Skip to main content

The T-Body Approach: Redirecting T Cells with Antibody Specificity

  • Chapter
Therapeutic Antibodies

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 181))

“T-bodies” are genetically engineered T cells armed with chimeric receptors whose extracellular recognition unit is comprised of an antibody-derived recognition domain and whose intracellular region is derived from lymphocyte stimulating moiety(ies). The structure of the prototypic chimeric receptor, also known as a chimeric immune receptor, is modular, designed to accomodate various functional domains and thereby to enable choice of specificity and controlled activation of T cells. The preferred antibody-derived recognition unit is a single chain variable fragment (scFv) that combines the specificity and binding residues of both the heavy and light chain variable regions of a monoclonal antibody. The most common lymphocyte activation moieties include a T-cell costimulatory (e.g. CD28) domain in tandem with a T-cell triggering (e.g. CD3ζ) moiety. By arming effector lymphocytes (such as T cells and natural killer cells) with such chimeric receptors, the engineered cell is redirected with a predefined specificity to any desired target antigen, in a non-HLA restricted manner. Chimeric receptor (CR) constructs are introduced ex vivo into T cells from peripheral lymphocytes of a given patient using retroviral vectors. Following infusion of the resulting T-bodies back into the patient, they traffic, reach their target site, and upon interaction with their target cell or tissue, they undergo activation and perform their predefined effector function. Therapeutic targets for the T-body approach include cancer and HIV-infected cells, or autoimmune effector cells. To date, the most investigated area is cancer therapy. Here, the T-bodies are advantageous because their tumor recognition is not HLA-specific and, therefore, the same constructs can be used for a wide spectrum of patients and cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altenschmidt U, Klundt E, Groner B (1997) Adoptive transfer of in vitro-targeted, activated T lymphocytes results in total tumor regression. J Immunol 159: 5509-5515

    PubMed  CAS  Google Scholar 

  • Bollard CM, Aguilar L, Straathof KC, Gahn B, Huls MH, Rousseau A, Sixbey J, Gresik MV, Carrum G, Hudson M, Dilloo D, Gee A, Brenner MK, Rooney CM, Heslop HE (2004) Cytotoxic T lymphocyte therapy for Epstein-Barr virus+ Hodgkin’s disease. J Exp Med 200: 1623-1633

    Article  PubMed  CAS  Google Scholar 

  • Boussiotis VA, Freeman GJ, Gribben JG, Nadler LM (1998) The role of B7-1/B7-2:CD28/CLTA-4 pathways in the prevention of anergy, induction of productive immunity and down-regulation of the immune response. Immunol Rev 153: 5-26

    Article  Google Scholar 

  • Brentjens RJ, Latouche JB, Santos E, Marti F, Gong MC, Lyddane C, King PD, Larson S, Weiss M, Riviere I, Sadelain M (2003) Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Nat Med 9: 279-286

    Article  PubMed  CAS  Google Scholar 

  • Brocker T, Karjalainen K (1995) Signals through T cell receptor-zeta chain alone are insufficient to prime resting T lymphocytes. J Exp Med 181: 1653-1659

    Article  PubMed  CAS  Google Scholar 

  • Cooper LJ, Al-Kadhimi Z, Serrano LM, Pfeiffer T, Olivares S, Castro A, Chang WC, Gonzalez S, Smith D, Forman SJ, Jensen MC (2005) Enhanced antilymphoma efficacy of CD19-redirected influenza MP1-specific CTLs by cotransfer of T cells modified to present influenza MP1. Blood 105: 1622-1631

    Article  PubMed  CAS  Google Scholar 

  • Culver K, Cornetta K, Morgan R, Morecki S, Aebersold P, Kasid A, Lotze M, Rosenberg SA, Anderson WF, Blaese RM (1991) Lymphocytes as cellular vehicles for gene therapy in mouse and man. Proc Natl Acad Sci USA 88: 3155-3159

    Article  PubMed  CAS  Google Scholar 

  • Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, Topalian SL, Sherry R, Restifo NP, Hubicki AM, Robinson MR, Raffeld M, Duray P, Seipp CA, RogersFreezer L, Morton KE, Mavroukakis SA, White DE, Rosenberg SA (2002) Cancer regression and autoimmunity in patients after clonal repopulation with anti-tumor lymphocytes. Science 298: 850-854

    Article  PubMed  CAS  Google Scholar 

  • Eshhar Z, Bach N, Fitzer-Attas CJ, Gross G, Lustgarten J, Waks T, Schindler DG (1996) The T-body approach: Potential for cancer immunotherapy. Springer Semin Immunopathol 18: 199-209

    Article  PubMed  Google Scholar 

  • Eshhar Z, Waks T, Bendavid A, Schindler DG (2001) Functional expression of chimeric receptor genes in human T cells. J Immunol Methods 248: 67-76

    Article  PubMed  CAS  Google Scholar 

  • Eshhar Z, Waks T, Gross G, Schindler DG (1993) Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T cell receptors. Proc Natl Acad Sci USA 90: 720-724

    Article  PubMed  CAS  Google Scholar 

  • Finney HM, Akbar AN, Lawson AD (2004) Activation of resting human primary T cells with chimeric receptors: Co-stimulation from CD28, inducible costimulator, CD134, and CD137 in series with signals from the TCR zeta chain. J Immunol 172: 104-113

    PubMed  CAS  Google Scholar 

  • Finney HM, Lawson AD, Bebbington CR, Weir AN (1998) Chimeric receptors providing both primary and co-stimulatory signaling in T cells from a single gene product. J Immunol 161: 2791-2797

    PubMed  CAS  Google Scholar 

  • Fitzer-Attas, CJ, Schindler DG, Waks T, Eshhar Z (1998) Harnessing Syk family tyrosine kinases as signaling domains for chimeric single chain of the variable domain receptors: Optimal design for T cell activation. J Immunol 160:145-153.

    PubMed  CAS  Google Scholar 

  • Friedmann-Morvinski D, Bendavid A, Waks T, Schindler D, Eshhar Z (2005) Redirected primary T cells harboring a chimeric receptor require co-stimulation for their antigen-specific activation. Blood 105: 3087-3093

    Article  PubMed  CAS  Google Scholar 

  • Friedman-Morvinski D, Eshhar Z (2006) Adoptive immunotherapy of cancer using effector lymphocytes redirected with antibody specificity. CCBRM 23

    Google Scholar 

  • Gade TP, Hassen W, Santos E, Gunset G, Saudemont A, Gong MC, Brentjens R, Zhong XS, Stephan M, Stefanski J, Lyddane C, Osborne JR, Buchanan IM, Hall SJ, Heston WD, Riviere I, Larson SM, Koutcher JA, Sadelain M (2005) Targeted elimination of prostate cancer by genetically directed human T lymphocytes. Cancer Res 65: 9080-9088

    Article  PubMed  CAS  Google Scholar 

  • Gattinoni L, Finkelstein SE, Klebanoff CA, Antony PA, Palmer DC, Spiess PJ, Hwang LN, Yu Z, Wrzesinski C, Heimann DM, Surh CD, Rosenberg SA, Restifo NP (2005) Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumorspecific CD8+ T cells. J Exp Med 202: 907-912

    Article  PubMed  CAS  Google Scholar 

  • Gattinoni L, Powell DJ, Jr, Rosenberg SA, Restifo NP (2006) Adoptive immunotherapy for cancer: Building on success. Nat Rev Immunol 6: 383-393

    Article  PubMed  CAS  Google Scholar 

  • Gomez GG, Hutchison RB, Kruse CA (2001) Chemo-immunotherapy and chemo-adoptive immunotherapy of cancer. Cancer Treat Rev 27: 375-402

    Article  PubMed  CAS  Google Scholar 

  • Gong MC, Latouche JB, Krause A, Heston WD, Bander NH, Sadelain M (1999) Cancer patient T cells genetically targeted to prostate-specific membrane antigen specifically lyse prostate cancer cells and release cytokines in response to prostate-specific membrane antigen. Neoplasia 1: 123-127

    Article  PubMed  CAS  Google Scholar 

  • Gorochov G, Gross G, Waks T, Eshhar Z (1993) Anti-leucocyte function-associated antigen-1 antibodies inhibit T cell activation following low-avidity and adhesion-independent interactions. Immunology 79: 548-555

    PubMed  CAS  Google Scholar 

  • Gross G, Eshhar Z (1992) Endowing T cells with antibody specificity using chimeric T cell receptors. FASEB J 6: 3370-3378

    PubMed  CAS  Google Scholar 

  • Gross G, Gorochov G, Waks T, Eshhar Z (1989a) Generation of effector T cells expressing chimeric T cell receptor with antibody type-specificity. Transplant Proc 21: 127-130

    CAS  Google Scholar 

  • Gross G, Waks T, Eshhar Z (1989b) Expression of immunoglobulin-T cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci USA 86: 10024-10028

    Article  CAS  Google Scholar 

  • Haynes NM, Trapani JA, Teng MW, Jackson JT, Cerruti L, Jane SM, Kershaw MH, Smyth MJ, Darcy PK (2002) Rejection of syngeneic colon carcinoma by CTLs expressing single-chain antibody receptors codelivering CD28 co-stimulation. J Immunol 169: 5780-5786

    PubMed  CAS  Google Scholar 

  • Hombach A, Sent D, Schneider C, Heuser C, Koch D, Pohl C, Seliger B, Abken H (2001) T cell activation by recombinant receptors: CD28 co-stimulation is required for interleukin 2 secretion and receptor-mediated T cell proliferation but does not affect receptor-mediated target cell lysis. Cancer Res 61: 1976-1982

    PubMed  CAS  Google Scholar 

  • Hsu C, Hughes MS, Zheng Z, Bray RB, Rosenberg SA, Morgan RA (2005) Primary human T lymphocytes engineered with a codon-optimized IL-15 gene resist cytokine withdrawal-induced apoptosis and persist long-term in the absence of exogenous cytokine. J Immunol 175: 7226-7234

    PubMed  Google Scholar 

  • Hsu C, Jones SA, Cohen CJ, Zheng Z, Kerstann K, Zhou J, Robbins PF, Peng PD, Shen X, Gomes TJ, Dunbar CE, Munroe DJ, Stewart C, Cornetta K, Wangsa D, Ried T, Rosenberg SA, Morgan RA (2007) Cytokine independent growth and clonal expansion of a primary human CD8+ T cell clone following retroviral transduction with the IL-15 gene. Blood 109(12): 5168-5177

    Article  PubMed  CAS  Google Scholar 

  • Hwang LN, Yu Z, Palmer DC, Restifo NP (2006) The in vivo expansion rate of properly stimulated transferred CD8+ T cells exceeds that of an aggressively growing mouse tumor. Cancer Res 66: 1132-1138

    Article  PubMed  CAS  Google Scholar 

  • Hwu P, Yang JC, Cowherd R, Treisman J, Shafer GE, Eshhar Z, Rosenberg SA (1995) In vivo anti-tumor activity of T cells redirected with chimeric antibody/T cell receptor genes. Cancer Res 55: 3369-3373

    PubMed  CAS  Google Scholar 

  • Imai C, Mihara K, Andreansky M, Nicholson IC, Pui CH, Geiger TL, Campana D (2004) Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia 18: 676-684

    Article  PubMed  CAS  Google Scholar 

  • Jensen MC, Clarke P, Tan G, Wright C, Chung-Chang W, Clark TN, Zhang F, Slovak ML, Wu AM, Forman SJ, Raubitschek A (2000) Human T lymphocyte genetic modification with naked DNA. Mol Ther 1: 49-55

    Article  PubMed  CAS  Google Scholar 

  • Johnson LA, Heemskerk B, Powell DJ, Jr, Cohen CJ, Morgan RA, Dudley ME, Robbins PF, Rosenberg SA (2006) Gene transfer of tumor-reactive TCR confers both high avidity and tumor reactivity to nonreactive peripheral blood mononuclear cells and tumor-infiltrating lymphocytes. J Immunol 177: 6548-6559

    PubMed  CAS  Google Scholar 

  • Junghans R, Safa M, Huberman M (2000) Preclinical and Phase I data of anti-CEA designer T cell therapy for cancer: A new immunotherapeutic moduality. Proc Am Assoc Can Res 41: 543

    Google Scholar 

  • Kersh EN, Kersh GJ, Allen PM (1999) Partially phosphorylated T cell receptor zeta molecules can inhibit T cell activation. J Exp Med 190: 1627-1636

    Article  PubMed  CAS  Google Scholar 

  • Kershaw MH, Teng MW, Smyth MJ, Darcy PK (2005) Supernatural T cells: Genetic modification of T cells for cancer therapy. Nat Rev Immunol 5: 928-940

    Article  PubMed  CAS  Google Scholar 

  • Kershaw MH, Westwood JA, Parker LL, Wang G, Eshhar Z, Mavroukakis SA, White DE, Wunderlich JR, Canevari S, Rogers-Freezer L, Chen CC, Yang JC, Rosenberg SA, Hwu P (2006) A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin Cancer Res 12: 6106-6115

    Article  PubMed  CAS  Google Scholar 

  • Klebanoff CA, Finkelstein SE, Surman DR, Lichtman MK, Gattinoni L, Theoret MR, Grewal N, Spiess PJ, Antony PA, Palmer DC, Tagaya Y, Rosenberg SA, Waldmann TA, Restifo NP (2004) IL-15 enhances the in vivo anti-tumor activity of tumor-reactive CD8+ T cells. Proc Natl Acad Sci USA 101: 1969-1974

    Article  PubMed  CAS  Google Scholar 

  • Klebanoff CA, Gattinoni L, Restifo NP (2006) CD8+ T cell memory in tumor immunology and immunotherapy. Immunol Rev 211: 214-224

    Article  PubMed  CAS  Google Scholar 

  • Klebanoff CA, Khong HT, Antony PA, Palmer DC, Restifo NP (2005) Sinks, suppressors and antigen presenters: How lymphodepletion enhances T cell-mediated tumor immunotherapy. Trends Immunol 26: 111-117

    Article  PubMed  CAS  Google Scholar 

  • Koehler H, Kofler D, Hombach A, Abken H (2007) CD28 co-stimulation overcomes transforming growth factor-beta-mediated repression of proliferation of redirected human CD4+ and CD8+ T cells in an anti-tumor cell attack. Cancer Res 67: 2265-2273

    Article  PubMed  CAS  Google Scholar 

  • Kowolik CM, Topp MS, Gonzalez S, Pfeffer T et al. (2006) CD28 co-stimulation provided through a CD19-specific chimeric antigen receptor enhances in vivo persistance and anti-tumor efficacy of adoptively transferred T cells. Cancer Res 66: 10995-11004

    Article  PubMed  CAS  Google Scholar 

  • Lamers CH, Sleijfer S, Willemsen RA, Debets R, Kruit WH, Gratama JW, Stoter G (2004) Adoptive immuno-gene therapy of cancer with single chain antibody [scFv(Ig)] gene modified T lymphocytes. J Biol Regul Homeost Agents 18: 134-140

    PubMed  CAS  Google Scholar 

  • Lamers CH, van Elzakker P, Langeveld SC, Sleijfer S, Gratama JW (2006) Process validation and clinical evaluation of a protocol to generate gene-modified T lymphocytes for imunogene therapy for metastatic renal cell carcinoma: GMP-controlled transduction and expansion of patient’s T lymphocytes using a carboxy anhydrase IX-specific scFv transgene. Cytotherapy 8: 542-553

    Article  PubMed  CAS  Google Scholar 

  • Loskog A, Giandomenico V, Rossig C, Pule M, Dotti G, Brenner MK (2006) Addition of the CD28 signaling domain to chimeric T cell receptors enhances chimeric T cell resistance to T regulatory cells. Leukemia 20: 1819-1828

    Article  PubMed  CAS  Google Scholar 

  • Lustgarten J, Waks T, Eshhar Z (1991) CD4 and CD8 accessory molecules function through interactions with major histocompatibility complex molecules which are not directly associated with the T cell receptor-antigen complex. Eur J Immunol 21: 2507-2515

    Article  PubMed  CAS  Google Scholar 

  • Maher J, Brentjens RJ, Gunset G, Riviere I, Sadelain M (2002) Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRzeta /CD28 receptor. Nat Biotechnol 20: 70-75

    Article  PubMed  CAS  Google Scholar 

  • Mitsuyasu RT, Anton PA, Deeks SG, Scadden DT, Connick E, Downs MT, Bakker A, Roberts MR, June CH, Jalali S, Lin AA, Pennathur-Das R, Hege KM (2000) Prolonged survival and tissue trafficking following adoptive transfer of CD4zeta gene-modified autologous CD4(+) and CD8(+) T cells in human immunodeficiency virus-infected subjects. Blood 96: 785-793

    PubMed  CAS  Google Scholar 

  • Mizoguchi H, O’Shea JJ, Longo DL, Loeffler CM, McVicar DW, Ochoa AC (1992) Alterations in signal transduction molecules in T lymphocytes from tumor-bearing mice. Science 258: 1795-1798

    Article  PubMed  CAS  Google Scholar 

  • Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, Royal RE, Topalian SL, Kammula US, Restifo NP, Zheng Z, Nahvi A, de Vries CR, Rogers-Freezer LJ, Mavroukakis SA, Rosenberg SA (2006) Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314: 126-129

    Article  PubMed  CAS  Google Scholar 

  • Moritz D, Wels W, Mattern J, Groner B (1994) Cytotoxic T lymphocytes with a grafted recognition specificity for ERBB2-expressing tumor cells. Proc Natl Acad Sci USA 91: 4318-4322

    Article  PubMed  CAS  Google Scholar 

  • Park JR, Digiust DL, Slovak C, Wright C, et al. (2007) Adoptive transfer of chimeric antigen receptor redirected cytolytic T lymphocyte clones in patients with neuroblastoma. Mol Ther 15: 825-833

    PubMed  CAS  Google Scholar 

  • Pinthus JH, Waks T, Kaufman-Francis K, Schindler DG, Harmelin A, Kanety H, Ramon J, Eshhar Z (2003) Immuno-gene therapy of established prostate tumors using chimeric receptorredirected human lymphocytes. Cancer Res 63: 2470-2476

    PubMed  CAS  Google Scholar 

  • Pinthus JH, Waks T, Malina V, Kaufman-Francis K, Harmelin A, Aizenberg I, Kanety H, Ramon J, Eshhar Z (2004) Adoptive immunotherapy of prostate cancer bone lesions using redirected effector lymphocytes. J Clin Invest 114: 1774-1781

    PubMed  CAS  Google Scholar 

  • Rosenberg SA, Aebersold P, Cornetta K, Kasid A, Morgan RA, Moen R, Karson EM, Lotze MT, Yang JC, Topalian SL, et al. (1990) Gene transfer into humans - immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. N Engl J Med 323: 570-578

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg SA, Yang JC, Restifo NP (2004) Cancer immunotherapy: Moving beyond current vaccines. Nat Med 10: 909-915

    Article  PubMed  CAS  Google Scholar 

  • Rossig C, Bollard CM, Nuchtern JG, Rooney CM, Brenner MK (2002) Epstein-Barr virus-specific human T lymphocytes expressing anti-tumor chimeric T cell receptors: Potential for improved immunotherapy. Blood 99: 2009-2016

    Article  PubMed  CAS  Google Scholar 

  • Schaft N, Lankiewicz B, Drexhage J, Berrevoets C, Moss DJ, Levitsky V, Bonneville M, Lee SP, McMichael AJ, Gratama JW, Bolhuis RL, Willemsen R, Debets R (2006) T cell re-targeting to EBV antigens following TCR gene transfer: CD28-containing receptors mediate enhanced antigen-specific IFNγ production. Int Immunol 18: 591-601

    Article  PubMed  CAS  Google Scholar 

  • Vera J, Savoldo B, Vigouroux S, Biagi E, Pule M, Rossig C, Wu J, Heslop HE, Rooney CM, Brenner MK, Dotti G (2006) T lymphocytes redirected against the kappa light chain of human immunoglobulin efficiently kill mature B lymphocyte-derived malignant cells. Blood 108: 3890-3897

    Article  PubMed  CAS  Google Scholar 

  • Warren R, Fisher G, Bergaland E (1998) Studies of regional and systemic gene therapy with autologous CC49-zeta modified T cells in colorecal cancer metastatic to liver. In 7th International Conference on Gene Therapy of Cancer

    Google Scholar 

  • Wang G, Chopra RK, Royal RE, Yang JC, Rosenberg SA, Hwu P (1998) A T-cell-independent antitumor response in mice with bone marrow cells retrovirally transduced with an antibody/Fcgamma chain chimeric receptor gene recognizing a human ovarian cancer antigen. Nat Med 4: 168-172

    Article  PubMed  CAS  Google Scholar 

  • Wang LX, Li R, Yang G, Lim M, O’Hara A, Chu Y, Fox BA, Restifo NP, Urba WJ, Hu HM (2005) Interleukin-7-dependent expansion and persistence of melanoma-specific T cells in lymphodepleted mice lead to tumor regression and editing. Cancer Res 65: 10569-10577

    Article  PubMed  CAS  Google Scholar 

  • Westwood JA, Smyth MJ, Teng MW, Moeller M, Trapani JA, Scott AM, Smyth FE, Cartwright GA, Power BE, Honemann D, Prince HM, Darcy PK, Kershaw MH (2005) Adoptive transfer of T cells modified with a humanized chimeric receptor gene inhibits growth of Lewis-Y-expressing tumors in mice. Proc Natl Acad Sci USA 102: 19051-19056

    Article  PubMed  CAS  Google Scholar 

  • Willemsen RA, Ronteltap C, Chames P, Debets R, Bolhuis RL (2005) T cell retargeting with MHC class I-restricted antibodies: The CD28 co-stimulatory domain enhances antigen-specific cytotoxicity and cytokine production. J Immunol 174: 7853-7858

    PubMed  CAS  Google Scholar 

  • Wrzesinski C, Restifo NP (2005) Less is more: Lymphodepletion followed by hematopoietic stem cell transplant augments adoptive T-cell-based anti-tumor immunotherapy. Curr Opin Immunol 17: 195-201

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Baltimore D (2005) Long-term in vivo provision of antigen-specific T cell immunity by programming hematopoietic stem cells. Proc Natl Acad Sci USA 102: 4518-4523

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Qin XF, Baltimore D, Van Parijs L (2002) Generation of functional antigen-specific T cells in defined genetic backgrounds by retrovirus-mediated expression of TCR cDNAs in hematopoietic precursor cells. Proc Natl Acad Sci USA 99: 6204-6209

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eshhar, Z. (2008). The T-Body Approach: Redirecting T Cells with Antibody Specificity. In: Chernajovsky, Y., Nissim, A. (eds) Therapeutic Antibodies. Handbook of Experimental Pharmacology, vol 181. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73259-4_14

Download citation

Publish with us

Policies and ethics