Skip to main content

Clinical Cough I: The Urge-To-Cough: A Respiratory Sensation

  • Chapter
Pharmacology and Therapeutics of Cough

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 187))

Abstract

Cough is generated by a brainstem neural network. Chemical and mechanical stimulation of the airway can elicit a reflex cough and can elicit a cognitive sensation, the urge-to-cough. The sensation of an urge-to-cough is a respiratory-related sensation. The role of the respiratory sensation of an urge-to-cough is to engage behavioral modulation of cough motor action. Respiratory sensations are elicited by a combination of modalities: central neural, chemical, and mechanical. Stimulation of respiratory afferents or changes in respiratory pattern resulting in a cognitive awareness of breathing are mediated by central neural processes that are the cognitive neural basis for respiratory sensations, including the urge-to-cough. It is proposed that the urge-to-cough is a component of the cough motivation-to-action system. The urge-to-cough is induced by stimuli that motivate subjects to protect their airway by coughing. Cough receptor stimulation is gated into suprapontine brain systems. In the proposed cough motivation system, the cough stimulus would produce an urge-to-cough which then matches with the cognitive desire for a response to the urge. If a cough is produced by the motor action system, the descending cognitive drive modulates the brainstem cough neural network. Receptors within the respiratory system provide sensory feedback indicating if the cough occurred, the motor pattern, and the magnitude. The limbic system uses that information to determine if the coughing behavior satisfied the urge. Cough is stopped if the urge-to-cough is satisfied; if the urge has not been satisfied then the urge-to-cough will continue to motivate the central nervous system. The central component within this cough motivation system is the intrinsic brain mechanism which can be activated to start the cycle for motivating a cough, the urge-to-cough. Eliciting a cognitive urge-to-cough is dependent on the integration of respiratory afferent activity, respiratory motor drive, affective state, attention, experience, and learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Banzett RB, Mulnier HE, Murphy K, Rosen SD, Wise RJ, Adams L (2000) Breathlessness in humans activates insular cortex. Neuroreport 11(10):2117–2120

    Article  PubMed  CAS  Google Scholar 

  • Bloch-Salisbury E, Harver A (1994) Effects of detection and classification of resistive and elastic loads on endogenous event-related potentials. J Appl Physiol 77(3):1246–1255

    PubMed  CAS  Google Scholar 

  • Bloch-Salisbury E, Harver A, Squires NK (1998) Event-related potentials to inspiratory flow-resistive loads in young adults: Stimulus magnitude effects. Biol Psychol 49(1–2):165–186

    Article  PubMed  CAS  Google Scholar 

  • Bolser DC, Davenport PW (2002) Functional organization of the central cough generation mechanism. Pulm Pharmacol Ther 15(3):221–225

    Article  PubMed  CAS  Google Scholar 

  • Bradley MM (2000) Emotion and motivation. In: Cacioppo JT, Tassinary LG, Bernston GG (eds) Handbook of psychophysiology, 2nd edn. Cambridge University Press, New York, pp 602–642

    Google Scholar 

  • Brannan S, Liotti M, Egan G, Shade R, Madden L, Robillard R, Abplanalp B, Stofer K, Denton D, Fox PT (2001) Neuroimaging of cerebral activations and deactivations associated with hyper-capnia and hunger for air. Proc Natl Acad Sci USA 98(4):2029–2034

    Article  PubMed  CAS  Google Scholar 

  • Cameron OG (2002) Visceral sensory neuroscience: Interoception. Oxford University Press, New York

    Google Scholar 

  • Canning BJ, Mori N, Mazzone SB (2006) Vagal afferent nerves regulating the cough reflex. Respir Physiol Neurobiol 152(3):223–242

    Article  PubMed  Google Scholar 

  • Chou YL, Davenport PW (2007) The effect of increased background resistance on the resistive load threshold for eliciting the respiratory related evoked potential. J Appl Physiol 103:2012–2017

    Article  PubMed  Google Scholar 

  • Davenport PW, Hutchison AA (2002) Cerebral cortical respiratory-related evoked potentials elicited by inspiratory occlusion in lambs. J Appl Physiol 93(1):31–36

    PubMed  Google Scholar 

  • Davenport PW, Friedman WA, Thompson FJ, Franzen O (1986) Respiratory-related cortical potentials evoked by inspiratory occlusion in humans. J Appl Physiol 60(6):1843–1848

    PubMed  CAS  Google Scholar 

  • Davenport PW, Colrain IM, Hill PM (1996) Scalp topography of the short-latency components of the respiratory-related evoked potential in children. J Appl Physiol 80(5):1785–1791

    PubMed  CAS  Google Scholar 

  • Davenport PW, Sapeinza CM, Bolser DC (2002) Psychophysical assessment of the Urge-to-Cough. Eur Respir J 12(85):249–253

    Google Scholar 

  • Davenport PW, Bolser DC, Vickroy T, Berry RB, Martin AD, Hey JA, Danzig M (2007a) The effect of codeine on the Urge-to-Cough response to inhaled capsaicin. Pulm Pharmacol Ther 20(4):338–346

    Article  CAS  Google Scholar 

  • Davenport PW, Chan PY, Zhang W, Chou YL (2007b) Detection threshold for inspiratory resistive loads and respiratory-related evoked potentials. J Appl Physiol 102(1):276–285

    Article  Google Scholar 

  • Dicpinigaitis PV (2003) Short- and long-term reproducibility of capsaicin cough challenge testing. Pulm Pharmacol Ther 16(1):61–65

    Article  PubMed  CAS  Google Scholar 

  • Dicpinigaitis PV, Dobkin JB (1997) Antitussive effect of the GABA-agonist baclofen. Chest 111(4):996–999

    Article  PubMed  CAS  Google Scholar 

  • Dicpinigaitis PV, Rauf K (1998) The influence of gender on cough reflex sensitivity. Chest 113(5):1319–1321

    Article  PubMed  CAS  Google Scholar 

  • Dicpinigaitis PV, Grimm DR, Lesser M (1999) Cough reflex sensitivity in subjects with cervical spinal cord injury. Am J Respir Crit Care Med 159(5 Part 1):1660–1662

    PubMed  CAS  Google Scholar 

  • Evans KC, Banzett RB, Adams L, McKay L, Frackowiak RS, Corfield DR (2002) BOLD fMRI identifies limbic, paralimbic, and cerebellar activation during air hunger. J Neurophysiol 88(3):1500–1511

    PubMed  Google Scholar 

  • Gozal D, Omidvar O, Kirlew KA, Hathout GM, Hamilton R, Lufkin RB, Harper RM (1995) Identification of human brain regions underlying responses to resistive inspiratory loading with functional magnetic resonance imaging. Proc Natl Acad Sci USA 92(14):6607–6611

    Article  PubMed  CAS  Google Scholar 

  • Gozal D, Omidvar O, Kirlew KA, Hathout GM, Lufkin RB, Harper RM (1996) Functional magnetic resonance imaging reveals brain regions mediating the response to resistive expiratory loads in humans. J Clin Invest 97(1):47–53

    Article  PubMed  CAS  Google Scholar 

  • Harver A, Squires NK, Bloch-Salisbury E, Katkin ES (1995) Event-related potentials to airway occlusion in young and old subjects. Psychophysiology 32(2):121–129

    Article  PubMed  CAS  Google Scholar 

  • Ho CY, Gu Q, Lin YS, Lee LY (2001) Sensitivity of vagal afferent endings to chemical irritants in the rat lung. Respir Physiol 127(2–3):113–124

    Article  PubMed  CAS  Google Scholar 

  • Hutchings HA, Morris S, Eccles R, Jawad MS (1993) Voluntary suppression of cough induced by inhalation of capsaicin in healthy volunteers. Respir Med 87(5):379–382

    Article  PubMed  CAS  Google Scholar 

  • Isaev G, Murphy K, Guz A, Adams L (2002) Areas of the brain concerned with ventilatory load compensation in awake man. J Physiol 539(Part 3):935–945

    Article  PubMed  CAS  Google Scholar 

  • Kern MK, Jaradeh S, Arndorfer RC, Shaker R (2001) Cerebral cortical representation of reflexive and volitional swallowing in humans. Am J Physiol Gastrointest Liver Physiol 280(3): G354–G360

    PubMed  CAS  Google Scholar 

  • Knafelc M, Davenport PW (1997) Relationship between resistive loads and P1 peak of respiratory-related evoked potential. J Appl Physiol 83(3):918–926

    PubMed  CAS  Google Scholar 

  • Knafelc M, Davenport PW (1999) Relationship between magnitude estimation of resistive loads, inspiratory pressures, and the RREP P(1) peak. J Appl Physiol 87(2):516–522

    PubMed  CAS  Google Scholar 

  • Kollarik M, Ru F, Undem BJ (2007) Acid-sensitive vagal sensory pathways and cough. Pulm Pharmacol Ther 20(4):402–411

    Article  PubMed  CAS  Google Scholar 

  • Lasserson D, Mills K, Arunachalam R, Polkey M, Moxham J, Kalra L (2006) Differences in motor activation of voluntary and reflex cough in humans. Thorax 61(8):699–705

    Article  PubMed  CAS  Google Scholar 

  • Lee PC, Cotterill-Jones C, Eccles R (2002) Voluntary control of cough. Pulm Pharmacol Ther 15(3):317–320

    Article  PubMed  CAS  Google Scholar 

  • Liotti M, Brannan S, Egan G, Shade R, Madden L, Abplanalp B, Robillard R, Lancaster J, Zamarripa FE, Fox PT, Denton D (2001) Brain responses associated with consciousness of breathlessness (air hunger). Proc Natl Acad Sci USA 98(4):2035–2040

    Article  PubMed  CAS  Google Scholar 

  • Logie ST, Colrain IM, Webster KE (1998) Source dipole analysis of the early components of the RREP. Brain Topogr 11(2):153–164

    Article  PubMed  CAS  Google Scholar 

  • Mazzone SB (2005) An overview of the sensory receptors regulating cough. Cough 1:2

    Article  PubMed  Google Scholar 

  • Mazzone SB, McLennan L, McGovern AE, Egan GF, Farrell MJ (2007) Representation of capsaicin-evoked urge-to-cough in the human brain using functional magnetic resonance imaging. Am J Respir Crit Care Med 176(4):327–332

    Article  PubMed  Google Scholar 

  • O'Donnell DE, Banzett RB, Carrieri-Kohlman V, Casaburi R, Davenport PW, Gandevia SC, Gelb AF, Mahler DA, Webb KA (2007) Pathophysiology of dyspnea in chronic obstructive pulmonary disease: A roundtable. Proc Am Thorac Soc 4(2):145–168

    Article  PubMed  Google Scholar 

  • Peiffer C, Poline JB, Thivard L, Aubier M, Samson Y (2001) Neural substrates for the perception of acutely induced dyspnea. Am J Respir Crit Care Med 163(4):951–957

    PubMed  CAS  Google Scholar 

  • Revelette WR, Davenport PW (1990) Effects of timing of inspiratory occlusion on cerebral evoked potentials in humans. J Appl Physiol 68(1):282–288

    PubMed  CAS  Google Scholar 

  • Sapienza CM, Bolser DC, Schulz GM, Scott K, Davenport PW (1997) Respiratory muscle and airflow pattern during graded voluntary cough in normal subjects. Am J Respir Crit Care Med (Abstracts)155:A577

    Google Scholar 

  • Shannon R, Baekey DM, Morris KF, Li Z, Lindsey BG (2000) Functional connectivity among ven-trolateral medullary respiratory neurones and responses during fictive cough in the cat. J Physiol 525(Part 1):207–224

    Article  PubMed  CAS  Google Scholar 

  • Shannon R, Baekey DM, Morris KF, Nuding SC, Segers LS, Lindsey BG (2004) Production of reflex cough by brainstem respiratory networks. Pulm Pharmacol Ther 17(6):369–376

    Article  PubMed  CAS  Google Scholar 

  • Simonyan K, Saad ZS, Loucks TM, Poletto CJ, Ludlow CL (2007) Functional neuroanatomy of human voluntary cough and sniff production. Neuroimage 37(2):401–409

    Article  PubMed  Google Scholar 

  • Straker D (2002) The Brain's Urge System. http://changingminds.org/explanations/brain/urge system.htm. Accessed 15 March, 2007

  • Toogood JA, Barr AM, Stevens TK, Gati JS, Menon RS, Martin RE (2005) Discrete functional contributions of cerebral cortical foci in voluntary swallowing: A functional magnetic resonance imaging (fMRI) “Go, No-Go” study. Exp Brain Res 161(1):81–90

    Article  PubMed  Google Scholar 

  • Vovk A, Bolser DC, Hey JA, Danzig M, Vickroy T, Berry R, Martin AD, Davenport PW (2007) Capsaicin exposure elicits complex airway defensive motor patterns in normal humans in a concentration-dependent manner. Pulm Pharmacol Ther 20(4):423–432

    Article  PubMed  CAS  Google Scholar 

  • Webster KE, Colrain IM (2000a) The relationship between respiratory-related evoked potentials and the perception of inspiratory resistive loads. Psychophysiology 37(6):831–841

    Article  CAS  Google Scholar 

  • Webster KE, Colrain IM (2000b) The respiratory-related evoked potential: Effects of attention and occlusion duration. Psychophysiology 37(3):310–318

    Article  CAS  Google Scholar 

  • Webster KE, Adey SA, Colrain IM (2002) The effect of stimulus probability on P3 in the respiratory-related evoked potential. Psychophysiology 39(1):9–15

    Article  PubMed  Google Scholar 

  • Widdicombe JG, Eccles R, Fontana G (2006) Supramedullary influences on cough. Respir Physiol Neurobiol 152(3):320–328

    Article  PubMed  Google Scholar 

  • Wiley RL, Zechman FW Jr (1966) Perception of added airflow resistance in humans. Respir Physiol 2(1):73–87

    Article  PubMed  CAS  Google Scholar 

  • Zhao W, Martin AD, Davenport PW (2002) Respiratory-related evoked potentials elicited by in-spiratory occlusions in double-lung transplant recipients. J Appl Physiol 93(3):894–902

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Davenport, P.W. (2009). Clinical Cough I: The Urge-To-Cough: A Respiratory Sensation. In: Chung, K.F., Widdicombe, J. (eds) Pharmacology and Therapeutics of Cough. Handbook of Experimental Pharmacology, vol 187. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79842-2_13

Download citation

Publish with us

Policies and ethics