Skip to main content

Use of Rapamycin in the Induction of Tolerogenic Dendritic Cells

  • Chapter
Dendritic Cells

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 188))

Abstract

Rapamycin (RAPA), a macrocyclic triene antibiotic pro-drug, is a clinically-utilized ‘tolerance-sparing’ immunosuppressant that inhibits the activity of T, B, and NK cells. Furthermore, maturation-resistance and tolerogenic properties of dendritic cells (DC) can be supported and preserved by conditioning with RAPA. Propagation of murine bone marrow (BM)-derived myeloid DC (mDC) in clinically relevant concentrations of RAPA (RAPA-DC) generates phenotypically immature DC with low levels of MHC and significantly reduced co-stimulatory molecules (especially CD86), even when exposed to inflammatory stimuli. RAPA-DC are weak stimulators of T cells and induce hyporesponsiveness and apoptosis in allo-reactive T cells. An interesting observation has been that RAPA-DC retain the ability to stimulate and enrich the regulatory T cells (Treg). Presumably as a result of these properties, alloantigen (alloAg)-pulsed recipient-derived DC are effective in subverting anti-allograft immune responses in rodent transplant models, making them an attractive subject for further investigation of their tolerance-promoting potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aagaard-Tillery KM, Jelinek DF (1994) Inhibition of human B lymphocyte cell cycle progression and differentiation by rapamycin. Cell Immunol 156:493–507

    Article  PubMed  CAS  Google Scholar 

  • Altman JK, Platanias LC (2008) Exploiting the mammalian target of rapamycin pathway in hematologic malignancies. Curr Opin Hematol 15:88–94

    Article  PubMed  CAS  Google Scholar 

  • Augustine JJ, Bodziak KA, Hricik DE (2007) Use of sirolimus in solid organ transplantation. Drugs 67:369–391

    Article  PubMed  CAS  Google Scholar 

  • Austyn JM, Hankins DF, Larsen CP, Morris PJ, Rao AS, Roake JA (1994) Isolation and characterization of dendritic cells from mouse heart and kidney. J Immunol 152:2401–2410

    PubMed  CAS  Google Scholar 

  • Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392: 245–252

    Article  PubMed  CAS  Google Scholar 

  • Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18:767–811

    Article  PubMed  CAS  Google Scholar 

  • Basu S, Golovina T, Mikheeva T, June CH, Riley JL (2008) Cutting edge: Foxp3-mediated induction of pim 2 allows human T regulatory cells to preferentially expand in rapamycin. J Immunol 180:5794–5798

    PubMed  CAS  Google Scholar 

  • Battaglia M, Stabilini A, Roncarolo MG (2005) Rapamycin selectively expands CD4+ CD25+ FoxP3+ regulatory T cells. Blood 105:4743–4748

    Article  PubMed  CAS  Google Scholar 

  • Battaglia M, Stabilini A, Draghici E, Gregori S, Mocchetti C, Bonifacio E, Roncarolo MG (2006a) Rapamycin and interleukin-10 treatment induces T regulatory type 1 cells that mediate antigen-specific transplantation tolerance. Diabetes 55:40–49

    Article  CAS  Google Scholar 

  • Battaglia M, Stabilini A, Draghici E, Migliavacca B, Gregori S, Bonifacio E, Roncarolo MG (2006b) Induction of tolerance in type 1 diabetes via both CD4 + CD25 + T regulatory cells and T regulatory type 1 cells. Diabetes 55:1571–1580

    Article  CAS  Google Scholar 

  • Battaglia M, Stabilini A, Migliavacca B, Horejs-Hoeck J, Kaupper T, Roncarolo MG (2006c) Rapamycin promotes expansion of functional CD4 +CD25 +FOXP3+ regulatory T cells of both healthy subjects and type 1 diabetic patients. J Immunol 177:8338–8347

    CAS  Google Scholar 

  • Blaha P, Bigenzahn S, Koporc Z, Schmid M, Langer F, Selzer E, Bergmeister H, Wrba F, Kurtz J, Kiss C, Roth E, Muehlbacher F, Sykes M, Wekerle T (2003) The influence of immunosuppressive drugs on tolerance induction through bone marrow transplantation with costimulation blockade. Blood 101:2886–2893

    Article  PubMed  CAS  Google Scholar 

  • Boratynska M, Watorek E, Smolska D, Patrzalek D, Klinger M (2007) Anticancer effect of sirolimus in renal allograft recipients with de novo malignancies. Transplant Proc 39:2736–2739

    Article  PubMed  CAS  Google Scholar 

  • Brint EK, Xu D, Liu H, Dunne A, McKenzie AN, O'Neill LA, Liew FY (2004) ST2 is an inhibitor of interleukin 1 receptor and Toll-like receptor 4 signaling and maintains endotoxin tolerance. Nat Immunol 5:373–379

    Article  PubMed  CAS  Google Scholar 

  • Bundick RV, Craggs RI, Holness E (1995) The effect of cyclosporin A, FK506, and rapamycin on the murine chronic graft-versus-host response—an in vivo model of Th2-like activity. Clin Exp Immunol 99:467–472

    PubMed  CAS  Google Scholar 

  • Chaussabel D, Banchereau J (2005) Dendritic cells, therapeutic vectors of immunity and tolerance. Am J Transplant 5:205–206

    Article  PubMed  Google Scholar 

  • Chou MM, Blenis J (1996) The 70 kDa S6 kinase complexes with and is activated by the Rho family G proteins Cdc42 and Rac1. Cell 85:573–583

    Article  PubMed  CAS  Google Scholar 

  • Coates PT, Thomson AW (2002) Dendritic cells, tolerance induction and transplant outcome. Am J Transplant 2:299–307

    Article  PubMed  CAS  Google Scholar 

  • Coates PT, Duncan FJ, Colvin BL, Wang Z, Zahorchak AF, Shufesky WJ, Morelli AE, Thomson AW (2004) In vivo-mobilized kidney dendritic cells are functionally immature, subvert alloreactive T-cell responses, and prolong organ allograft survival. Transplantation 77:1080–1089

    Article  PubMed  Google Scholar 

  • Coenen JJ, Koenen HJ, van Rijssen E, Hilbrands LB, Joosten I (2006) Rapamycin, and not cyclosporin A, preserves the highly suppressive CD27+ subset of human CD4+ CD25+ regulatory T cells. Blood 107:1018–1023

    Article  PubMed  CAS  Google Scholar 

  • Cutler C, Li S, Ho VT, Koreth J, Alyea E, Soiffer RJ, Antin JH (2007) Extended follow-up of methotrexate-free immunosuppression using sirolimus and tacrolimus in related and unrelated donor peripheral blood stem cell transplantation. Blood 109:3108–3114

    PubMed  CAS  Google Scholar 

  • Fehervari Z, Sakaguchi S (2004) Control of Foxp3 +CD25 +CD4+ regulatory cell activation and function by dendritic cells. Int Immunol 16:1769–1780

    Article  PubMed  CAS  Google Scholar 

  • Game DS, Hernandez-Fuentes MP, Lechler RI (2005) Everolimus and basiliximab permit suppression by human CD4 +CD25+ cells in vitro. Am J Transplant 5:454–464

    Article  PubMed  CAS  Google Scholar 

  • Gao W, Lu Y, El Essawy B, Oukka M, Kuchroo VK, Strom TB (2007) Contrasting effects of cyclosporine and rapamycin in de novo generation of alloantigen-specific regulatory T cells. Am J Transplant 7:1722–1732

    Article  PubMed  CAS  Google Scholar 

  • Groth CG, Backman L, Morales JM, Calne R, Kreis H, Lang P, Touraine JL, Claesson K, Campistol JM, Durand D, Wramner L, Brattstrom C, Charpentier B (1999) Sirolimus (rapamycin)-based therapy in human renal transplantation: similar efficacy and different toxicity compared with cyclosporine. Sirolimus European Renal Transplant Study Group. Transplantation 67:1036–1042

    Article  PubMed  CAS  Google Scholar 

  • Guba M, Yezhelyev M, Eichhorn ME, Schmid G, Ischenko I, Papyan A, Graeb C, Seeliger H, Geissler EK, Jauch KW, Bruns CJ (2005) Rapamycin induces tumor-specific thrombosis via tissue factor in the presence of VEGF. Blood 105:4463–4469

    Article  PubMed  CAS  Google Scholar 

  • Gurm HS, Boyden T, Welch KB (2008) Comparative safety and efficacy of a sirolimus-eluting versus paclitaxel-eluting stent: a meta-analysis. Am Heart J 155:630–639

    Article  PubMed  CAS  Google Scholar 

  • Hackstein H, Taner T, Logar AJ, Thomson AW (2002) Rapamycin inhibits macropinocytosis and mannose receptor-mediated endocytosis by bone marrow-derived dendritic cells. Blood 100:1084–1087

    Article  PubMed  CAS  Google Scholar 

  • Hackstein H, Taner T, Zahorchak AF, Morelli AE, Logar AJ, Gessner A, Thomson AW (2003) Rapamycin inhibits IL-4-induced dendritic cell maturation in vitro and dendritic cell mobilization and function in vivo. Blood 101:4457–4463

    Article  PubMed  CAS  Google Scholar 

  • Hartford CM, Ratain MJ (2007) Rapamycin: something old, something new, sometimes borrowed and now renewed. Clin Pharmacol Ther 82:381–388

    Article  PubMed  CAS  Google Scholar 

  • Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18:1926–1945

    Article  PubMed  CAS  Google Scholar 

  • Horibe EK, Sacks J, Unadkat J, Raimondi G, Wang Z, Ikeguchi R, Marsteller D, Ferreira LM, Thomson AW, Lee WP, Feili-Hariri M (2008) Rapamycin-conditioned, alloantigen-pulsed dendritic cells promote indefinite survival of vascularized skin allografts in association with T regulatory cell expansion. Transplant Immunol 18:307–318

    Article  CAS  Google Scholar 

  • Ikeguchi R, Sacks JM, Unadkat JV, Solari M, Horibe EK, Thomson AW, Lee AW, Feili-Hariri M (2008) Long-term survival of limb allografts induced by pharmacologically conditioned, donor alloantigen-pulsed dendritic cells without maintenance immunosuppression. Transplantation 85:237–246

    PubMed  CAS  Google Scholar 

  • Ikonen TS, Gummert JF, Hayase M, Honda Y, Hausen B, Christians U, Berry GJ, Yock PG, Morris RE (2000) Sirolimus (rapamycin) halts and reverses progression of allograft vascular disease in non-human primates. Transplantation 70:969–975

    Article  PubMed  CAS  Google Scholar 

  • Jensen PE (2007) Recent advances in antigen processing and presentation. Nature Immunol 8:1041–1048

    Article  CAS  Google Scholar 

  • Kahan BD, Camardo JS (2001) Rapamycin: clinical results and future opportunities. Transplantation 72:1181–1193

    Article  PubMed  CAS  Google Scholar 

  • Kahan BD, Julian BA, Pescovitz MD, Vanrenterghem Y, Neylan J (1999) Sirolimus reduces the incidence of acute rejection episodes despite lower cyclosporine doses in caucasian recipients of mismatched primary renal allografts: a phase II trial. Rapamune Study Group. Transplantation 68:1526–1532

    Article  PubMed  CAS  Google Scholar 

  • Kenna TJ, Thomas R, Steptoe RJ (2008) Steady-state dendritic cells expressing cognate antigen terminate memory CD8+ T-cell responses. Blood 111:2091–2100

    Article  PubMed  CAS  Google Scholar 

  • Kim HS, Raskova J, Degiannis D, Raska K, Jr. (1994) Effects of cyclosporine and rapamycin on immunoglobulin production by preactivated human B cells. Clin Exp Immunol 96:508–512

    Article  PubMed  CAS  Google Scholar 

  • Lai JH, Tan TH (1994) CD28 signaling causes a sustained down-regulation of I kappa B alpha which can be prevented by the immunosuppressant rapamycin. J Biol Chem 269:30077–30080

    PubMed  CAS  Google Scholar 

  • Larsen CP, Ritchie SC, Hendrix R, Linsley PS, Hathcock KS, Hodes RJ, Lowry RP, Pearson TC (1994) Regulation of immunostimulatory function and costimulatory molecule (B7–1 and B7–2) expression on murine dendritic cells. J Immunol 152:5208–5219

    PubMed  CAS  Google Scholar 

  • Lechler RI, Batchelor JR (1982) Restoration of immunogenicity to passenger cell-depleted kidney allografts by the addition of donor strain dendritic cells. J Exp Med 155:31–41

    Article  PubMed  CAS  Google Scholar 

  • Lechler RI, Ng WF, Steinman RM (2001) Dendritic cells in transplantation — friend or foe? Immunity 14:357–368

    Article  PubMed  CAS  Google Scholar 

  • Lee YR, Yang IH, Lee YH, Im SA, Song S, Li H, Han K, Kim K, Eo SK, Lee CK (2005) Cyclosporin A and tacrolimus, but not rapamycin, inhibit MHC-restricted antigen presentation pathways in dendritic cells. Blood 105:3951–3955

    Article  PubMed  CAS  Google Scholar 

  • Levings MK, Gregori S, Tresoldi E, Cazzaniga S, Bonini C, Roncarolo MG (2005) Differentiation of Tr1 cells by immature dendritic cells requires IL-10 but not CD25 +CD4+Tr cells. Blood 105:1162–1169

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Li XC, Zheng XX, Wells AD, Turka LA, Strom TB (1999) Blocking both signal 1 and signal 2 of T-cell activation prevents apoptosis of alloreactive T cells and induction of peripheral allograft tolerance. Nat Med 5:1298–1302

    Article  PubMed  CAS  Google Scholar 

  • Lotze MT, Thomson AW (eds) (2001) Dendritic cells: biology and clinical applications, 2nd edn. Academic Press, London, San Diego, pp. 1–794

    Google Scholar 

  • Lotze MT, Zeh HJ, Rubartelli A, Sparvero LJ, Amoscato AA, Washburn NR, Devera ME, Liang X, T√∂r M, Billiar T (2007) The grateful dead: damage-associated molecular pattern molecules and reduction/oxidation regulate immunity. Immunol Rev 220:60–81

    Article  PubMed  CAS  Google Scholar 

  • Lu L, Thomson AW (2001) Dendritic cell tolerogenicity and prospects for dendritic cell-based therapy of allograft rejection and autoimmune disease. In: Lotze MT, Thomson AW (eds) Dendritic cells, 2nd edn. Academic Press, San Diego, pp 587–607

    Google Scholar 

  • Lui S, Yung S, Tsang R, Zhang F, Chan K, Tam S, Chan T (2008) Rapamycin prevents the development of nephritis in lupus-prone NZB/W F1 mice. Lupus 17:305–313

    Article  PubMed  CAS  Google Scholar 

  • Luo H, Chen H, Daloze P, Chang JY, St-Louis G, Wu J (1992) Inhibition of in vitro immunoglobulin production by rapamycin. Transplantation 53:1071–1076

    Article  PubMed  CAS  Google Scholar 

  • MacDonald AS (2001) A worldwide, phase III, randomized, controlled, safety and efficacy study of a sirolimus/cyclosporine regimen for prevention of acute rejection in recipients of primary mismatched renal allografts. Transplantation 71:271–280

    Article  PubMed  CAS  Google Scholar 

  • Mancini D, Pinney S, Burkhoff D, LaManca J, Itescu S, Burke E, Edwards N, Oz M, Marks AR (2003) Use of rapamycin slows progression of cardiac transplantation vasculopathy. Circulation 108:48–53

    Article  PubMed  CAS  Google Scholar 

  • Meikle L, Pollizzi K, Egnor A, Kramvis I, Lane H, Sahin M, Kwiatkowski DJ (2008) Response of a neuronal model of tuberous sclerosis to mammalian target of rapamycin (mTOR) inhibitors: effects on mTORC1 and Akt signaling lead to improved survival and function. J Neurosci 28:5422–5432

    Article  PubMed  CAS  Google Scholar 

  • Mondino A, Mueller DL (2007) mTOR at the crossroads of T cell proliferation and tolerance. Semin Immunol 19:162–172

    Article  PubMed  CAS  Google Scholar 

  • Montaner S (2007) Akt/TSC/mTOR activation by the KSHV G protein-coupled receptor: emerging insights into the molecular oncogenesis and treatment of Kaposi's sarcoma. Cell Cycle (Georgetown, Tex) 6:438–443

    CAS  Google Scholar 

  • Monti P, Mercalli A, Leone BE, Valerio DC, Allavena P, Piemonti L (2003) Rapamycin impairs antigen uptake of human dendritic cells. Transplantation 75:137–145

    Article  PubMed  CAS  Google Scholar 

  • Morelli AE, Hackstein H, Thomson AW (2001) Potential of tolerogenic dendritic cells for transplantation. Semin Immunol 13:323–335

    Article  PubMed  CAS  Google Scholar 

  • Morelli AE, Thomson AW (2003) Dendritic cells: regulators of alloimmunity and opportunities for tolerance induction. Immunol Rev 196:125–146

    Article  PubMed  CAS  Google Scholar 

  • Morelli AE, Thomson AW (2007) Tolerogenic dendritic cells and the quest for transplant tolerance. Nat Rev Immunol 7:610–621

    Article  PubMed  CAS  Google Scholar 

  • Obar H, Nagasaki K, Hsieh CL, Ogura Y, Esquivel CO, Martinez OM, Krams SM (2005) IFN-gamma, produced by NK cells that infiltrate liver allografts early after transplantation, links the innate and adaptive immune responses. Am J Transplant 5:2094–2103

    Article  CAS  Google Scholar 

  • Ohtani M, Nagai S, Kondo S, Mizuno S, Nakamura K, Tanabe M, Takeuchi T, Matsuda S, Koyasu S (2008) mTOR and GSK3 differentially regulate LPS-induced IL-12 production in dendritic cells. Blood:43

    Google Scholar 

  • Pearl JP, Parris J, Hale DA, Hoffmann SC, Bernstein WB, McCoy KL, Swanson SJ, Mannon RB, Roederer M, Kirk AD (2005) Immunocompetent T-cells with a memory-like phenotype are the dominant cell type following antibody-mediated T-cell depletion. Am J Transplant 5:465–474

    PubMed  CAS  Google Scholar 

  • Raught B, Gingras AC, Sonenberg N (2001) The target of rapamycin (TOR) proteins. Proc Natl Acad Sci USA 98:7037–7044

    Article  PubMed  CAS  Google Scholar 

  • Rigol M, Solanes N, Sionis A, Galvez C, Martorell J, Rojo I, Brunet M, Ramirez J, Roque M, Roig E, Perez-Villa F, Barquin L, Pomar JL, Sanz G, Heras M (2008) Effects of cyclosporine, tacrolimus and sirolimus on vascular changes related to immune response. J Heart Lung Transplant 27:416–422

    Article  PubMed  Google Scholar 

  • Ruggenenti P, Perico N, Gotti E, Cravedi P, D'Agati V, Gagliardini E, Abbate M, Gaspari F, Cattaneo D, Noris M, Casiraghi F, Todeschini M, Cugini D, Conti S, Remuzzi G (2007) Sirolimus versus cyclosporine therapy increases circulating regulatory T cells, but does not protect renal transplant patients given alemtuzumab induction from chronic allograft injury. Transplantation 84:956–964

    PubMed  CAS  Google Scholar 

  • Sallusto F, Schaerli P, Loetscher P, Schaniel C, Lenig D, Mackay CR, Qin S, Lanzavecchia A (1998) Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. Eur J Immunol 28:2760–2769

    Article  PubMed  CAS  Google Scholar 

  • Saunders RN, Metcalfe MS, Nicholson ML (2001) Rapamycin in transplantation: a review of the evidence. Kidney Int 59:3–16

    Article  PubMed  CAS  Google Scholar 

  • Sehgal SN (1998) Rapamune (RAPA, rapamycin, sirolimus): mechanism of action immunosuppressive effect results from blockade of signal transduction and inhibition of cell cycle progression. Clin Biochem 31:335–340

    Article  PubMed  CAS  Google Scholar 

  • Sehgal SN (2003) Sirolimus: its discovery, biological properties, and mechanism of action. Transplant Proc 35:7S–14S

    Article  PubMed  CAS  Google Scholar 

  • Sordi V, Bianchi G, Buracchi C, Mercalli A, Marchesi F, D'Amico G, Yang CH, Luini W, Vecchi A, Mantovani A, Allavena P, Piemonti L (2006) Differential effects of immunosuppressive drugs on chemokine receptor CCR7 in human monocyte-derived dendritic cells: selective upregulation by rapamycin. Transplantation 82:826–834

    Article  PubMed  CAS  Google Scholar 

  • Steinman RM, Hawiger D, Nussenzweig MC (2003) Tolerogenic dendritic cells. Annu Rev Immunol 21:685–711

    Article  PubMed  CAS  Google Scholar 

  • Taner T, Hackstein H, Wang Z, Morelli AE, Thomson AW (2005) Rapamycin-treated, alloantigen-pulsed host dendritic cells induce Ag-specific T cell regulation and prolong graft survival. Am J Transplant 5:228–236

    Article  PubMed  CAS  Google Scholar 

  • Thomson AW, Lu L (1999) Are dendritic cells the key to liver transplant tolerance? Immunol Today 20:27–32

    Article  PubMed  CAS  Google Scholar 

  • Turnquist HR, Raimondi G, Zahorchak AF, Fischer RT, Wang Z, Thomson AW (2007) Rapamycin-conditioned dendritic cells are poor stimulators of allogeneic CD4+ T cells, but enrich for antigen-specific Foxp3+ T regulatory cells and promote organ transplant tolerance. J Immunol 178:7018–7031

    PubMed  CAS  Google Scholar 

  • Turnquist H, Sumpter T, Tsung A, Zahorchak Z, Nakao A, Nau J, Liew F, Geller D, Thomson A (2008) IL-1beta-driven ST2L expression promotes maturation resistance in rapamycin-conditioned dendritic cells. J Immunol 181:62–72

    PubMed  CAS  Google Scholar 

  • Ueno H, Klechevsky E, Morita R, Aspord C, Cao T, Matsui T, Di Pucchio T, Connolly J, Fay JW, Pascual V, Palucka AK, Banchereau J (2007) Dendritic cell subsets in health and disease. Immunolo Rev 219:118–142

    Article  CAS  Google Scholar 

  • Uss E, Yong SL, Hooibrink B, van Lier RA, ten Berge IJ (2007) Rapamycin enhances the number of alloantigen-induced human CD103 +CD8+ regulatory T cells in vitro. Transplantation 83:1098–1106

    Article  PubMed  CAS  Google Scholar 

  • Vogelsang GB, Hess AD (1993) Rapamycin effects on immunologic reconstitution. Transplant Proc 25:727–728

    PubMed  CAS  Google Scholar 

  • Wai LE, Fujiki M, Takeda S, Martinez OM, Krams SM (2008) Rapamycin, but not cyclosporine or FK506, alters natural killer cell function. Transplantation 85:145–149

    PubMed  CAS  Google Scholar 

  • Walsh PT, Taylor DK, Turka LA (2004) Tregs and transplantation tolerance. J Clin Invest 114:1398–1403

    PubMed  CAS  Google Scholar 

  • Wasowska B, Wieder KJ, Hancock WW, Zheng XX, Berse B, Binder J, Strom TB, Kupiec-Weglinski JW (1996) Cytokine and alloantibody networks in long term cardiac allografts in rat recipients treated with rapamycin. J Immunol 156:395–404

    PubMed  CAS  Google Scholar 

  • Wells AD, Li XC, Li Y, Walsh MC, Zheng XX, Wu Z, Nunez G, Tang A, Sayegh M, Hancock WW, Strom TB, Turka LA (1999) Requirement for T-cell apoptosis in the induction of peripheral transplantation tolerance. Nat Med 5:1303–1307

    Article  PubMed  CAS  Google Scholar 

  • Woltman AM, van der Kooij SW, Coffer PJ, Offringa R, Daha MR, van Kooten C (2003) Rapamycin specifically interferes with GM-CSF signaling in human dendritic cells, leading to apoptosis via increased p27KIP1 expression. Blood 101:1439–1445

    Article  PubMed  CAS  Google Scholar 

  • Woo J, Lu L, Rao AS, Li Y, Subbotin V, Starzl TE, Thomson AW (1994) Isolation, phenotype, and allostimulatory activity of mouse liver dendritic cells. Transplantation 58:484–491

    Article  PubMed  CAS  Google Scholar 

  • Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124:471–484

    Article  PubMed  CAS  Google Scholar 

  • Zahorchak AF, Kean LS, Tokita D, Turnquist HR, Abe M, Finke J, Hamby K, Rigby MR, Larsen CP, Thomson AW (2007) Infusion of stably immature monocyte-derived dendritic cells plus CTLA4Ig modulates alloimmune reactivity in rhesus macaques. Transplantation 84:196–206

    Article  PubMed  CAS  Google Scholar 

  • Zeng LH, Xu L, Gutmann DH, Wong M (2008) Rapamycin prevents epilepsy in a mouse model of tuberous sclerosis complex. Ann Neurol 63:444–453

    Article  PubMed  CAS  Google Scholar 

  • Zheng Y, Zha Y, Gajewski T (2008) Molecular regulation of T-cell anergy. EMBO reports 9:50–55

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angus W. Thomson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fischer, R., Turnquist, H.R., Taner, T., Thomson, A.W. (2009). Use of Rapamycin in the Induction of Tolerogenic Dendritic Cells. In: Lombardi, G., Riffo-Vasquez, Y. (eds) Dendritic Cells. Handbook of Experimental Pharmacology, vol 188. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71029-5_10

Download citation

Publish with us

Policies and ethics