Skip to main content

The Application of Neural Networks in Classification of Epilepsy Using EEG Signals

  • Conference paper
Advances in Brain, Vision, and Artificial Intelligence (BVAI 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4729))

Included in the following conference series:

Abstract

Epilepsy is a disorder of cortical excitability and still an important medical problem. The correct diagnosis of a patient’s epilepsy syndrome clarifies the choice of drug treatment and also allows an accurate assessment of prognosis in many cases. The aim of this study is to evaluate epileptic patients and classify epilepsy groups by using Multi-Layer Perceptron Neural Networks (MLPNNs). 418 patients with epilepsy diagnoses according to International League against Epilepsy (ILAE, 1981) were included in this study. The correct classification of this data was performed by two expert neurologists before they were executed by MLPNNs. The MLPNNs were trained by the parameters obtained from the EEG signals and clinic properties of the patients. We classified the epilepsy into two groups such as partial and primary generalized epilepsy and we achieved an 89.2% correct prediction rate by using MLPNN model. The parameters of the loss of consciousness in the course of seizure, the duration and ritmicity of abnormal activities found in EEG constituted the most significant variables in the classification of epilepsy by using MLPNN. These results indicate that the classification performance of MLPNN model for epilepsy groups is satisfactory and we think that this model may be used in clinical studies as a decision support tool to confirm the classification of epilepsy groups after they are developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pedley, T.A., Mendiratta, A., Walczak, T.S.: Seizures and epilepsy. In: Ebersole, J.S., Pedley, T.A. (eds.) Current Practice of Clinical Electroencephalography, pp. 506–587. Lippincott Williams & Wilkins Comp., USA (2002)

    Google Scholar 

  2. Smith, S.J.M.: EEG in neurological conditions other than epilepsy: When does it help, what does it add? J. Neurol. Neurosurg. Psychiatry 76, 8–12 (2005)

    Article  Google Scholar 

  3. Smith, S.J.M.: EEG in diagnosis, classification, and management of patients with epilepsy. J. Neurol. Neurosurg. Psychiatry 76, 2–7 (2005)

    Google Scholar 

  4. King, M.A., Newton, M.R., Jackson, G.D., et al.: Epileptology of the first -seizure presentation: a clinical, electroencephalographic and magnetic resonance imaging study of 300 consecutive patients. Lancet 352, 1007–1011 (1998)

    Article  Google Scholar 

  5. Trescher, H.W., Lesser, R.P.: The Epilepsies. In: Bradley, G.W., Daroff, B.R. (eds.) Neurology in Clinical Practice, pp. 1745–1779. Buterworth-Heineman, USA (2000)

    Google Scholar 

  6. Kiloh, L.G., McComas, A.J., Osselton, J.W.: Clinical Electroencephalography, pp. 168–200. Butterworht & Co ltd., Great Britain (1972)

    Google Scholar 

  7. Selvi, S.T., Arumugam, S., Ganesan, L.: BIONET: An artificial neural network model for diagnosis of diseases. Pattern Recognition Letters 21, 721–740 (2001)

    Article  Google Scholar 

  8. Tomida, S., Hanai, T., Koma, N., Suzuki, Y., Kobayashi, T., Honda, H.: Artificial neural network predictive model for allergic disease using neural network nucleotide polymorphisms data. Journal of Bioscience and Bioengineering 93(5), 470–478 (2002)

    Google Scholar 

  9. Zhang, G.P., Berardi, V.L.: An investigation of neural networks in thyroid function diagnosis. Health Care Management Science 1, 29–37 (1998)

    Article  Google Scholar 

  10. Itchhaaporia, D., Snow, P.B., Almassy, R.J., Oetgen, W.J.: Artificial neural networks: current status in cardiovascular medicine. JACC 28(2), 515–521 (1996)

    Google Scholar 

  11. Abe, H., Ashizawa, K., Li, F., Matsuyama, N., Fukushima, A., Shiraishi, J., Macmahon, H., Dio, K.: Artificial neural networks for differential diagnosis of interstitial lung disease: results of a simulation test with actual clinical cases. Acad Radiol 11, 29–37 (2004)

    Article  Google Scholar 

  12. Webber, W.R.S., Lesser, R.P., Richardson, R.T., Wilson, K.: An approach to seizure detection using an artificial neural network. Electroencephalography and Clinical Neurophysiology 98, 250–272 (1996)

    Article  Google Scholar 

  13. Pradhan, N., Sadasivan, P.K., Arunodaya, G.R.: Detection of seizure activity in EEG by artificial neural network: A preliminary study. Computers and Biomedical Research 29, 303–313 (1996)

    Article  Google Scholar 

  14. Gabor, A.J.: Seizure detection using a self-organizing neural network: validation and comparison with other detection strategies. Electroencephalography and Clinical Neurophysiology 107, 27–32 (1998)

    Article  Google Scholar 

  15. Walczak, S., Nowack, W.J.: An artificial neural network to diagnosing epilepsy using lateralized burst of theta EEGs. Journal of Medical Systems 25(1), 9–20 (2001)

    Article  Google Scholar 

  16. Subasi, A., Ercelebi, E.: Classification of EEG signals using neural network and logistic regression. Computer Methods and Programs in Biomedicine 78, 87–99 (2005)

    Article  Google Scholar 

  17. Alkan, A., Koklukaya, E., Subasi, A.: Automatic seizure detection in EEG using logistic regression and artificial neural network. Journal of Neuroscience Methods 148, 167–176 (2005)

    Article  Google Scholar 

  18. Guler, I., Ubeyli, E.D.: Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients. Journal of Neuroscience Methods 48(2), 113–121 (2005)

    Article  Google Scholar 

  19. Kellaway, P.: Orderly approach to visual analysis: Elements of the normal EEG and their characteristics in children and adults. In: Ebersole, J.S., Pedley, T.A. (eds.) Current practice of clinical electroencephalography, pp. 100–159. Lippincott Williams & Wilkins, Philadelphia (2002)

    Google Scholar 

  20. Haykin, S.: Neural Networks: A Comprehensive Foundation. Macmillan, New York (1994)

    MATH  Google Scholar 

  21. Bernand, E.: Optimization training neural nets. IEEE Trans. Neural Networks 3(2), 989–993 (1992)

    Google Scholar 

  22. Hagan, M.T., Menhaj, M.B.: Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Networks 5(6), 989–993 (1994)

    Article  Google Scholar 

  23. Wilamowki, B.M., Iqlikci, S., Kaynak, O., Onder, E.M.: An algorithm for fast converges in training neural networks. In: IEEE Proceedings of International Joint Conference on Neural Networks, pp. 1778–1782 (2005)

    Google Scholar 

  24. Lera, G., Pinzolas, M.: A quasi-local Levenberg-Marquardt algorithm for neural network training. IEEE World Congress on Computational Intelligence 3, 2242–2246 (1998)

    Article  Google Scholar 

  25. Manolis, I.A.L., Antonis, A.A.: Is Levenberg-Marquardt the most efficient optimization algorithm for implementing bundle adjustment? IEEE Proceedings of International Conference on Computer Vision 2, 1526–1531 (2005)

    Google Scholar 

  26. Gaafar, L.K., Choueiki, M.H.A.: Neural network model for solving the lot sizing problem. The International Journal of Management Science 28, 175–184 (1999)

    Google Scholar 

  27. Hopkins, A., Garman, A., Clarke, C.: The first seizure in adult life. Value of clinical features, electroencephalography, and computerized tomographic scannig in prediction of seizure recurrence. Lancet 1, 721–726 (1988)

    Article  Google Scholar 

  28. Drake, M.E., Padamadan, H., Newll, A.S.: Interictal quantitative EEG in epilepsy. Seizure 7, 39–42 (1998)

    Article  Google Scholar 

  29. So, M.G., Thiele, A.E., Sanger, T., et al.: Electroencephalogram and clinical facilities in juvenile myoclonic epilepsy. J. Child Neurol. 13, 541–545 (1998)

    Article  Google Scholar 

  30. GrĂ¼newald, R.A., Chroni, E., Panayiotopoulos, P.P.: Delayed diagnosis of juvenile myoclonic epilepsy. J. Neurol. Neurosurg. Psychiatry 55, 487–490 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Francesco Mele Giuliana Ramella Silvia Santillo Francesco Ventriglia

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sahin, C., Ogulata, S.N., Aslan, K., Bozdemir, H. (2007). The Application of Neural Networks in Classification of Epilepsy Using EEG Signals. In: Mele, F., Ramella, G., Santillo, S., Ventriglia, F. (eds) Advances in Brain, Vision, and Artificial Intelligence. BVAI 2007. Lecture Notes in Computer Science, vol 4729. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75555-5_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75555-5_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75554-8

  • Online ISBN: 978-3-540-75555-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics