Skip to main content

Structural Determinants of Functional Brain Dynamics

  • Chapter
Handbook of Brain Connectivity

Part of the book series: Understanding Complex Systems ((UCS))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achard, S, Salvador, R, Whitcher, B, Suckling, J, Bullmore, E (2006) A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci 26, 63–72

    Google Scholar 

  • Albert, R, Jeong, H, Barabási, A-L (2000) Error and attack tolerance of complex networks. Nature 406, 378–382

    Google Scholar 

  • Albert, R, Barabási, A-L (2002) Statistical mechanics of complex networks. Rev Mod Phys 74, 47–97

    MATH  Google Scholar 

  • Amaral, LAN, Scala, A, Barthelemy, M, Stanley, HE (2000) Classes of small-world networks. Proc Natl Acad Sci USA 97, 11149–11152

    Google Scholar 

  • Amaral, LAN, Ottino, JM (2004) Complex networks. Eur Phys J B 38, 147–162

    Google Scholar 

  • Angelucci, A, Lebitt, JB, Walton, EJS, Hipe, J-M, Bullier, J, Lund, JS (2002) Circuits for local and global signal integrationin primary visual cortex. J Neurosci 22, 8633–8646

    Google Scholar 

  • Assisi, CG, Jirsa, VK, Kelso, JAS (2005) Synchrony and clusteringin heterogeneous networks with global coupling and parameterdispersion. Phys Rev Lett 94, 018106

    Google Scholar 

  • Bang-Jensen, J, Gutin, G (2001) Digraphs: Theory, Algorithmsand Applications. Springer: London etc.

    Google Scholar 

  • Barabasi, A, Albert, R. (1999) Emergence of scaling in randomnet works. Science 286, 509–512

    MathSciNet  Google Scholar 

  • Barrat, A, Barthelemy, M, Pastor-Satorras, R, Vespigniani, A (2004a) The architecture of complex weighted networks. Proc NatlAcad USA 101, 3747–3752

    Google Scholar 

  • Barrat, A, Barthelemy, M, Vespignani, A (2004b) Weighted evolvingnet works: coupling topology and weight dynamics. Phys Rev Lett 92, 228701

    Google Scholar 

  • Bassett, DS, Bullmore, E. (2006) Small-world brain networks. Neuroscientist 12, 512–523.

    Google Scholar 

  • Beggs, JM, Plenz, D (2003) Neuronal avalanches in neocortical circuits. J Neurosci 23, 11167–11177

    Google Scholar 

  • Bernasconi, C, König, P (1999) On the directionality of cortical interactions studied by structural analysis of electrophysiological recordings. Biol Cybern 81, 199–210

    MATH  Google Scholar 

  • Breakspear, M, Stam, CJ (2005) Dynamics of a neural system with a multiscale architecture. Phil Trans R Soc B 360, 1051–1074

    Google Scholar 

  • Breakspear, M, Sporns, O, Temby, K, Aquino, K, Van Leeuwan, C (2006) Symbiotic relationship between neuronal dynamics and brainarchitectures. (in preparation).

    Google Scholar 

  • Bressler, SL (1995) Large-scale cortical networks and cognition. Brain Res Rev 20, 288–304

    Google Scholar 

  • Bressler, SL, and Kelso, JAS (2001) Cortical coordination dynamicsand cognition. Trends Cogn Sci 5, 26–36

    Google Scholar 

  • Bressler, SL, McIntosh, AR (2007) The role of context inlarge-scale neurocognitive network operations. (this volume)

    Google Scholar 

  • Brodmann, K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. J.A. Barth, Leipzig.

    Google Scholar 

  • Brovelli, A, Ding, M, Ledberg, A, Chen, Y, Nakamura, R, Bressler, SL (2004) Beta oscillations in a large-scale sensorimotor cortical network: Directional influences revealed by Granger causality. Proc Natl Acad Sci USA 101, 9849–9854

    Google Scholar 

  • Büchel, C, Friston, KJ (2000) Assessing interactions among neuronal systems using functional neuroimaging. Neural Netw 13, 871–882

    Google Scholar 

  • Buzsaki, G, Geisler, C, Henze, DA, Wang, XJ (2004) Interneuron diversity series: Circuit complexity and axon wiring economy of cortical interneurons. Trends Neurosci 27, 186–193

    Google Scholar 

  • Cajal, SR (1909) Histologie du système nerveux de l’homme et des vertebras. Maloine, Paris.

    Google Scholar 

  • Chartrand, G, Lesniak, L (1996) Graphs and Digraphs. Chapman and Hall, Boca Raton.

    MATH  Google Scholar 

  • Cover TM, Thomas JA: Elements of information theory. New York:Wiley; 1991.

    MATH  Google Scholar 

  • Da F. Costa, L (2004) The hierarchical backbone of complex networks. Phys Rev Lett 93, 098702

    Google Scholar 

  • Da F. Costa, L, Sporns, O (2005) Hierarchical features oflarge-scale cortical connectivity. Eur J Phys B 48, 567–573

    Google Scholar 

  • Darvas, F, Leahy, RM (2007) Functional imaging of brain activity and connectivity with MEG. (this volume)

    Google Scholar 

  • De Lucia, M, Bottaccio, M, Montuori, M, Pietronero, L (2005) Topological approach to neural complexity. Phys Rev E 71, 016114

    MathSciNet  Google Scholar 

  • Dodel, S, Herrmann, JM, Geisel, T (2002) Functional connectivity by cross-correlation clustering. Neurocomp 44, 1065–1070

    Google Scholar 

  • Douglas, R, Martin, K (1991) A functional microcircuit for cat visual cortex. J Physiol (Lond.) 440, 735–769

    Google Scholar 

  • Doyle, JC, Alderson, DL, Li, L, Low, S, Roughan, M, Shalmov, S, Tanaka, R, Willinger, W (2005) The “robust yet fragile” nature of the internet. Proc Natl Acad Sci USA 102, 14497–14502

    Google Scholar 

  • Eguiluz, VM, Chialvo, DR, Cecchi, GA, Baliki, M, Apkarian, AV (2005) Scale-free brain functional networks. Phys Rev Lett 94, 018102

    Google Scholar 

  • Eichler, M (2005) A graphical approach for evaluating effective connectivity in neural systems. Phil Trans R Soc B 360, 953–967

    Google Scholar 

  • Felleman, DJ, and Van Essen, DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1, 1–47

    Google Scholar 

  • Ferree, TC, Nunez, PL (2007) Primer on electroencephalography for functional connectivity. (this volume)

    Google Scholar 

  • Friston, KJ (1993) Functional connectivity: theprincipal-component analysis of large (PET) data sets. J Cereb Blood Flow Metab 13, 5–14

    Google Scholar 

  • Friston, KJ (1994) Functional and effective connectivity in neuroimaging: A synthesis. Hum Brain Mapping 2, 56–78

    Google Scholar 

  • Friston, KJ (2002) Beyond phrenology: what can neuroimaging tellus about distributed circuitry? Annu Rev Neurosci 25, 221–250

    Google Scholar 

  • Friston, KJ, Harrison, L, Penny, W (2003) Dynamic causal modelling. Neuroimage 19, 1273–1302

    Google Scholar 

  • Friston, KJ (2005) Models of brain function in neuroimaging. Annu Rev Psychol 56, 57–87

    Google Scholar 

  • Gilbert CD, Wiesel TN (1989) Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex. J Neurosci 9, 2432–2442.

    Google Scholar 

  • Granger, CWJ (1969) Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37, 424–438

    Google Scholar 

  • Gong, P, van Leeuwen, C (2004) Evolution to a small-world network with chaotic units. Europhys Lett 67, 328–333

    Google Scholar 

  • Kaiser, M, Hilgetag, CC (2004) Edge vulnerability in neural and metabolic networks. Biol Cybern 90, 311–317

    MATH  Google Scholar 

  • Kaiser, M, Hilgetag, CC (2006) Nonoptimal component placement, but short processing paths, due to long-distance projections in neuralsystems. PLoS Comput Biol 2, e95.

    Google Scholar 

  • Kaminski, M, Ding, M, Truccolo, WA, Bressler, SL (2001) Evaluating causal relations in neural systems: Granger causality, directed transfer function and statistical assessment of significance. Biol Cybern 85, 145–157

    MATH  Google Scholar 

  • Keinan, A, Sandbank, B, Hilgetag, C, Neilijson, I, Ruppin, E (2004) Fair attribution of functional contribution in artificialand biological networks. Neural Comput 16, 1889–1915

    Google Scholar 

  • Kötter, R, Stephan, KE (2003) Network participation indices:Characterizing component roles for information processing inneural networks. Neural Netw 16, 1261–1275

    Google Scholar 

  • Haldeman, C, Beggs, JM (2005) Critical branching captures activityin living neural networks and maximizes the number of metastable states. Phys Rev Lett 94, 058101

    Google Scholar 

  • Harary, F (1969) Graph Theory. Addison-Wesley, Reading, MA.

    Google Scholar 

  • Hilgetag, CC, Burns, GA, O’Neill, MA, Scannell, JW, Young, MP (2000) Anatomical connectivity defines the organization of clusters of cortical areas in the macaque monkey and the cat. Philos Trans R Soc Lond B Biol Sci 355, 91–110

    Google Scholar 

  • Hilgetag, CC, Kötter, R, Stephan, KE, Sporns, O (2002) Computational methods for the analysis of brain connectivity, In:Computational Neuroanatomy – Principles and Methods, (Ascoli,G.A. Ed.) Humana Press, pp. 295–335.

    Google Scholar 

  • Horwitz, B, Tagamets, M-A, McIntosh, AR (1999) Neural modeling,functional brain imaging, and cognition. Trends Cogn Sci 3, 91–98

    Google Scholar 

  • Horwitz B (2003) The elusive concept of brain connectivity. Neuroimage 19, 466–470.

    Google Scholar 

  • Humphries, MD, Gurney, K, Prescott, TJ (2006) The brainstem reticular formation is a small-world, not scale-free, network.Proc Roy Soc B Biol Sci. DOI:10.1098/rspb.2005.3354.

    Google Scholar 

  • Jirsa, VK, Kelso, JAS. (2000) Spatiotemporal pattern formation incontinuous systems with heterogeneous connection topologies, Phys Rev E 62, 6, 8462–8465

    Google Scholar 

  • Jirsa, VK (2004) Connectivity and dynamics of neural information processing. Neuroinformatics 2, 183–204

    Google Scholar 

  • Kötter, R, Stephan, KE (2003) Network participation indices:Characterizing component roles for information processing inneural networks. Neural Netw 16, 1261–1275

    Google Scholar 

  • Lee, L, Harrison, LM, Mechelli, A (2003) A report of the functional connectivity workshop, Dusseldorf 2002. NeuroImage 19, 457–465

    Google Scholar 

  • Liang, H, Ding, M, Nakamura, R, Bressler, SL (2000) Causal influences in primate cerebral cortex during visual pattern discrimination. Neuroreport 11, 2875–2880

    Google Scholar 

  • Lungarella, M, Ishiguro, K, Kuniyoshi, Y, Otsu, N (2007) . Methods for quantifying the causal structure of bivariate time series.Int. J. of Bifurcation and Chaos (in press)

    Google Scholar 

  • Massimi, M, Ferrarelli, F, Huber, R, Esser, SK, Singh, H, Tononi,G (2005) Breakdown of cortical effective connectivity during sleep. Science 309, 2228–2232

    Google Scholar 

  • Masuda, N, Aihara, K (2004) Global and local synchrony of coupled neurons in small-world networks. Biol Cybern 90, 302–309

    MATH  Google Scholar 

  • McGill, W (1954) Multivariate information transmission. Psychometrika 19, 97–116

    MATH  Google Scholar 

  • McIntosh, AR, Gonzalez-Lima, F (1994) Structural equation modelingand its application to network analysis in functional brainimaging. Hum Brain Mapping 2, 2–22

    Google Scholar 

  • McIntosh, AR, Rajah, MN, Lobaugh, NJ (1999) Interactions of prefrontal cortex in relation to awareness in sensory learning. Science 284, 1531–1533

    Google Scholar 

  • McIntosh, AR (1999) Mapping cognition to the brain through neural interactions. Memory 7, 523–548

    Google Scholar 

  • McIntosh AR (2000) Towards a network theory of cognition. Neural Netw 13, 861–870

    Google Scholar 

  • McIntosh AR, Rajah MN, Lobaugh NJ (2003) Functional connectivity of the medial temporal lobe relates to learning and awareness. J Neurosci 23, 6520–6528

    Google Scholar 

  • Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298, 824–827

    Google Scholar 

  • Milo, R, Itzkovitz, S, Kashtan, N, Levitt, R, Shen-Orr, S, Ayzenshtat, I, Sheffer, M, Alon, U (2004) Superfamilies of evolvedand designed networks. Science 303, 1538–1542

    Google Scholar 

  • Mountcastle, VB (1978) An organizing principle for cerebral function. In: The Mindful Brain, Edelman, G.M. and Mountcastle,V.B. (eds.), pp. 7–50, MIT Press, Cambridge.

    Google Scholar 

  • Mountcastle, VB (1997) The columnar organization of the neocortex. Brain 120, 701–722

    Google Scholar 

  • Munk, MH, Linden, DE, Muckli, L, Lanfermann, H, Zanella, FE, Singer, W, Goebel, R (2002) Distributed cortical systems in visualshort-term memory revealed by event-related functional magneticresonance imaging. Cereb Cortex 12, 866–876

    Google Scholar 

  • Netoff, TI, Clewley, R, Arno, S, Keck, T, White, JA (2004) Epilepsy in small-world networks. J. Neurosci. 24, 8075–8083

    Google Scholar 

  • Newman, MEJ (2003) The structure and function of complex networks. SIAM Rev 45, 167–256

    MATH  MathSciNet  Google Scholar 

  • Nishikawa T, Motter AE, Lai YC, Hoppensteadt FC (2003) Heterogeneity in oscillator networks: are smaller worlds easier tosynchronize? Phys Rev Lett 91, 014101

    Google Scholar 

  • Onnela, J-P, Saramaki, J, Kertesz, Kaski, K (2005) Intensity andcoherence of motifs in weighted complex networks. Phys. Rev. E 71, 065103

    Google Scholar 

  • Paninski, L (2003) Estimation of entropy and mutual information. Neural Comput 15, 1191–1254

    MATH  Google Scholar 

  • Papoulis, A (1991) Probability, Random Variables, and Stochastic Processes. McGraw-Hill, New York.

    Google Scholar 

  • Passingham, RE, Stephan, KE, Kötter, R (2002) The anatomicalbasis of functional localization in the cortex. Nature Rev Neurosci 3, 606–616

    Google Scholar 

  • Pascual-Leone A, Walsh V, Rothwell J (2000) Transcranial magnetic stimulation in cognitive neuroscience – virtual lesion,chronometry, and functional connectivity. Curr Opin Neurobiol 10, 232–237

    Google Scholar 

  • Paus T (1999) Imaging the brain before, during, and after transcranial magnetic stimulation. Neuropsychologia 37, 219–224

    Google Scholar 

  • Phillips, CG, Barlow, HB, Zeki, S (1984) Localization of functionin the cerebral cortex: past, present and future. Brain 107, 327–361

    Google Scholar 

  • Pola, G, Thiele, A, Hoffman, K-P, Panzeri, S (2003) An exactmethod to quantify the information transmitted by different mechanisms of correlational encoding. Network Comput Neural Syst 14, 35–60

    Google Scholar 

  • Prill, RJ, Iglesias, PA, Levchenko, A (2005) Dynamic properties of network motifs contribute to biological network organization. PLoSBiol. 3, e343

    Google Scholar 

  • Psujek, S, Ames, J, Beer, RD (2006) Connection and coordination:The interplay between architecture and dynamics in evolved modelpattern generators. Neural Comput 18, 729–747

    MATH  Google Scholar 

  • Puchalla, JL, Schneidman, E, Harris, RA, Berry, MJ (2005) Redundancy in the population code of the retina. Neuron 46, 493–504

    Google Scholar 

  • Roebroeck, A, Formisano, E, Goebel, R (2005) Mapping directedinfluence over the brain using Granger causality and fMRI. NeuroImage 25, 230–242

    Google Scholar 

  • Roelfsema, PR, Engel, AK, König, P, Singer, W (1997) Visuomotor integration is associated with zero time-lagsynchronization among cortical areas. Nature 385, 157–161

    Google Scholar 

  • Roxin A, Riecke H, Solla SA (2004) Self-sustained activity in asmall-world network of excitable neurons. Phys Rev Lett 92, 198101

    Google Scholar 

  • Salin, P-A, Bullier, J (1995) Corticocortical connections in thevisual system: Structrue and function. Physiol Rev 75, 107–154

    Google Scholar 

  • Salvador, R, Suckling, J, Schwarzbauer, C, Bullmore, E (2005a) Undirected graphs of frequency-dependent functional connectivityin whole brain networks. Phil Trans R Soc B 360, 937–946

    Google Scholar 

  • Salvador, R, Suckling, J, Coleman, M, Pickard, JD, Menon, DK, Bullmore, ET (2005b) Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb Cortex 15, 1332–1342

    Google Scholar 

  • Salvador, R, Achard, S, Bullmore, E (2007) Frequency-dependentfunctional connectivity analysis of fMRI data in Fourier andwavelet domains. (this volume)

    Google Scholar 

  • Scannell, JW, Burns, GAPC, Hilgetag, CC, O’Neil, MA, Young, MP (1999) The connectional organization of the cortico-thalamic system of the cat. Cereb. Cortex 9, 277–299

    Google Scholar 

  • Schneidman, E, Still, S, Berry, MJ, Bialek, W (2003) Network information and connected correlations. Phys. Rev. Lett. 91, 238701

    Google Scholar 

  • Schneidman, E, Bialek, W, and Berry, MJ (2003) Synergy,redundancy, and independence in population codes. J. Neurosci. 23, 11539–11553

    Google Scholar 

  • Schreiber, T (2000) Measuring information transfer. Phys Rev Lett85, 461–464

    Google Scholar 

  • Seth, A, Edelman, GM (2004) Environment and behavior influencethe complexity of evolved neural networks. Adapt Behavior 12, 5–20

    Google Scholar 

  • Seth, AK (2005) Causal connectivity analysis of evolved neural networks during behavior. Network Comput Neural Systems, 16, 35–54

    Google Scholar 

  • Shipp, S, Zeki, S (1985) Segregation of pathways leading from areaV2 to areas V4 and V5 of macaque monkey visual cortex. Nature 315, 322–325

    Google Scholar 

  • Song, S, Sjöström, PJ, Reigl, M, Nelson, S, Chklovskii, DB(2005) Highly nonrandom features of synaptic connectivity in localcortical circuits. PLoS Biology 3, e68

    Google Scholar 

  • Sporns, O, Tononi, G, Edelman, GM (2000a) Theoretical neuroanatomy: Relating anatomical and functional connectivity ingraphs and cortical connection matrices. Cereb. Cortex 10, 127–141

    Google Scholar 

  • Sporns, O, Tononi, G, Edelman, G (2000b) Connectivity and complexity: the relationship between neuroanatomy and braindynamics. Neural Netw 13, 909–922

    Google Scholar 

  • Sporns, O., Tononi, G (2002) Classes of network connectivity and dynamics. Complexity 7, 28–38

    MathSciNet  Google Scholar 

  • Sporns, O (2002) Graph theory methods for the analysis of neural connectivity patterns. Kötter, R. (ed.) NeuroscienceDatabases. A Practical Guide, pp. 171–186, Klüwer,Boston, MA.

    Google Scholar 

  • Sporns, O, Zwi, J (2004) The small world of the cerebral cortex. Neuro informatics 2, 145–162

    Google Scholar 

  • Sporns, O (2004) Complex neural dynamics. In: Coordination Dynamics: Issues and Trends, Jirsa, V.K. and Kelso, J.A.S.,(eds.), pp. 197–215, Springer-Verlag, Berlin.

    Google Scholar 

  • Sporns, O, Kötter, R (2004) Motifs in brain networks. PLoS Biology 2, 1910–1918

    Google Scholar 

  • Sporns, O, Chialvo, D, Kaiser, M, Hilgetag, CC (2004) Organization, development and function of complex brain networks. Trends Cogn Sci 8, 418–425

    Google Scholar 

  • Sporns, O (2005) Principles and methods in the analysis of brainnetworks. In: Reeke, G.N., Poznanski, R.R., Lindsay, K.A., Rosenberg, J.R. and Sporns, O. (eds.) Modeling in the Neurosciences. From Biological Systems to Neuromimetic Robotics, 2nd edition, pp. 599–612, CRC Press, Boca Raton.

    Google Scholar 

  • Sporns, O, Tononi, G, Kötter, R (2005) The human connectome: Astructural description of the human brain. PLoS Comput. Biol. 1, 245–251

    Google Scholar 

  • Sporns, O (2006) Small-world connectivity, motif composition, and complexity of fractal neuronal connections. BioSystems 85, 55–64

    Google Scholar 

  • Srinivasan, R, Russell, DP, Edelman, GM, Tononi, G (1999) Increased synchronization of neuromagnetic responses during conscious perception. J Neurosci 19, 5435–5448

    Google Scholar 

  • Stam, CJ (2004) Functional connectivity patterns of human magnetoencephalographic recordings: A ‘small-world’ network? Neurosci Lett 355, 25–28

    Google Scholar 

  • Stephan, KE, Friston, KL (2007) Models of effective connectivityin neural systems. (this volume)

    Google Scholar 

  • Striedter, GF (2005) Principles of Brain Evolution. Sinauer,Sunderland, MA.

    Google Scholar 

  • Strogatz, SH (2001) Exploring complex networks. Nature 410, 268–277

    Google Scholar 

  • Swanson, LW (2003) Brain Architecture. Oxford University Press,Oxford.

    Google Scholar 

  • Tanigawa, H, Wang, Q, Fuujita, I (2005) Organization of horizontalaxons in the inferior temporal cortex and primary visual cortex ofthe macaque. Cereb Cortex 15, 1887–1899

    Google Scholar 

  • Tononi, G, Sporns, O, Edelman, GM (1994) A measure for brain complexity: relating functional segregation and integration in thenervous system. Proc Natl Acad Sci USA 91, 5033–5037

    Google Scholar 

  • Tononi, G, Edelman, GM (1998) Consciousness and complexity. Science 282, 1846–1851

    Google Scholar 

  • Tononi, G, Edelman, GM, Sporns, O (1998a) Complexity andcoherency: Integrating information in the brain. Trends Cogn Sci 2, 474–484

    Google Scholar 

  • Tononi, G, McIntosh, AR, Russell, DP, Edelman, GM (1998b) Functional clustering: Identifying strongly interactive brainregions in neuroimaging data. Neuroimage 7, 133–149

    Google Scholar 

  • Tononi, G, Sporns, O, Edelman, GM (1999) Measures of degeneracyand redundancy in biological networks. Proc Natl Acad Sci USA 96, 3257–3262

    Google Scholar 

  • Tononi, G (2001) Information measures for conscious experience. Arch Ital Biol 139, 367–371

    Google Scholar 

  • Tononi, G, Sporns, O (2003) Measuring information integration. BMC Neuroscience 4, 31

    Google Scholar 

  • Tononi G (2004) An information integration theory of consciousness. BMC Neuroscience, 5, 42

    Google Scholar 

  • Ungerleider, LG, Mishkin, M (1982) . Two cortical visual systems.in Analysis of visual behaviour, Ingle, D. G., Goodale, M. A. and Mansfield, R. J. Q., ed., MIT Press, Cambridge, MA, pp. 549–586

    Google Scholar 

  • Van Essen, DC, Maunsell, JHR (1983) Hierarchical organization and functional streams in the visual cortex. Trends Neurosci 6, 370–375

    Google Scholar 

  • Varela F, Lachaux JP, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. NatRev Neurosci 2, 229–239

    Google Scholar 

  • Vickerstaff, R, Di Paolo, EA (2005) Evolving neural models of pathintegration. J Exp Biol 208, 3349–3366

    Google Scholar 

  • Von Stein, A, Rappelsberger, P, Sarntheim, J, Petsche, H (1999) Synchronization between temporal and parietal cortex during multimodal object processing in man. Cereb Cortex 9, 137–150

    Google Scholar 

  • Watts, DJ, Strogatz, SH (1998) Collective dynamics of‘small-world’ networks. Nature 393, 440–442

    Google Scholar 

  • Watts, DJ (1999) Small Worlds. Princeton University Press,Princeton, NJ.

    Google Scholar 

  • Watts, DJ (2003) Six Degrees. The Science of a Connected Age. W.W.Norton, New York.

    Google Scholar 

  • Yaeger, L, Sporns, O (2006) Evolution of neural structure and complexity in a computational ecology. In Rocha, L. et al. (eds.)Artificial Life X. Cambridge, MA: MIT Press (in press)

    Google Scholar 

  • Young, MP (1993) The organization of neural systems in the primate cerebral cortex. Proc R Soc Lond B 252, 13–18

    Google Scholar 

  • Zeki, S, Shipp, S (1988) The functional logic of cortical connections. Nature 335, 311–317

    Google Scholar 

  • Zeki, S (1993) A Vision of the Brain. Blackwell, London

    Google Scholar 

  • Zhigulin, VP (2004) Dynamical motifs: Building blocks of complex dynamics in sparsely connected random networks. Phys Rev Lett 92, 238701

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sporns, O., Tononi, G. (2007). Structural Determinants of Functional Brain Dynamics. In: Jirsa, V.K., McIntosh, A. (eds) Handbook of Brain Connectivity. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71512-2_4

Download citation

Publish with us

Policies and ethics