Skip to main content

From Hemodynamics To Proteomics: Unraveling the Complexity of Acute Kidney Injury in Sepsis

  • Conference paper
Yearbook of Intensive Care and Emergency Medicine

Part of the book series: Yearbook of Intensive Care and Emergency Medicine ((YEARBOOK,volume 2008))

Abstract

Sepsis is a complex syndrome characterized by an uncontrolled and deregulated systemic inflammatory response to infection. This is mediated by a broad spectrum of endogenous mediators whose actions result in multiple organ dysfunction distant from the original focus of infection. The kidney is a common ‘victim organ’ of various insults in critically ill patients. Sepsis and septic shock are the dominant causes of acute kidney injury (AKI), accounting for nearly 50 % of episodes of acute renal failure [1]. The incidence of AKI in sepsis increases proportionally with the severity of sepsis, with AKI developing in 19 % of patients with sepsis, 23 % of those with severe sepsis, and 51 % of patients with septic shock [2]. The mortality of sepsis patients with co-existing acute renal failure reaches 70 %, thereby outstripping that of patients with other causes of AKI [3]. Interestingly, even relatively minor increments in serum creatinine levels coincide with markedly increased morbidity and mortality [4], highlighting the potentially important role of kidney dysfunction during the natural history of critical illness. However, the precise understanding of the multifactorial mechanisms of sepsis-induced AKI that would allow the development of new therapeutic strategies to prevent AKI or to hasten its recovery remains a mystery. Here, we review the most recent advances in the understanding of the molecular mechanisms and pathophysiology of sepsis-induced AKI, focusing on renal hemodynamic and microvascular changes and on the importance of a rapidly evolving proteomics approach to evaluating sepsis-induced kidney dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schrier RW, Wang W (2004) Acute renal failure and sepsis. N Engl J Med 351:159–169

    Article  CAS  PubMed  Google Scholar 

  2. Rangel-Frausto MS, Pittet D, Costigan M, Hwang T, Davis CS, Wenzel RP (1995) The natural history of the systemic inflammatory response syndrome (SIRS). A prospective study. JAMA 273:117–123

    Article  CAS  PubMed  Google Scholar 

  3. Bagshaw SM, Uchino S, Bellomo R, et al (2007) Beginning and Ending Supportive Therapy for the Kidney (BEST Kidney) Investigators. Septic acute kidney injury in critically ill patients: clinical characteristics and outcomes. Clin J Am Soc Nephrol 2:431–499

    Article  PubMed  Google Scholar 

  4. Chertow GM, Soroko SH, Paganini EP, et al (2006) Mortality after acute renal failure: models for prognostic stratification and risk adjustment. Kidney Int 70:1120–1126

    Article  CAS  PubMed  Google Scholar 

  5. Abuelo JG (2007) Normotensive ischemic acute renal failure. N Engl J Med 357:797–805

    Article  CAS  PubMed  Google Scholar 

  6. Gill N, Nally JV Jr, Fatica RA (2005) Renal failure secondary to acute tubular necrosis: epidemiology, diagnosis, and management. Chest 128:2847–2863

    Article  PubMed  Google Scholar 

  7. Langenberg C, Bellomo R, Maz C, Wan L, Moritoki E, Morgera S (2005) Renal blood flow in sepsis. Crit Care 9:R363–R374

    Article  PubMed  Google Scholar 

  8. Bellomo R, Bagshaw S, Langenberg C, Ronco C (2007) Pre-renal azotemia: a flawed paradigm in critically ill septic patients? Contrib Nephrol 156:1–9

    Article  PubMed  Google Scholar 

  9. Hotchkiss RS, Karl IE (2003) The pathophysiology and treatment of sepsis. N Engl J Med 348:138–50

    Article  CAS  PubMed  Google Scholar 

  10. Langenberg C, Bellomo R, May CN, Egi M, Wan L, Morgera S (2006) Renal vascular resistance in sepsis. Nephron Physiol 104:1–11

    Article  Google Scholar 

  11. Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P; Acute Dialysis Quality Initiative workgroup (2004) Acute renal failure — definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care 8:R204–R212

    Article  PubMed  Google Scholar 

  12. Langenberg C, Wan L, Egi M, May CN, Bellomo R (2006) Renal blood flow in experimental septic acute renal failure. Kidney Int 69:1996–2002

    Article  CAS  PubMed  Google Scholar 

  13. Langenberg C, Wan L, Egi M, May CN, Bellomo R (2007) Renal blood flow and function during recovery from experimental septic acute kidney injury Intensive Care Med 33:1614–1618

    Article  PubMed  Google Scholar 

  14. Di Giantomasso D, Morimatsu H, May CN, Bellomo R (2003) Intrarenal blood flow distribution in hyperdynamic septic shock: effect of norepinephrine. Crit Care Med 31:2509–2513

    Article  PubMed  Google Scholar 

  15. Wan L, Bellomo R, Di Giantomasso D, Ronco C (2003) The pathogenesis of septic acute renal failure. Curr Opin Crit Care 9:496–502

    Article  PubMed  Google Scholar 

  16. Vincent JL, De Backer D (2005) Microvascular dysfunction as a cause of organ dysfunction in severe sepsis. Crit Care 9(suppl 4):S9–S12

    Article  PubMed  Google Scholar 

  17. Lugon JR, Boim MA, Ramos OL, et al (1989) Renal function and glomerular hemodynamics in male endotoxemic rats. Kidney Int 36:570–575

    Article  CAS  PubMed  Google Scholar 

  18. Friedrich JO, Adhikari N, Herridge MS, Beyene J (2005) Meta-analysis: low-dose dopamine increases urine output but does not prevent renal dysfunction or death. Ann Intern Med 142:510–524

    CAS  PubMed  Google Scholar 

  19. De Vriese AS, Bourgeois M (2003) Pharmacologic treatment of acute renal failure in sepsis. Curr Opin Crit Care 9:474–480

    Article  PubMed  Google Scholar 

  20. Patel BM, Chittock DR, Russell JA, Walley KR (2002) Beneficial effects of short-term vasopressin infusion during severe septic shock. Anesthesiology 96:576–582

    Article  CAS  PubMed  Google Scholar 

  21. Yamaguchi N, Jesmin S, Zaedi S, et al (2006) Time-dependent expression of renal vaso-regulatory molecules in LPS-induced endotoxemia in rat. Peptides 27:2258–2270

    Article  CAS  PubMed  Google Scholar 

  22. Matejovic M, Radermacher P, Joannidis M (2007) Acute kidney injury in sepsis: Is renal blood flow more than just an innocent bystander? Intensive Care Med 33:1498–1500

    Article  PubMed  Google Scholar 

  23. Brezis M, Rosen S (1995) Hypoxia of the renal medulla-its implications for disease. N Engl J Med 332:647–655

    Article  CAS  PubMed  Google Scholar 

  24. Molitoris BA, Sutton TA (2004) Endothelial injury and dysfunction: role in the extension phase of acute renal failure. Kidney Int 66:496–499

    Article  PubMed  Google Scholar 

  25. Tiwari MM, Brock RW, Megyesi JK, Kaushal GP, Mayeux PR (2005) Disruption of renal peritubular blood flow in lipopolysaccharide-induced renal failure: role of nitric oxide and caspases. Am J Physiol Renal Physiol 289:F1324–F1332

    Article  CAS  PubMed  Google Scholar 

  26. Yasuda H, Yuen PS, Hu X, Zhou H, Star RA (2006) Simvastatin improves sepsis-induced mortality and acute kidney injury via renal vascular effects. Kidney Int 69:1535–1542

    Article  CAS  PubMed  Google Scholar 

  27. Wu L, Tiwari MM, Messer KJ, et al (2007) Peritubular capillary dysfunction and renal tubular epithelial cell stress following lipopolysaccharide administration in mice. Am J Physiol Renal Physiol 292:F261–F268

    Article  CAS  PubMed  Google Scholar 

  28. Gupta A, Rhodes GJ, Berg DT, Gerlitz B, Molitoris BA, Grinnell BW (2007) Activated protein C ameliorates LPS-induced acute kidney injury and down-regulates renal iNOS and angiotensin 2. Am J Physiol Renal Physiol 293:F245–54

    Article  CAS  PubMed  Google Scholar 

  29. Wu L, Gokden N, Mayeux PR (2007) Evidence for the role of reactive nitrogen species in polymicrobial sepsis-induced renal peritubular capillary dysfunction and tubular injury. J Am Soc Nephrol 18:1807–1815

    Article  CAS  PubMed  Google Scholar 

  30. Matejovic M, Krouzecky A, Martinkova V, et al (2004) Selective inducible nitric oxide synthase inhibition during long-term hyperdynamic porcine bacteremia. Shock 21:458–465

    Article  CAS  PubMed  Google Scholar 

  31. Matejovic M, Krouzecky A, Martinkova V, et al (2005) Effects of tempol, a free radical scavenger, on long-term hyperdynamic porcine bacteremia. Crit Care Med 33:1057–1063

    Article  CAS  PubMed  Google Scholar 

  32. Heemskerk S, Pickkers P, Bouw MP, et al (2006) Upregulation of renal inducible nitric oxide synthase during human endotoxemia and sepsis is associated with proximal tubule injury. Clin J Am Soc Nephrol 1:853–862

    Article  CAS  PubMed  Google Scholar 

  33. Horbelt M, Lee SY, Mang HE, et al (2007) Acute and chronic microvascular alterations in a mouse model of ischemic acute kidney injury. Am J Physiol Renal Physiol 293:F688–F695

    Article  CAS  PubMed  Google Scholar 

  34. Barth E, Bassi G, Maybauer M, et al (2008) Effects of ventilation with 100 % oxygen during early hyperdynamic porcine fecal peritonitis. Crit Care Med (in press)

    Google Scholar 

  35. Peng J Gygi SP (2001) Proteomics: the move to mixtures. J Mass Spectrom 36:1083–1091

    Article  CAS  PubMed  Google Scholar 

  36. Fliser D, Novak J, Thongboonkerd V, et al (2007) Advances in urinary proteome analysis and biomarker discovery. J Am Soc Nephrol 18:1057–1071

    Article  CAS  PubMed  Google Scholar 

  37. Thongboonkerd V (2007) Recent progress in urinary proteomics. Proteomics Clin Appl 1: 780–791

    Article  CAS  Google Scholar 

  38. Mischak H, Julian BA, Novak J (2007) High-resolution proteome/peptidome analysis of peptides and low-molecular-weight proteins in urine. Proteomics Clin Appl 1:792–804

    Article  CAS  PubMed  Google Scholar 

  39. Liu BC, Zhang L, Lv LL, Wang YL, Liu DG, Zhang XL (2006) Application of antibody array technology in the analysis of urinary cytokine profiles in patients with chronic kidney disease. Am J Nephrol 26:483–490

    Article  CAS  PubMed  Google Scholar 

  40. Angenendt P (2005) Progress in protein and antibody microarray technology. Drug Discov Today 10:503–511

    Article  CAS  PubMed  Google Scholar 

  41. Vogt JA, Hunzinger C, Schroer K, et al (2005) Determination of fractional synthesis rates of mouse hepatic proteins via metabolic 13C-labeling, MALDI-TOF MS and analysis of relative isotopologue abundances using average masses. Anal Chem 77:2034–2042

    Article  CAS  PubMed  Google Scholar 

  42. Kalenka A, Feldmann RE, Jr., Otero K, Maurer MH, Waschke KF, Fiedler F (2006) Changes in the serum proteome of patients with sepsis and septic shock. Anesth Analg 103:1522–1526

    Article  CAS  PubMed  Google Scholar 

  43. Crouser ED, Julian MW, Huff JE, Mandich DV, Green-Church KB (2006) A proteomic analysis of liver mitochondria during acute endotoxemia. Intensive Care Med 32:1252–1262

    Article  CAS  PubMed  Google Scholar 

  44. Holly MK, Dear JW, Hu X, et al (2006) Biomarker and drug-target discovery using proteomics in a new rat model of sepsis-induced acute renal failure. Kidney Int 70:496–506

    CAS  PubMed  Google Scholar 

  45. Buhimschi CS, Buhimschi IA, Abdel-Razeq S, et al (2007) Proteomic biomarkers of intraamniotic inflammation: relationship with funisitis and early-onset sepsis in the premature neonate. Pediatr Res 61:318–324

    Article  CAS  PubMed  Google Scholar 

  46. Ren Y, Wang J, Xia J, et al (2007) The alterations of mouse plasma proteins during septic development. J Proteome Res 6:2812–2821

    Article  CAS  PubMed  Google Scholar 

  47. Dear JW, Leelahavanichkul A, Aponte A, et al (2007) Liver proteomics for therapeutic drug discovery: Inhibition of the cyclophilin receptor CD147 attenuates sepsis-induced acute renal failure. Crit Care Med 35:2319–2328

    Article  CAS  PubMed  Google Scholar 

  48. Nguyen MT, Ross GF, Dent CL, Devarajan P (2005) Early prediction of acute renal injury using urinary proteomics. Am J Nephrol 25:318–326

    Article  CAS  PubMed  Google Scholar 

  49. Zhou H, Pisitkun T, Aponte A, et al (2006) Exosomal Fetuin-A identified by proteomics: a novel urinary biomarker for detecting acute kidney injury. Kidney Int 70:1847–1857

    Article  CAS  PubMed  Google Scholar 

  50. Vanhoutte KJ, Laarakkers C, Marchiori E, et al (2007) Biomarker discovery with SELDI-TOF MS in human urine associated with early renal injury: evaluation with computational analytical tools. Nephrol Dial Transplant 22:2932–2943

    Article  CAS  PubMed  Google Scholar 

  51. Korrapati MC, Chilakapati J, Witzmann FA, Chundury R, Lock EA, Mehendale HM (2007) Proteomics of S-(1, 2-dichlorovinyl)-L-cysteine-induced acute renal failure and autoprotection in mice. Am J Physiol Renal Physiol 293:F994–1006

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Matejovic, M., Radermacher, P., Thongboonkerd, V. (2008). From Hemodynamics To Proteomics: Unraveling the Complexity of Acute Kidney Injury in Sepsis. In: Yearbook of Intensive Care and Emergency Medicine. Yearbook of Intensive Care and Emergency Medicine, vol 2008. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77290-3_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77290-3_53

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77289-7

  • Online ISBN: 978-3-540-77290-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics