresses MDA-MB-435 skeletal metastasis. Clin Exp Metastasis 21:119–128

    Article  PubMed  CAS  Google Scholar 

  • Harris AL (1997) Antiangiogenesis for cancer therapy. Lancet 349[Suppl 2]:SII13–SII15

    PubMed  Google Scholar 

  • Herbst RS, Hess KR, Tran HT et al (2002) Phase I study of recombinant human endostatin in patients with advanced solid tumors. J Clin Oncol 20:3792–3803

    Article  PubMed  CAS  Google Scholar 

  • Hong YK, Lange-Asschenfeldt B, Velasco P et al (2004) VEGFA promotes tissue repair-associated lymphatic vessel formation via VEGFR-2 and the alphalbeta1 and alpha2beta1 integrins. FASEB J 18:1111–1113

    PubMed  CAS  Google Scholar 

  • Hood JD, Cheresh DA (2002) Role of integrins in cell invasion and migration. Nat Rev Cancer 2:91–100

    Article  PubMed  Google Scholar 

  • Hood JD, Frausto R, Kiosses WB et al (2003) Differential alphav integrin-mediated Ras-ERK signaling during two pathways of angiogenesis. J Cell Biol 162:933–943

    Article  PubMed  CAS  Google Scholar 

  • Huang K, Andersson C, Roomans GM et al (2001) Signaling properties of VEGF receptor-1 and-2 homoand heterodimers. Int J Biochem Cell Biol 33:315–324

    Article  PubMed  CAS  Google Scholar 

  • Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687

    Article  PubMed  CAS  Google Scholar 

  • Jayson GC, Mullamitha S, Ton C et al (2004) Phase I study of CNTO 95, a full human monoclonal antibody to av integrins, in patients with solid tumors. J Clin Oncol 22:3119

    Google Scholar 

  • Kamphaus GD, Colorado PC, Panka DJ et al (2000) Canstatin anovel matrix-derived inhibitor of angiogenesis and tumor growth. J Biol Chem 275:1209–1215

    Article  PubMed  CAS  Google Scholar 

  • Kanno S, Oda N, Abe M et al (2000) Roles of two VEGF receptors, Flt-1 and KDR, in the signal transduction of VEGF effects in human vascular endothelial cells. Oncogene 19:2138–2146

    Article  PubMed  CAS  Google Scholar 

  • Kerbel R, Folkman J (2002) Clinical translation of angiogenesis inhibitors. Nat Rev Cancer 2:727–739

    Article  PubMed  CAS  Google Scholar 

  • Kerr JS, Slee AM, Mousa SA (2000) Small molecule alpha(v) integrin antagonists: novel anticancer agents. Exp Opin Invest Drugs 9:1271–1279

    Article  CAS  Google Scholar 

  • Kerr JS, Slee AM, Mousa SA (2002) The alpha v integrin antagonists as novel anticancer agents: an update. Exp Opin Invest Drugs 11:1765–1774

    Article  CAS  Google Scholar 

  • Kessler TA, Pfeifer A, Silletti S et al (2002) Matrix metalloproteinase /integrin interactions as target for anti-angiogenic treatment strategies. Ann Hematol 81[Suppl 2]:S69–S70

    PubMed  Google Scholar 

  • Kim S, Bell K, Mousa SA et al (2000a) Regulation of angiogenesis in vivo by ligation of integrin alpha5beta1 with the central cell-binding domain of fibronectin. Am J Pathol 156:1345–1362

    PubMed  CAS  Google Scholar 

  • Kim S, Harris M, Varner JA (2000b) Regulation of integrin alpha vbeta 3-mediated endothelial cell migration and angiogenesis by integrin alpha5beta1 and protein kinase A. J Biol Chem 275:33920–33928

    Article  PubMed  CAS  Google Scholar 

  • Klemke RL, Yebra M, Bayna EM et al (1994) Receptor tyrosine kinase signaling required for integrin alpha v beta 5-directed cell motility but not adhesion on vitronectin. J Cell Biol 127:859–866

    Article  PubMed  CAS  Google Scholar 

  • Kraft A, Weindel K, Ochs A et al (1999) Vascular endothelial growth factor in the sera and effusions of patients with malignant and nonmalignant disease. Cancer 85:178–187

    Article  PubMed  CAS  Google Scholar 

  • Kulke M, Bergsland E, Ryan DP et al (2003) A phase II, open-label, safety, pharmacokinetic, and efficacy study of recombinant human endostatin in patients with advanced neuroendocrine tumors. Proc Am Soc Clin Oncol 22 abstr 958

    Google Scholar 

  • Kumar CC, Armstrong L, Yin Z et al (2000) Targeting integrins alpha v beta 3 and alpha v beta 5 for blocking tumorinduced angiogenesis. Adv Exp Med Biol 476:169–180

    PubMed  CAS  Google Scholar 

  • Kumar CC, Malkowski M, Yin Z et al (2001) Inhibition of angiogenesis and tumor growth by SCH221153, a dual alpha(v)beta3 and alpha(v)beta5 integrin receptor antagonist. Cancer Res 61:2232–2238

    PubMed  CAS  Google Scholar 

  • Lode HN, Moehler T, Xiang R, Jonczyk A, Gillies SD, Cheresh DA, Reisfeld RA (1999) Synergy between an antiangiogenic integrin alphav antagonist and an antibody-cytokine fusion protein eradicates spontaneous tumor metastases. Proc Natl Acad Sci U S A 96:1591–1596

    Article  PubMed  CAS  Google Scholar 

  • MacDonald TJ, Taga T, Shimada H et al (2001) Preferential susceptibility of brain tumors to the antiangiogenic effects of an alpha(v) integrin antagonist. Neurosurgery 48:151–157

    Article  PubMed  CAS  Google Scholar 

  • Maeshima Y, Colorado PC, Kalluri R (2000) Two RGD-independent alpha vbeta 3 integrin binding sites on tumstatin regulate distinct anti-tumor properties. J Biol Chem 275:23745–23750

    Article  PubMed  CAS  Google Scholar 

  • Maeshima Y, Sudhakar A, Lively JC et al (2002) Tumstatin, an endothelial cell-specific inhibitor of protein synthesis. Science 295:140–143

    Article  PubMed  CAS  Google Scholar 

  • Marmé D (2003) The impact of anti-angiogenic agents on cancer therapy. J Cancer Res Clin Oncol 129:607–620

    Article  PubMed  Google Scholar 

  • Max R, Gerritsen RR, Nooijen PT et al (1997) Immunohistochemical analysis of integrin alpha vbeta3 expression on tumor-associated vessels of human carcinomas. Int J Cancer 71:320–324

    Article  PubMed  CAS  Google Scholar 

  • Maxwell PH, Dachs GU, Gleadle JM et al (1997) Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc Natl Acad Sci USA 94:8104–8109

    Article  PubMed  CAS  Google Scholar 

  • Meyer T, Marshall JF, Hart IR (1998) Expression of alphav integrins and vitronectin receptor identity in breast cancer cells. Br J Cancer 77:530–536

    PubMed  CAS  Google Scholar 

  • Mitjans F, Meyer T, Fittschen C et al (2000) In vivo therapy of malignant melanoma by means of antagonists of alphav integrins. Int J Cancer 87:716–723

    Article  PubMed  CAS  Google Scholar 

  • Mousa SA (2005) Alpha v integrin affinity/specificity and antiangiogenesis effect of a novel tetraaza cyclic peptide derivative, SU015, in various species. J Cardiovasc Pharmacol 45:462–467

    Article  PubMed  CAS  Google Scholar 

  • Mousa SA, Mohamed S, Wexler EJ et al (2005) Antiangiogenesis and anticancer efficacy of TA138, a novel alphavbeta3 antagonist. Anticancer Res 25:197–206

    PubMed  CAS  Google Scholar 

  • Nabors LB, Rosenfeld SS, Mikkelsen T et al (2004) A phase I trial of EMD 121974 for treatment of patients with recurrent malignant gliomas. Neurooncology [Suppl] p 379

    Google Scholar 

  • O’Reilly MS, Holmgren L, Shing Y et al (1994) Angiostatin: a circulating endothelial cell inhibitor that suppresses angiogenesis and tumor growth. Cold Spring Harb Symp Quant Biol 59:471–482

    PubMed  CAS  Google Scholar 

  • O’Reilly MS, Boehm T, Shing Y et al (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88:277–285

    Article  PubMed  CAS  Google Scholar 

  • Petitclerc E, Boutaud A, Prestayko A et al (2000) New functions for non-collagenous domains of human collagen type IV. Novel integrin ligands inhibiting angiogenesis and tumor growth in vivo. J Biol Chem 275:8051–8061

    Article  PubMed  CAS  Google Scholar 

  • Raguse JD, Gath HJ, Bier J et al (2004) Cilengitide (EMD 121974) arrests the growth of a heavily pretreated highly vascularised head and neck tumour. Oral Oncol 40:228–230

    Article  PubMed  CAS  Google Scholar 

  • Rahimi N, Dayanir V, Lashkari K (2000) Receptor chimeras indicate that the vascular endothelial growth factor receptor-1 (VEGFR-1) modulates mitogenic activity of VEGFR2 in endothelial cells. J Biol Chem 275:16986–16992

    Article  PubMed  CAS  Google Scholar 

  • Rak J, Yu JL, Klement G et al (2000) Oncogenes and angiogenesis: signaling three-dimensional tumor growth. J Invest Dermatol Symp Proc 5:24–33

    Article  CAS  Google Scholar 

  • Reinmuth N, Liu W, Ahmad SA et al (2003) Alphavbeta3 integrin antagonist S247 decreases colon cancer metastasis and angiogenesis and improves survival in mice. Cancer Res 63:2079–2087

    PubMed  CAS  Google Scholar 

  • Reynolds AR, Reynolds LE, Nagel TE et al (2004) Elevated Flk1 (vascular endothelial growth factor receptor 2) signaling mediates enhanced angiogenesis in beta3-integrindeficient mice. Cancer Res 64:8643–8650

    Article  PubMed  CAS  Google Scholar 

  • Schneller M, Vuori K, Ruoslahti E (1997) Alphavbeta3 integrin associates with activated insulin and PDGFbeta receptors and potentiates the biological activity of PDGF. EMBO J 16:5600–5607

    Article  PubMed  CAS  Google Scholar 

  • Seftor RE (1998) Role of the beta3 integrin subunit in human primary melanoma progression: multifunctional activities associated with alpha(v)beta3 integrin expression. Am J Pathol 153:1347–1351

    PubMed  CAS  Google Scholar 

  • Senger DR, Ledbetter SR, Claffey KP et al (1996) Stimulation of endothelial cell migration by vascular permeability factor/vascular endothelial growth factor through cooperative mechanisms involving the alphavbeta3 integrin, osteopontin, and thrombin. Am J Pathol 149:293–305

    PubMed  CAS  Google Scholar 

  • Senger DR, Claffey KP, Benes JE et al (1997) Angiogenesis promoted by vascular endothelial growth factor: regulation through alphalbeta1 and alpha2beta1 integrins. Proc Natl Acad Sci USA 94:13612–13617

    Article  PubMed  CAS  Google Scholar 

  • Senger DR, Perruzzi CA, Streit M et al (2002) The alpha(1)beta(1) and alpha(2)beta(1) integrins provide critical support for vascular endothelial growth factor signaling, endothelial cell migration, and tumor angiogenesis. Am J Pathol 160:195–204

    PubMed  CAS  Google Scholar 

  • Serini G, Valdembri D, Bussolino F (2006) Integrins and angiogenesis: a sticky business. Exp Cell Res 312:651–658

    Article  PubMed  CAS  Google Scholar 

  • Shannon KE, Keene JL, Settle SL et al (2004) Anti-metastatic properties of RGD-peptidomimetic agents S137 and S247. Clin Exp Metastasis 21:129–138

    Article  PubMed  CAS  Google Scholar 

  • Silletti S, Kessler T, Goldberg J et al (2001) Disruption of matrix metalloproteinase 2 binding to integrin alpha vbeta 3 by an organic molecule inhibits angiogenesis and tumor growth in vivo. Proc Natl Acad Sci USA 98:119–124

    Article  PubMed  CAS  Google Scholar 

  • Smith JW (2003) Cilengitide Merck. Curr Opin Invest Drugs 4:741–745

    CAS  Google Scholar 

  • Stromblad S, Cheresh DA (1996) Integrins, angiogenesis and vascular cell survival. Chem Biol 3:881–885

    Article  PubMed  CAS  Google Scholar 

  • Stupack DG, Cheresh DA (2002) Get a ligand, get a life: integrins, signaling and cell survival. J Cell Sci 115:3729–3738

    Article  PubMed  CAS  Google Scholar 

  • Sudhakar A, Sugimoto H, Yang C et al (2003) Human tumstatin and human endostatin exhibit distinct antiangiogenic activities mediated by alpha v beta 3 and alpha 5 beta 1 integrins. Proc Natl Acad Sci USA 100:4766–4771

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Wang J, Liuy et al (2005) Results of a phase III trial of endostar TM (Rh-endostatin, YH-16) in advanced non-small cell lung cancer (SCLC) patients. J Clin Oncol 23 abstr 7138

    Google Scholar 

  • Sund M, Hamano Y, Sugimoto H et al (2005) Function of endogenous inhibitors of angiogenesis as endotheliumspecific tumor suppressors. Proc Natl Acad Sci USA 102:2934–2939

    Article  PubMed  CAS  Google Scholar 

  • Taga T, Suzuki A, Gonzalez-Gomez I et al (2002) alpha vIntegrin antagonist EMD 121974 induces apoptosis in brain tumor cells growing on vitronectin and tenascin. Int J Cancer 98:690–697

    Article  PubMed  CAS  Google Scholar 

  • Trikha M, Zhou Z, Nemeth JA et al (2004) CNTO 95, a fully human monoclonal antibody that inhibits alphav integrins, has antitumor and antiangiogenic activity in vivo. Int J Cancer 110:326–335

    Article  PubMed  CAS  Google Scholar 

  • Villanueva A, Garcia C, Paules AB et al (1998) Disruption of the antiproliferative TGF-beta signaling pathways in human pancreatic cancer cells. Oncogene 17:1969–1978

    Article  PubMed  CAS  Google Scholar 

  • Wickstrom SA, Alitalo K, Keski-Oja J (2002) Endostatin associates with integrin alpha5beta1 and caveolin-1, and activates Src via a tyrosyl phosphatase-dependent pathway in human endothelial cells. Cancer Res 62:5580–5589

    PubMed  CAS  Google Scholar 

  • Wilkinson-Berka JL, Jones D, Taylor G et al (2006) SB267268, a nonpeptidic antagonist of alpha(v)beta3 and alpha(v)beta5 integrins, reduces angiogenesis and VEGF expression in a mouse model of retinopathy of prematurity. Invest Ophthalmol Vis Sci 47:1600–1605

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kisker, O. (2008). Integrins: Targets for Anti-Angiogenic Therapy. In: Marmé, D., Fusenig, N. (eds) Tumor Angiogenesis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33177-3_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-33177-3_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33176-6

  • Online ISBN: 978-3-540-33177-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics