Skip to main content

Systemic Determinants

  • Chapter
  • First Online:
Ocular Blood Flow

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ARMD:

Age-related macular degeneration

BFE:

Blue Field Entoptoscope

BP:

Blood pressure

BPdiast:

Diastolic blood pressure

BPmean:

Mean systemic blood pressure

BPsyst:

Systolic blood pressure

ChBF:

Choroidal blood flow

CO2 :

Carbon dioxide

CP:

Chromatic pulse

CPT:

Cold pressor test

CRA:

Central retinal artery

CRV:

Central retinal vein

D:

Diameter

FAZ:

Foveal avascular zone

fERG:

Flash electroretinogram

FPA:

Fundus pulsation amplitude

HR:

Heart rate

IOP:

Intraocular pressure

ISCEV:

International Society for Clinical Electrophysiology of Vision

LDF:

Laser Doppler flowmetry

NIR:

Near infrared

NO:

Nitric oxide

O2 :

Oxygen

ONH:

Optic nerve head

OPP:

Ocular perfusion pressure

OPs:

Oscillatory potentials

pERG:

Pattern reversal electroretinogram

PO2 :

Partial pressure for oxygen

POBF:

Pulsatile ocular blood flow

Q:

Blood flow

RPE:

Retinal pigment epithelium

RVA:

Retinal Vessel Analyzer

SaO2 :

Saturation of oxygen

V:

Velocity

VM:

Valsalva maneuver

References

  1. Kiel JW (1999) Modulation of choroidal autoregulation in the rabbit. Exp Eye Res 69:413–429

    Article  PubMed  CAS  Google Scholar 

  2. Fryczkowski AW (1994) Anatomical and functional choroidal lobuli. Int Ophthalmol 18:131–141

    Article  PubMed  CAS  Google Scholar 

  3. Lovasik JV, Kothe AC, Kergoat H (1993) A comparison of non-invasive methods to derive the mean central retinal artery pressure in man. Optom Vis Sci 70:1005–1011

    Article  PubMed  CAS  Google Scholar 

  4. Guyton AC, Hall JE (1996) Overview of the circulation: medical physics of pressure, flow, and resistance. In: Textbook of medical physiology. WB Saunders, Philadelphia

    Google Scholar 

  5. Al Suwaidi J, Higano ST, Holmes DR Jr et al (2001) Pathophysiology, diagnosis, and current management strategies for chest pain in patients with normal findings on angiography. Mayo Clin Proc 76:813–822

    PubMed  CAS  Google Scholar 

  6. Menkes MS, Matthews KA, Krantz DS et al (1989) Cardiovascular reactivity to the cold pressor test as a predictor of hypertension. Hypertension 14:524–530

    Article  PubMed  CAS  Google Scholar 

  7. Mizushima T, Tajima F, Nakamura T et al (1998) Muscle sympathetic nerve activity during cold pressor test in patients with cerebral vascular accident. Stroke 29:607–612

    Article  PubMed  CAS  Google Scholar 

  8. Lovasik JV, Kergoat H, Riva CE et al (2003) Choroidal blood flow during exercise-induced changes in the ocular perfusion pressure. Invest Ophthalmol Vis Sci 44:2126–2132

    Article  PubMed  Google Scholar 

  9. Riva CE, Titze P, Hero M et al (1997) Choroidal blood flow during isometric exercises. Invest Ophthalmol Vis Sci 38:2338–2343

    PubMed  CAS  Google Scholar 

  10. Polska E, Simader C, Weigert G et al (2007) Regulation of choroidal blood flow during combined changes in intraocular pressure and arterial blood pressure. Invest Ophthalmol Vis Sci 48:3768–3774

    Article  PubMed  Google Scholar 

  11. Lovasik JV, Kergoat H, Gauthier C, Dion I (2009) Regulation of choroidal blood flow fails during cold stimulation. Optom Vis Sci 86:E-abstract 85985

    Google Scholar 

  12. Marinier JA, Kergoat H, Lovasik JV (2000) Increased foveal-choroidal blood flow in man during bilateral cold pressor testing. Optom Vis Sci Suppl 77:231

    Article  Google Scholar 

  13. Lovasik JV, Kergoat H, Greendale C et al (2003) Changes in retinal vessel diameter during a cold pressor test. Optom Vis Sci Suppl 80

    Google Scholar 

  14. Forcier P, Kergoat H, Lovasik JV (1998) Macular hemodynamic responses to short-term acute exercise in humans. Vision Res 38:181–186

    Article  PubMed  CAS  Google Scholar 

  15. Kergoat H, Lovasik JV (1995) Response of parapapillary retinal vessels to exercise. Optom Vis Sci 72:249–257

    Article  PubMed  CAS  Google Scholar 

  16. Pournaras CJ, Rungger-Brändle E, Riva CE et al (2008) Regulation of retinal blood flow in health and disease. Prog Retin Eye Res 27:284–330

    Article  PubMed  CAS  Google Scholar 

  17. Maeda S, Miyauchi T, Kakiyama T et al (2001) Effects of exercise training of 8 weeks and detraining on plasma levels of endothelium-derived factors, endothelin-1 and nitric oxide, in healthy young humans. Life Sci 69:1005–1016

    Article  PubMed  CAS  Google Scholar 

  18. Lovasik JV, Kergoat H, Racine N, et al (2007) Neurovascular coupling in long-term joggers versus healthy non-joggers. Invest Ophthalmol Vis Sci 49:E-Abstract 2273

    Google Scholar 

  19. Porth CJ, Bamrah VS, Tristani FE et al (1984) The Valsalva maneuver: mechanisms and clinical implications. Heart Lung 13:507–518

    PubMed  CAS  Google Scholar 

  20. Lovasik JV, Kergoat H, Riva CE, et al (2002) Correlation between the intra-thoracic pressure and choroidal blood flow. Invest Ophthalmol Vis Sci 49:E-Abstract 3315

    Google Scholar 

  21. Benowitz NL (2003) Cigarette smoking and cardiovascular disease: pathophysiology and implications for treatment. Prog Cardiovasc Dis 46:91–111

    Article  PubMed  CAS  Google Scholar 

  22. Rojanapongpun P, Drance SM (1993) The effects of nicotine on the blood flow of the ophthalmic artery and the finger circulation. Graefe’s Arch Ophthalmol 231:371–374

    Article  CAS  Google Scholar 

  23. Kaiser HJ, Schoetzau A, Flammer J (1997) Blood flow velocity in the extraocular vessels in chronic smokers. Br J Ophthalmol 81:133–135

    Article  PubMed  CAS  Google Scholar 

  24. Steigerwalt RD Jr, Laurora G, Incandela L et al (2000) Ocular and orbital blood flow in cigarette smokers. Retina 20:394–397

    PubMed  Google Scholar 

  25. Lafleur J, Lovasik JV (2000) Nicotine modifies reactivity of foveal choroidal blood flow. Optom Vis Sci Suppl 77:155

    Article  Google Scholar 

  26. Balbini APS, Montovani JC (2005) Methods for smoking cessation and treatment of nicotine dependence. Rev Bras Otorrinolaringol 6:820–826

    Article  Google Scholar 

  27. Benowitz NL (2008) Clinical pharmacology of nicotine: implications for understanding, preventing, and treating tobacco addiction. Clin Pharmacol Ther 83:531–541

    Article  PubMed  CAS  Google Scholar 

  28. Delcourt C, Diaz JL, Ponton-Sanchez A et al (1998) Smoking and age-related macular degeneration. The POLA Study. Pathologies Oculaires Liées à l’Age. Arch Ophthalmol 116:1031–1035

    PubMed  CAS  Google Scholar 

  29. Lovasik JV, Kothe AC, Spafford MM (1987) Vascular and neural changes during body inversion: preliminary findings. Can J Optom 49:133–140

    Google Scholar 

  30. Kergoat H, Lovasik JV (1990) The effects of altered retinal vascular perfusion pressure on the white flash scotopic ERG and oscillatory potentials in man. Electroencephalogr Clin Neurophysiol 75:306–322

    Article  PubMed  CAS  Google Scholar 

  31. Lovasik JV (1999) Assessment of the vascular autoregulatory properties in the human choroid with two measurement systems. Optom Vis Sci Suppl 76:246

    Google Scholar 

  32. Kergoat H, Lovasik JV (2005) Seven-degree head-down tilt reduces choroidal pulsatile ocular blood flow. Aviat Space Environ Med 76:930–934

    PubMed  Google Scholar 

  33. Lovasik JV, Kergoat H (1994) Gravity induced homeostatic reactions in the macular and choroidal vasculature of the human eye. Aviat Space Environ Med 65:1010–1014

    PubMed  CAS  Google Scholar 

  34. Gee W (1985) Ocular pneumoplethysmography. Surv Ophthalmol 29:276–292

    Article  PubMed  CAS  Google Scholar 

  35. Lovasik JV (2004) Choroidal dynamics during rapid vs slow changes in ocular perfusion. Optom Vis Sci Suppl 81:167

    Google Scholar 

  36. Lovasik JV, Gagnon M, Kergoat H (1994) Correlation of the chromaticity of the human ocular fundus with changes in the intraocular pressure, choroidal blood flow, and visual neural function. Surv Ophthalmol 38:S35–S51

    Article  PubMed  Google Scholar 

  37. Lovasik JV, Kergoat H (1996) Laser Doppler measurements of blood flow in the optic nerve head during cardiac shunting of blood. Optom Vis Sci Suppl 73:77

    Google Scholar 

  38. Koelle JS, Riva CE, Petrig BL et al (1993) Depth of tissue sampling in the optic nerve head using laser Doppler flowmetry. Laser Med Sci 8:49–54

    Article  Google Scholar 

  39. Silverman SE, Trick GL, Hart WM Jr (1990) Motion perception is abnormal in primary open-angle glaucoma and ocular hypertension. Invest Ophthalmol Vis Sci 31:722–729

    PubMed  CAS  Google Scholar 

  40. Fitzgerald ME, Vana BA, Reiner A (1990) Control of choroidal blood flow by the nucleus of Edinger-Westphal in pigeons: a laser Doppler study. Invest Ophthalmol Vis Sci 31:2483–2492

    PubMed  CAS  Google Scholar 

  41. Kergoat H, Lovasik JV (1994) Unilateral ocular vascular stress in man and retinal responsivity in the contralateral eye. Ophthalmic Physiol Opt 14:401–407

    Article  PubMed  CAS  Google Scholar 

  42. Lovasik JV, Kergoat H, Gagnon M (2005) Experi­mentally reduced perfusion of one eye impairs retinal function in both eyes. Optom Vis Sci 82:850–857

    Article  PubMed  Google Scholar 

  43. Fitzgerald ME, Gamlin PD, Zagvazdin Y et al (1996) Central neural circuits for the light-mediated reflexive control of choroidal blood flow in the pigeon eye: a laser Doppler study. Vis Neurosci 13:655–669

    Article  PubMed  CAS  Google Scholar 

  44. Lovasik JV, Kothe AC (1989) Neural effects of transiently raised intraocular pressure: the scotopic and photopic flash electroretinogram. Clin Vis Sci 4:313–321

    Google Scholar 

  45. Linsenmeier RA (1986) Effects of light and darkness on oxygen distribution and consumption in the cat retina. J Gen Physiol 88:521–542

    Article  PubMed  CAS  Google Scholar 

  46. Kothe AC, Lovasik JV (1988) Neural effects of body inversion: photopic oscillatory potentials. Curr Eye Res 7:1221–1229

    Article  PubMed  CAS  Google Scholar 

  47. Kiss B, Polska E, Dorner G et al (2002) Retinal blood flow during hyperoxia in human revisited: concerted results using different measurement techniques. Microvasc Res 64:75–85

    Article  PubMed  Google Scholar 

  48. Gilmore ED, Hudson C, Nrusimhadevara RK et al (2007) Retinal arteriolar diameter, blood velocity, and blood flow response to an isocapnic hyperoxic provocation in early sight-threatening diabetic retinopathy. Invest Ophthalmol Vis Sci 48:1744–1750

    Article  PubMed  Google Scholar 

  49. Jean-Louis S, Lovasik JV, Kergoat H (2005) Systemic hyperoxia and retinal vasomotor responses. Invest Ophthalmol Vis Sci 46:1714–1720

    Article  PubMed  Google Scholar 

  50. Kergoat H, Lovasik JV, Justino L (2001) Effects of hyperoxia on the blood flow and neural function of the inner retina. Optom Vis Sci Suppl 78:99

    Google Scholar 

  51. Kergoat H, Faucher C (1999) Effects of oxygen and carbogen breathing on choroidal hemodynamics in humans. Invest Ophthalmol Vis Sci 40:2906–2911

    PubMed  CAS  Google Scholar 

  52. Kergoat H, Marinier JA, Lovasik JV (2005) Effects of transient mild systemic hypoxia on the pulsatile choroidal blood flow in healthy young human adults. Curr Eye Res 30:465–470

    Article  PubMed  Google Scholar 

  53. Geiser MH, Riva CE, Dorner GT et al (2000) Response of choroidal blood flow in the foveal region to hyperoxia and hyperoxia-hypercapnia. Curr Eye Res 21:669–676

    Article  PubMed  CAS  Google Scholar 

  54. Riva CE, Cranstoun SD, Grunwald JE et al (1994) Choroidal blood flow in the foveal region of the human ocular fundus. Invest Ophthalmol Vis Sci 35:4273–4281

    PubMed  CAS  Google Scholar 

  55. Schmetterer L, Lexer F, Findl O et al (1996) The effect of inhalation of different mixtures of O2 and CO2 on ocular fundus pulsations. Exp Eye Res 63:351–355

    Article  PubMed  CAS  Google Scholar 

  56. Schmetterer L, Wolzt M, Lexer F et al (1995) The effect of hyperoxia and hypercapnia on fundus pulsations in the macular and optic disc region in healthy young men. Exp Eye Res 61:685–690

    Article  PubMed  CAS  Google Scholar 

  57. Schmetterer L, Findl O, Strenn K et al (1997) Role of NO in the O2 and CO2 responsiveness of cerebral and ocular circulation in humans. Am J Physiol 273:R2005–R2012

    PubMed  CAS  Google Scholar 

  58. Trokel S (1965) Effect of respirator gases upon choroidal hemodynamics. Arch Ophthalmol 73:838–842

    Article  PubMed  CAS  Google Scholar 

  59. Friedman E, Chandra SR (1972) Choroidal blood flow III. Effects of oxygen and carbon dioxide. Arch Ophthalmol 87:70–71

    Article  PubMed  CAS  Google Scholar 

  60. Alm A, Bill A (1972) The oxygen supply to the retina. II. Effects of high intraocular pressure and of increased arterial carbon dioxide tension on uveal and retinal blood flow in cats. A study with radioactively labelled microspheres including flow determinations in brain and some other tissues. Acta Physiol Scand 84:306–319

    Article  PubMed  CAS  Google Scholar 

  61. Wang L, Grant C, Fortune B et al (2008) Retinal and choroidal vasoreactivity to altered PaCO2 in rat measured with a modified microsphere technique. Exp Eye Res 86:908–913

    Article  PubMed  CAS  Google Scholar 

  62. Fallon TJ, Maxwell D, Kohner M (1985) Retinal vascular autoregulation in conditions of hyperoxia and hypoxia using the blue field entoptic phenomenon. Ophthalmology 92:701–705

    PubMed  CAS  Google Scholar 

  63. Strenn K, Menapace R, Rainer G et al (1997) Reproducibility and sensitivity of scanning laser Doppler flowmetry during graded changes in PO2. Br J Ophthalmol 81:360–364

    Article  PubMed  CAS  Google Scholar 

  64. Kergoat H, Tinjust D (2004) Neuroretinal function during systemic hyperoxia and hypercapnia in humans. Optom Vis Sci 81:214–220

    Article  PubMed  Google Scholar 

  65. Faucher C, Kergoat H (2002) Modulation of the scotopic electroretinogram and oscillatory potentials with systemic hyperoxia and hypercapnia in humans. Curr Eye Res 24:376–386

    Article  PubMed  Google Scholar 

  66. Tinjust D, Kergoat H, Lovasik JV (2002) Investigation of neuroretinal function during mild systemic hypoxia in man. Aviat Space Environ Med 73:1189–1194

    PubMed  Google Scholar 

  67. Pournaras CJ, Riva CE, Tsacopoulos M et al (1989) Diffusion of O2 in the retina of anesthetized miniature pigs in normoxia and hyperoxia. Exp Eye Res 49:347–360

    Article  PubMed  CAS  Google Scholar 

  68. Kergoat H, Hérard MÈ, Lemay M (2006) RGC sensitivity to mild systemic hypoxia. Invest Ophthalmol Vis Sci 47:5423–5427

    Article  PubMed  Google Scholar 

  69. Grunwald JE, Hariprasad SM, DuPont J et al (1998) Foveolar choroidal blood flow in age-related macular degeneration. Invest Ophthalmol Vis Sci 39:385–390

    PubMed  CAS  Google Scholar 

  70. Metelitsina TI, Grunwald JE, DuPont JC et al (2008) Foveolar choroidal circulation and choroidal neovascularization in age-related macular degeneration. Invest Ophthalmol Vis Sci 49:358–363

    Article  PubMed  Google Scholar 

  71. Kiryu J, Asrani S, Shahidi M et al (1995) Local response of the primate retinal microcirculation to increased metabolic demand induced by flicker. Invest Ophthalmol Vis Sci 36:1240–1246

    PubMed  CAS  Google Scholar 

  72. McArdle WD, Katch FI, Katch VL (1996) Functional capacity of the cardiovascular system. In: Exercise physiology: energy, nutrition and human performance. Williams & Wilkins, Baltimore

    Google Scholar 

  73. Østerberg G (1935) Topography of the layer of rods and cones in the human retina. Acta Ophthalmol Suppl 6:1–103

    Google Scholar 

  74. Ahnelt PK (1998) The photoreceptor mosaic. Eye 12:531–540

    Article  PubMed  Google Scholar 

  75. Linsenmeier RA, Padnick-Silver L (2000) Metabolic dependence of photoreceptors on the choroid in the normal and detached retina. Invest Ophthalmol Vis Sci 41:3117–3123

    PubMed  CAS  Google Scholar 

  76. Kergoat H, Lovasik JV, Bitton E (2002) Reduction in choroidal blood flow in the foveal and perifoveal area during dark adaptation. Invest Ophthalmol Vis Sci 49:E-Abstract 3300

    Google Scholar 

  77. Feke GT, Zuckerman R, Green GJ et al (1983) Response of human retinal blood flow to light and dark. Invest Ophthalmol Vis Sci 24:136–141

    PubMed  CAS  Google Scholar 

  78. Riva CE, Grunwald JE, Petrig BL (1983) Reactivity of the human retinal circulation to darkness: a laser Doppler velocimetry study. Invest Ophthalmol Vis Sci 24:737–740

    PubMed  CAS  Google Scholar 

  79. Formaz F, Riva CE, Geiser M (1997) Diffuse luminance flicker increases retinal vessel diameter in humans. Curr Eye Res 16:1252–1257

    Article  PubMed  CAS  Google Scholar 

  80. Falsini B, Riva CE, Logean E (2002) Flicker-evoked changes in human optic nerve blood flow: relationship with retinal neural activity. Invest Ophthalmol Vis Sci 43:2309–2316

    PubMed  Google Scholar 

  81. Michelson G, Patzelt A, Harazny J (2002) Flickering light increases retinal blood flow. Retina 22:336–343

    Article  PubMed  Google Scholar 

  82. Longo A, Geiser M, Riva CE (2000) Effect of light on choroidal blood flow in the fovea centralis. Klin Monatsbl Augenheilkd 216:311–312

    Article  PubMed  CAS  Google Scholar 

  83. Garhofer G, Huemer KH, Zawinka C et al (2002) Influence of diffuse luminance flicker on choroidal and optic nerve head blood flow. Curr Eye Res 24:109–113

    Article  PubMed  CAS  Google Scholar 

  84. Lovasik JV, Kergoat H, Wajszilber MA (2005) Blue flicker modifies the subfoveal choroidal blood flow in the human eye. Am J Physiol Heart Circ Physiol 289:H683–H691, Epub 2005 Apr 1

    Article  PubMed  CAS  Google Scholar 

  85. Ibrahim YW, Bots ML, Mulder PG et al (1998) Number of perifoveal vessels in aging, hypertension, and atherosclerosis: the Rotterdam study. Invest Ophthalmol Vis Sci 39:1049–1053

    PubMed  CAS  Google Scholar 

  86. Stanton AV, Wasan B, Cerutti A et al (1995) Vascular network changes in the retina with age and hypertension. J Hypertens 13:1724–1728

    Article  PubMed  CAS  Google Scholar 

  87. Ramrattan RS, van der Schaft TL, Mooy CM et al (1994) Morphometric analysis of Bruch’s membrane, the choriocapillaris, and the choroid in aging. Invest Ophthalmol Vis Sci 35:2857–2864

    PubMed  CAS  Google Scholar 

  88. Nuzzi R, Finazzo C, Grignolo FM (1996) Changes in adrenergic innervation of the choroid during aging. J Fr Ophtalmol 19:89–96

    PubMed  CAS  Google Scholar 

  89. Killingsworth MC (1987) Age-related components of Bruch’s membrane. Graefes Arch Clin Exp Ophthalmol 225:406–412

    Article  PubMed  CAS  Google Scholar 

  90. Curcio CA, Leigh Millican C, Bailey T et al (2001) Accumulation of cholesterol with age in human Bruch’s membrane. Invest Ophthalmol Vis Sci 42:265–274

    PubMed  CAS  Google Scholar 

  91. Moore DJ, Hussain AA, Marshall J (1995) Age-related variation in the hydraulic conductivity of Bruch’s membrane. Invest Ophthalmol Vis Sci 36:1290–1297

    PubMed  CAS  Google Scholar 

  92. Starita C, Hussain AA, Patmore A et al (1997) Localization of the site of major resistance to fluid transport in Bruch’s membrane. Invest Ophthalmol Vis Sci 38:762–767

    PubMed  CAS  Google Scholar 

  93. Polak K, Schmetterer L, Riva CE (2002) Influence of flicker frequency on flicker-induced changes of retinal vessel diameter. Invest Ophthalmol Vis Sci 43:2721–2726

    PubMed  Google Scholar 

  94. Nagel E, Vilser W (2004) Flicker observation light induces diameter response in retinal arterioles: a clinical methodological study. Br J Ophthalmol 88:54–56

    Article  PubMed  CAS  Google Scholar 

  95. Lovasik JV, Kergoat H, Boutin T, et al (2008) Retinal arterial constriction with aging may modulate vascular perfusion of the eye. Invest Ophthalmol Vis Sci 49:E-Abstract 2090

    Google Scholar 

  96. Kergoat H, Kergoat MJ, Justino L (2001) Age related changes in the flash electroretinogram and oscillatory potentials in individuals 75 years of age and older. J Am Geriatr Soc 49:1–6

    Article  Google Scholar 

  97. Justino L, Kergoat H, Kergoat MJ (2001) Changes in the retinocortical evoked potentials in subjects 75 years of age and older. Clin Neurophysiol 112:1343–1348

    Article  PubMed  CAS  Google Scholar 

  98. Lovasik JV, Kergoat MJ, Justino L et al (2003) Neuroretinal basis of visual impairment in the very elderly. Graefe’s Arch Clin Exp Ophthalmol 241:48–55

    Article  Google Scholar 

  99. Kergoat H, Kergoat MJ, Justino L et al (2001) Age-related topographical changes in the normal human optic nerve head measured by scanning laser tomography. Optom Vis Sci 78:431–435

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the NSERC, CIHR, FRSQ, and CFI for providing research funds needed to carry out the various projects reported in this chapter. We are particularly grateful for the expert research assistance provided by Mireille Parent throughout our studies in aging. We also acknowledge our research collaborators, the many research assistants and student research assistants that have worked in our labs and the graduate students who have made significant contributions to our research programs. We also thank Dr. Alain Savoie for his beautiful illustrations in Fig. 10.1. Finally, we extend our appreciation to Denis Latendresse, Micheline Gloin, Marc Melillo, Normand Lalonde, and François Vaillancourt for their expert help in graphic design, electronics, computing, and technical design throughout our research at the ÉOUM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John V. Lovasik O.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lovasik, J.V., Kergoat, H. (2012). Systemic Determinants. In: Schmetterer, L., Kiel, J. (eds) Ocular Blood Flow. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69469-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69469-4_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69468-7

  • Online ISBN: 978-3-540-69469-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics