Skip to main content

A1 Adenosine Receptor Antagonists, Agonists, and Allosteric Enhancers

  • Chapter
  • First Online:
Adenosine Receptors in Health and Disease

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 193))

Abstract

Intense efforts of many pharmaceutical companies and academicians in the A1 adenosine receptor (AR) field have led to the discovery of clinical candidates that are antagonists, agonists, and allosteric enhancers. The A1AR antagonists currently in clinical development are KW3902, BG9928, and SLV320. All three have high affinity for the human (h) A1AR subtype (hA1 K i < 10 nM), > 200-fold selectivity over the hA2A subtype, and demonstrate renal protective effects in multiple animal models of disease and pharmacologic effects in human subjects. In the A1AR agonist area, clinical candidates have been discovered for the following conditions: atrial arrhythmias (tecadenoson, selodenoson and PJ-875); Type II diabetes and insulin sensitizing agents (GR79236, ARA, RPR-749, and CVT-3619); and angina (BAY 68–4986). The challenges associated with the development of any A1AR agonist are to obtain tissue-specific effects but avoid off-target tissue side effects and A1AR desensitization leading to tachyphylaxis. For the IV antiarrhythmic agents that act as ventricular rate control agents, a selective response can be accomplished by careful IV dosing paradigms. The treatment of type II diabetes using A1AR agonists in the clinic has met with limited success due to cardiovascular side effects and a well-defined desensitization of full agonists in human trials (GR79236, ARA, and RPR 749). However, new partial A1AR agonists are in development, including CVT-3619 \((\mathrm{hA}_{1}\ {\rm AR}\ {K}_{\mathrm{i}} = 55\,{\mathrm{nM,\ hA}_{\rm 2A:hA}}_{{\rm 2B:hA}_{3}}\,>\,200\):1,000:20, CV Therapeutics), which have the potential to provide enhanced insulin sensitivity without cardiovascular side effects and tachyphylaxis. The nonnucleosidic A1AR agonist BAY 68–4986 (capadenoson) represents a novel approach to angina wherein both animal studies and early human studies are promising. T-62 is an A1AR allosteric enhancer that is currently being evaluated in clinical trials as a potential treatment for neuropathic pain. The challenges associated with developing A1AR antagonists, agonists, or allosteric enhancers for therapeutic intervention are now well defined in humans. Significant progress has been made in identifying A1AR antagonists for the treatment of edema associated with congestive heart failure (CHF), A1AR agonists for the treatment of atrial arrhythmias, type II diabetes and angina, and A1AR allosteric enhancers for the treatment of neuropathic pain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACE:

Angiotensin-converting enzyme

ADHF:

Acutely decompensated heart failure

ALT:

Alanine aminotransferase

APD:

Action potential duration

AR:

Adenosine receptor

ARA:

(1S, 2R, 3R)-3-((trifluoromethoxy)methyl)-5-(6-(1-(5-(trifluro- methyl)pyridine-2-yl)pyrrolidin-3-ylamino)-9H-purin-9-yl) cyclopentane-1,2-diol

ARB:

Angiotensin II receptor blocker

AST:

Aspartate aminotransferase

AUC:

Area under the curve

(A–V) node:

Atrioventricular

BG9719:

(8-(3-Oxa-tricyclo[3.2.1.02, 4]oct-6-yl)-1,3-dipropyl-3, 7-dihydropurine-2,6-dione)

BG9928:

(3-(4-(2,6-Dioxo-1,3-dipropyl-2,3,6,7-tetrahydro-1H-purin-8-yl) bicyclo[2.2.2]octan-1-yl)propanoic acid)

cAMP:

Cyclic AMP

Capadenoson:

(BAY 68–4986) (2-amino-6-((2-(4-chlorophenyl)thiazol-4-yl) methylthio)-4-(4-(2-hydroxyethoxy)phenyl)pyridine-3, 5-dicarbonitrile)

CHA:

N 6-Cyclohexyl adenosine

CHF:

Congestive heart failure

CHO:

Chinese hamster ovary

CK:

Creatinine kinase

CL:

Total body clearance

C max :

Maximal plasma concentration

CPA:

N 6-Cyclopentyl adenosine

CrCl:

Creatinine clearance

CV:

Cardiovascular

CVT-3619:

(2S, 3S, 4R)-2-((2-fluorophenylthio)methyl)-5-(6-((1R, 2R)-2-hydroxycyclopentylamino)-9H-purin-9-yl)tetrahydrofuran-3,4-diol

DPCPX:

1,3-Dipropyl-8 cyclopentylxanthine

ED50 :

50% Efficient dose

F (%):

% Oral bioavailability

GFR:

Glomerular filtration rate

GR79236:

(3R, 4S, 5R)-2-(6-((1S, 2S)-2-hydroxycyclopentylamino)-9H-purin-9-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol

HF:

Heart failure

HSL:

Hormone sensitive lipase

IP:

Intraperitoneal

IPC:

Ischemic preconditioning

IV:

Intravenous

KW3902:

(3-Noradamantyl-1,3-dipropylxanthine)

L-(NAME):

N-ο-Nitro-l-arginine methyl ester

MRT:

Mean residence time

NEFA:

Nonesterified fatty acids

PVST:

Paroxysmal supraventricular tachycardia

RCM:

Radiocontrast media

RPF:

Renal plasma flow

SAR:

Structure–activity relationship

Selodenoson:

(2S, 3S, 4R)-5-(6-(Cyclopentylamino)-9H-purin-9-yl)-N-ethyl-3,4-dihydroxytetrahydrofuran-2-carboxamide)

(S–A):

Sinoatrial

SLV320:

(4-(2-Phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino) cyclohexanol)

t 1 ∕ 2 :

Half-life

T-62:

(2-Amino-4,5,6,7-tetrahydrobenzo[b]thiophen-3-yl) (4-chlorophenyl)methanone

Tecadenoson:

(2R, 3S, 4R)-2-(Hydroxymethyl)-5-(6-((R)-tetrahydrofuran-3-ylamino)-9H-purin-9-yl)tetrahydrofuran-3,4-diol)

TG’s:

Triglycerides

T2D:

Type II diabetes

UNaV:

Urinary sodium excretion

UV:

Urine volume

V ds :

Volume of distribution

References

  • Akhari R, Burbiel JC, Hockemeyer J, Muller CE (2006) Recent progress in the development of adenosine receptor ligands as anti-inflammatory drugs. Curr Top Med Chem 6:1375–1399

    Google Scholar 

  • Amann K, Breitbach M, Ritz E, Mall G (1998a) Myocyte/capillary mismatch in the heart of uremic patients. J Am Soc Nephrol 9:1018–1022

    CAS  PubMed  Google Scholar 

  • Amann K, Kronenberg G, Gehlen F, Wessels S, Orth S, Munter K (1998b) Cardiac remodeling in experimental renal failure—an immunohistochemical study. Nephrol Dial Transplant 13:1958–1966

    Article  CAS  PubMed  Google Scholar 

  • Auchampach JA, Jin X, Moore J, Wan TC, Kreckler LM, Ge ZD, Narayanan J, Whalley E, Kiesman W, Ticho B, Smits G, Gross GJ (2004) Comparison of three different A1 adenosine receptor antagonists on infarct size and multiple cycle ischemic preconditioning in anesthetized dogs. J Pharmacol Exp Ther 308:846–856

    Article  CAS  PubMed  Google Scholar 

  • Baraldi PG, Iaconinoto MA, Moorman AR, Carrion MD, Cara CL, Preti D, Lopez OC, Fruttarolo F, Tabrizi MA, Romagnoli R (2007) Allosteric enhancers for A1 adenosine receptor. Minirev Med Chem 7:559–569

    Article  CAS  Google Scholar 

  • Baraldi PG, Tabrizi MA, Gessi S, Borea PA (2008) Adenosine receptor antagonists: translating medicinal chemistry and pharmacology into clinical utility. Chem Rev 108:238–263

    Article  CAS  PubMed  Google Scholar 

  • Bayes M, Rabasseda X, Prous JR (2003) Gateways to clinical trials. Methods Find Exp Clin Pharmacol 25:831–855

    CAS  PubMed  Google Scholar 

  • Bays M, Rabasseda X, Prous JR (2007) Gateways to clinical trials. Method Find Exp Clin Pharmacol 29(5):359–373

    Google Scholar 

  • Belardinelli L, Dhalla A (2003) Method of treating arrhythmias comprising administration of an A1 adenosine agonist with a beta blocker, calcium channel blocker, or a cardiac glycoside. US Patent WO03088978

    Google Scholar 

  • Belardinelli L, Lerman BB (1990) Electrophysiological basis for use of adenosine in the diagnosis and treatment of cardiac arrhythmias. Br Heart J 63:3–34

    Article  CAS  PubMed  Google Scholar 

  • Belardinelli L, Shryock JC, Song Y, Wang D, Srinivas M (1995) Ionic basis of the electrophysiological actions of adenosine on cardiomyocytes. FASEB J 5:359–365

    Google Scholar 

  • Belardinelli L, Shryock JC, Wu L, Song Y (2005) Use of preclinical assays to predict risk of drug-induced torsades de pointes. Heart Rhythm 2(2 Suppl):S16–22

    Article  PubMed  Google Scholar 

  • Bigot A, Stengelin S, Johne G, Herling A, Muller G, Hock FJ, Myers MR (2004) Novel adenosine analogues and their use as pharmaceutical agents. US Patent WO04003002

    Google Scholar 

  • Boden G, She P Mozzoli M, Cheung P, Gumireddy K, Reddy P, Xiang X, Luo Z, Ruderman N (2005) Free fatty acids produce insulin resistance and activate the proinflammatory nuclear factor-{Kappa}B pathway in rat liver. Diabetes 54:3458–3465

    Google Scholar 

  • Castelhano Al, McKibben B, Witter DJ (2005) Compounds specific to adenosine A1 receptor and uses thereof. US Patent 6,878,716

    Google Scholar 

  • Chang LC, Von Kuenzel JK, Mulder-Krieger T, Spanjersberg RF, Roerink F, Van Den Hout G, Beukers MW, Brussee J, IJzerman AP (2005) A series of ligands displaying a remarkable agonistic–antagonistic profile at the adenosine A1 receptor. J Med Chem 48(6):2045–2053

    Article  CAS  PubMed  Google Scholar 

  • ClinicalTrials.gov (2005) Aderis Pharmaceuticals: safety and efficacy study of an A1-adenosine receptor agonist to slow heart rate atrial fibrillation. http://www.clinicaltrials.gov/ct/ show/NCT00040001?order = 1

  • DailyDrugNews.com (2008) Inotek begins a Phase I trial of INO-8875 for the treatment of glaucoma (Daily Essentials, 20 June 2008). http://www.dailydrugnews.com

  • Dhalla AK, Shryock JC, Shreeniwas R, Beraldinelli L (2003) Pharmacology and therapeutic application of A1 adenosine receptor ligands. Curr Top Med Chem 3:369–385

    Article  CAS  PubMed  Google Scholar 

  • Dhalla AK, Wong MY, Voshol PJ, Belardinelli L, Reaven GM (2007a) A1-adenosine receptor partial agonist lowers plasma FFA and improves insulin resistance induced by high-fat diet in rodents. Am J Physiol Endocrinol Metab 292:E1358–E1363

    Article  CAS  PubMed  Google Scholar 

  • Dhalla AK, Melissa S, Smith M, Wong M, Shryock JC, Beraldinelli L (2007b) Antilipolytic activity of a novel partial A1 adenosine receptor agonist devoid of cardiovascular effects: comparison with nicotinic acid. J Pharmacol Exp Therp 321:327–333

    Article  CAS  Google Scholar 

  • DiMarco JP, Sellers TD, Lerman BB Greenberg ML, Berne RM, Belardinelli L (1985) Diagnostic and therapeutic use of adenosine in patients with supraventricular tachycardias. J Am Coll Cardiol 6:417–425

    CAS  PubMed  Google Scholar 

  • Dittrich HC, Gupta D, Hack TC, Dowling T, Callahan J, Thomson S (2007) The effect of KW-3902, an adenosine A1 receptor antagonist, on renal function and renal plasma flow in ambulatory patients with heart failure and renal impairment. J Cardiac Fail 13:609–617

    Article  CAS  Google Scholar 

  • Dohadwala MM, Givertz MM (2008) Role of adenosine antagonism in cardiorenal syndrome. Cardiovasc Ther 26:276–286

    Article  CAS  PubMed  Google Scholar 

  • Ellenbogen KA, O’Neill G, Prystowsky EN, Camm JA, Meng L, Lieu HD, Jerling M, Shreeniwas R, Beraldinelli L, Wolff AA (2005) Trial to evaluate the management of paroxysmal supraventricular tachycardia during an electrophysiology study with Tecadenoson. Circulation 111:3202–3208

    Article  CAS  PubMed  Google Scholar 

  • Erguden JK, Karig G, Rosentretter U, Albrecht B, Henninger K, Hutter J, Diedrichs N, Nell P, Arndt S, Hubsch W, Knorr A, Schlemmer KH, Brohm P (2007) Substituted phenylaminothiazoles and use thereof. US Patent WO0773855

    Google Scholar 

  • Fatholahi M, Xiang Y, Wu Y, Li Y, Wu L, Dhalla AK, Belardinelli L, Shryock JC (2006) A novel partial agonist of the A1-adenosine receptor and evidence of receptor homogeneity in adipocytes. J Pharmacol Exp Ther 317:676–684

    Article  CAS  PubMed  Google Scholar 

  • Ferrannini E, Barrett EJ, Bevilacqua S, DeFronzo RA (1983) Effect of fatty acids on glucose production and utilization in man. J Clin Invest 72:1737–1747

    Article  CAS  PubMed  Google Scholar 

  • Forman M, Velasco CE, Jackson EK (1993) Adenosine attenuates reperfusion injury following regional myocardial ischemia. Cardiovasc Res 27:9–17

    Article  CAS  PubMed  Google Scholar 

  • Fredholm BB, IJzerman AP, Jacobson KA, Klotz, KN Linden J (2001) International Union of Pharmacology. XXXV: nomenclature and classification of adenosine receptors. Pharmacol Rev 53:527–552

    Google Scholar 

  • Gardner CJ, Twissell DJ, Coates J, Strong P (1994) The effects of GR79236 on plasma fatty acid concentrations, heart rate and blood pressure in the conscious rats. Eur J Pharmacol 257:117–121

    Article  CAS  PubMed  Google Scholar 

  • Givertz MM, Massie BM, Fields TK, Pearson LL, Dittrich HC, on behalf of the CKI-201 and CKI-202 investigators (2007) The effects of KW-3902, an adenosine A1-receptor antagonist, on diuresis and renal function in patients with acute decompensated heart failure and renal impairment or diuretic resistance. J Am Coll Cardiol 50:1551–1560

    Article  CAS  Google Scholar 

  • Gottlieb SS, Skettino SL, Wolff A, Beckman E, Fisher ML, Freudenberger R, Gladwell T, Marshall J, Cines M, Bennett, DLiitschwager EB (2000) Effects of BG9719 (CVT-124), an A1-adenosine receptor antagonist, and furosemide on glomerular filtration rate and natriuresis in patients with congestive heart failure. J Am Coll Cardiol 35:56–59

    Article  CAS  PubMed  Google Scholar 

  • Gottlieb SS, Brater C, Thomas I, Havranek E, Bourge R, Goldman S, Dyer F, Gomez M, Bennett D, Ticho B, Beckman E, Abraham WT (2002) BG9719 (CVT-124), an A1 adenosine receptor antagonist, protects against the decline in renal function observed with diuretic therapy. Circulation 105:1348–1353

    Article  CAS  PubMed  Google Scholar 

  • Green A (1987) Adenosine receptor down-regulation and insulin resistance following prolonged incubation of adipocytes with an A1 adenosine receptor agonist. J Biol Chem 262:15702–15707

    CAS  PubMed  Google Scholar 

  • Green A, Johnson JL, Milligan G (1990) Down-regulation of Gi subtypes by prolonged incubation of adipocytes with an A1 adenosine receptor agonist. J Biol Chem 265:5206–5210

    CAS  PubMed  Google Scholar 

  • Greenberg B, Thomas I, Banish D, Goldman S, Havranek E, Massie B, Zhu Y, Ticho B, Abraham WT (2007) Effects of multiple oral doses of an A1 adenosine antagonist, BG9928, in patients with heart failure. J Am Coll Cardiol 50:600–606

    Article  CAS  PubMed  Google Scholar 

  • Hess S (2001) Recent advances in adenosine receptor antagonist research. Expert Opin Ther Patents 11:1533–1561

    Article  CAS  Google Scholar 

  • Hoffman BB, Chang H, Dall’Agilo E, Reaven GM (1986) Desensitization of adenosine receptor-mediated inhibition of lipolysis. The mechanism involves the development of enhanced cyclic adenosine monophosphate accumulation in tolerant adipocytes. J Clin Invest 78:185–190

    CAS  Google Scholar 

  • Hosokawa T, Yamauchi M, Yamamoto Y, Iwata K, Mochizuki H, Kato Y (2002) Role of the lipid emulsion on an injectable formulation of lipophilic KW-3902, a newly synthesized adenosine A1-receptor antagonist. Biol Pharm Bull 25:492–498

    Article  CAS  PubMed  Google Scholar 

  • IJzerman AP, van der Wenden NM, van Galen PJM, Jacobson KA (1995) Molecular modeling of adenosine A1 and A2a receptors. In: Belardinelli L, Pelleg A (eds) Adenosine and adenine nucleotides: from molecular biology to integrative physiology. Kluwer, Boston, MA, pp 27–37

    Google Scholar 

  • Itani SI, Ruderman NB, Schmieder F, Boden G (2002) Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol protein kinase C and IKappaB-alpha. Diabetes 51:2005–2011

    Article  CAS  PubMed  Google Scholar 

  • Jacobson KA, Gao ZG (2006) Adenosine receptors as therapeutic targets. Nat Rev Drug Disc 5:247–264

    Article  CAS  Google Scholar 

  • Jagtap P, Szabo C, Salzman AL (2005) Purine derivatives as adenosine A1 receptor agonists and methods of use thereof. WO Patent Appl 2005/117910

    Google Scholar 

  • Kalk P, Eggert B, Relle K, Godes M, Heiden S, Sharkovska Y, Fischer Y, Ziegler D, Bielenberg GW, Hocher B (2007) The adenosine A1 receptor antagonist SLV320 reduces myocardial fibrosis in rats with 5/6 nephrectomy without affecting blood pressure. Br J Pharmacol 151:1025–1032

    Article  CAS  PubMed  Google Scholar 

  • Khimenko PL, Moore TM, Hill LW, Wilson PS, Coleman S, Rizzo A, Taylor AE (1995) Adenosine A2 receptors reverse ischemia-reperfusion lung injury independent of beta-receptors. J Appl Physiol 78:990–996

    CAS  PubMed  Google Scholar 

  • Kiesman WF, Zhao J, Conlon PR, Dowling JE, Petter RC, Lutterodt F, Jin X, Smits G, Fure M, Jayaraj A, Kim J, Sullivan GW, Linden J (2006a) Potent and orally bioavailable 8-bicyclo[2.2.2]octylxanthines as adenosine A1 receptor antagonists. J Med Chem 49:7119–7131

    Article  CAS  PubMed  Google Scholar 

  • Kiesman WF, Zhao J, Conlon PR, Petter RC, Jin X, Smits G, Lutterodt F, Sullivan GW, Linden J (2006b) Norbornyllactone-substituted xanthines as adenosine A1 receptor antagonists. Bioorg Med Chem 14:3654–3661

    Article  CAS  PubMed  Google Scholar 

  • Kossel A (1888) Über eine neue Base aus dem Pflanzenreich. Chem Ber 21:2164–2167

    Article  Google Scholar 

  • Lerman BB, Belardinelli L (1991) Cardiac electrophysiology of adenosine. Basis and clinical concepts. Circulation 83:1499–1509

    CAS  Google Scholar 

  • Liu GS, Thornton J, Van Winkle DM, Stanely AW, Olsson RA, Downey JM (1991) Protection against infarction afforded by preconditioning is mediated by A1 adenosine receptors in rabbit heart. Circulation 84:350–356

    CAS  PubMed  Google Scholar 

  • Magata S, Taniguchi M, Suzuki T, Shimamura T, Fukai M, Furukawa H, Fujita M, Todo S (2007) The effect of antagonism of adenosine A1 receptor against ischemia and reperfusion injury of the liver. J Surg Res 139:7–14

    Article  CAS  PubMed  Google Scholar 

  • Merkel LA, Hawkins ED, Colussi DJ, Greenland BD, Smits GJ, Perrone MH, Cox BF (1995) Cardiovascular and antilipolytic effects of the adenosine agonist GR79236. Pharmacology 51:224–36

    Article  CAS  PubMed  Google Scholar 

  • Mizumura T, Auchampach JA, Linden J, Burns RF, Gross GJ (1996) PD 81,723 an allosteric enhancer of the A1 adenosine receptor, lowers the threshold for ischemic preconditioning in dogs. Circ Res 79:415–423

    CAS  PubMed  Google Scholar 

  • Miura T, Tsuchida A (1999) Adenosine and preconditioning revisited. Clin Exp Pharm Physiol 26:92–99

    Article  CAS  Google Scholar 

  • Moro S, Gao Z.-G, Jacobson KA, Spalluto G (2006) Progress in the pursuit of therapeutic adenosine receptor antagonists. Med Res Rev 26:131–159

    Article  CAS  PubMed  Google Scholar 

  • Morrison CF, Elzein E, Jiang B, Ibrahim P, Maa T, Wu L, Zeng D, Fong I, Lustig D, Leung K, Zablocki J (2004) Structure–affinity relationships of 5-aromatic ethers and 5-aromatic sulfides as partial A1 adenosine agonists, potential supraventricular anti-arrhythmic agents. Bioorg Med Lett 14:3793–3797

    Article  CAS  Google Scholar 

  • Nonaka H, Ichimura M, Takeda M, Kanda T, Shimada J, Suzuki F, Kase H (1996) KW-3902, a selective high affinity antagonist for adenosine A1 receptors. Br J Pharmacol 117:1645–1652

    CAS  PubMed  Google Scholar 

  • Novacardia, Inc. (2007) Pilot phase 3 results of Novacardia’s KW-3902 for acute congestive heart failure. In: Heart Failure Congress 2007, Hamburg, Germany, 9–12 June 2007 (see http://www.medicalnewstoday.com/articles/73876.php)

  • Obata H, Li X, Eisenach JC (2003) A synergistic effect of intrathecal administration of T62 and clonidine in the rat postoperative pain model. In: 33rd Annu Meet Soc Neurosci Proc, New Orleans, LA, 8–12 Nov 2003, Abstract 589.7

    Google Scholar 

  • Pan H.-L, Xu Z, Leung E, Eisenach JC (2001) Allosteric adenosine modulation to reduce allodynia. Anesthesiology 95:416

    Article  CAS  PubMed  Google Scholar 

  • Peralta C, Hotter G, Closa D, Prats N, Xaus C, Gelpi E, Rosello-Catafau J (1999) The protective role of adenosine in inducing nitric oxide synthesis in rat liver ischemia preconditioning is mediated by activation of adenosine A2 receptors. Hepatology 29:126–132

    Article  CAS  PubMed  Google Scholar 

  • Peterman C, Sanoski CA (2005) Tecadenoson: a novel, selective A1 adenosine receptor agonist. Cardiol Rev 13:315–321

    Article  PubMed  Google Scholar 

  • Pfister JR, Bellardinelli L, Lee G, Lum RT, Milner P, Stanley WC, Linden J, Baker SP, Schreiner G (1997) Synthesis and biological evaluation of the enantiomers of the potent and selective A1-adenosine antagonist 1,3-dipropyl-8-[2-(5,6-epoxynorbonyl)]-xanthine. J Med Chem 40:1773–1778

    Article  CAS  PubMed  Google Scholar 

  • Prystowsky EN, Niazi I, Curtis AB, Wilber DJ, Bahnson T, Ellenbogen K, Dhalla A, Bloomfield DM, Gold M, Kadish A, Fogel RI, Gonzalez MD, Belardinelli L, Shreeniwas R, Wolff AA (2003) Termination of paroxysmal supraventricular tachycardia by tecadenoson (CVT-510), a novel A1-adenosine receptor agonist. J Am Coll Cardiol 42:1098–1102

    Article  CAS  PubMed  Google Scholar 

  • Qu X, Cooney G, Donnelly R (1997) Short-term metabolic and haemodynamic effects of GR79236 in normal and fructose-fed rats. Eur J Pharmacol 338:269–276

    Article  CAS  PubMed  Google Scholar 

  • Roden, M, Price, TB, Perseghin, G, Petersen, KF, Rothman, DL, Cline, GW, Shulman, GI (1996) Mechanism of free fatty acid-induced insulin resistance in humans. J Clin Investig 97: 2859–2865

    Article  CAS  PubMed  Google Scholar 

  • Sako Y, Grill VE (1990) A 48-hours lipid infusion in the rat time-dependently inhibits glucose-induced insulin secretion and B cell oxidation through a process likely coupled to fatty acid oxidation. Endocrinology 127:1580–1589

    Article  CAS  PubMed  Google Scholar 

  • Shamim MT, Ukena D, Padgett WL, Hong O, Daly JW (1988) 8-Aryl-and 8-cycloalkyl-1,3-dipropylxanthines: further potent and selective antagonists for A1-adenosine receptors. J Med Chem 31:613–617

    Article  CAS  PubMed  Google Scholar 

  • Shimada J, Suzuki F, Nonaka H, Karasawa A, Mizumoto H, Ohno T, Kubo K, Ishii A (1991) 8-(Dicyclopropylmethyl)-1,3 dipropylxanthine: a potent and selective adenosine A1, antagonist with renal protective and diuretic activities. J Med Chem 34:466–469

    Article  CAS  PubMed  Google Scholar 

  • Shimada J, Suzuki F, Nonaka H, Ishii A (1992) 8-Polycycloalkyl-1,3-dipropylxanthines as potent and selective antagonists for A1-adenosine receptors. J Med Chem 35:924–930

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Wu L, Shryock JC, Beralinelli, L (2002) Selective attenuation of isoproterenol-stimulated arrhythmic activity by a partial agonist of adenosine A1 receptor. Circulation 105:118–123

    Article  CAS  PubMed  Google Scholar 

  • Srinivas M, shryock JC, Dennis DM, Baker SP, Beraldinelli L (1997) Differential A1 adenosine receptor reserve for two actions of adenosine on guinea pig atrial myocytes. Mol Pharmacol 52:683–691

    Google Scholar 

  • Stephenson RP (1997) A modification of receptor theory. Br J Pharmacol 120:106–120

    CAS  PubMed  Google Scholar 

  • Suzuki F, Shimada J, Mizumoto H, Karasawa A, Kubo K, Nonaka H, Ishii A, Kawakita T (1992) Adenosine A1 antagonists. 2. Structure–activity relationships on diuretic activities and protective effects against acute renal failure. J Med Chem 35:3066–3075

    Article  CAS  PubMed  Google Scholar 

  • Ticho B, Whalley E, Gill A, Lutterodt F, Jin X, Auchampach J, Smits G (2003) Renal effects of BG9928, an A1 adenosine receptor antagonist, in rats and nonhuman primates. Drug Dev Res 58:486–492

    Article  CAS  Google Scholar 

  • Van der Klein PAM, Kourounakis AP, IJzerman AP (1999) Allosteric modulation of the adenosine A1 receptor. Synthesis and biological evaluation of novel 2-amino-3-benzoylthiophenes as allosteric enhancers of agonist binding. J Med Chem 42:3629–3635

    Article  PubMed  CAS  Google Scholar 

  • van Galen PJM, Stiles GL, Michaels G, Jacobson KA (1992) Adenosine A1 and A2 receptors: structure–function relationships. Med Res Rev 12:423–471

    Article  PubMed  Google Scholar 

  • Vu CB, Kiesman WF, Conlon PR, et al (2006) Tricyclic imidazoline derivatives as potent and selective adenosine A1 receptor antagonists. J Med Chem 49:7132–7139

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Shryock JC, Belardinelli L (1996) Cellular basis for the negative dromotropic effect of adenosine on rabbit single atrioventricular nodal cell. Circ Res 78:697–706

    CAS  PubMed  Google Scholar 

  • Webster JM, Heseltine L, Taylor R (1996) In vitro effect of adenosine agonist GR79236 on insulin sensitivity of glucose utilization in rat soleus and human rectus abdominus muscle. Biochim Biophys Acta 1316:109–113

    PubMed  Google Scholar 

  • Wu L, Belardinelli L, Zablocki JA, Palle V, Shryock JC (2001) A partial agonist of the A1-adenosine receptor selectively slows AV conduction in guinea pig hearts. Am J Physiol Heart Cir 280:H334–H343

    CAS  Google Scholar 

  • Yan L, Burbiel JC, Maass A, Muller CE (2003) Adenosine receptor agonists from basic medicinal chemistry to clinical development. Expert Opin Emerg Drugs 8:537–576

    Article  CAS  PubMed  Google Scholar 

  • Yao K (2000) Effect of KW-3902, a selective adenosine A1-receptor antagonist, on accumulation of gentamicin in the proximal renal tubules in rats. Yakugaku Zasshi 120:801–805

    CAS  PubMed  Google Scholar 

  • Yao K, Heyne N, Erley CM, Risler T, Osswald H (2001) The selective adenosine A1 receptor antagonist KW-3902 prevents radiocontrast media-induced nephropathy in rats with chronic nitric oxide deficiency. Eur J Pharmacol 414:99–104

    Article  CAS  PubMed  Google Scholar 

  • Yuzlenko O, Kieć-Kononowicz K (2006) Potent adenosine A1 and A2A receptors antagonists: recent developments. Curr Med Chem 13:3609–3625

    Article  CAS  PubMed  Google Scholar 

  • Zablocki JA, Wu L, Shryock J, Belardinelli L (2004) Partial A(1) adenosine receptor agonists from a molecular perspective and their potential use as chronic ventricular rate control agents during atrial fibrillation (AF). Curr Top Med Chem 4:839–54

    Article  CAS  PubMed  Google Scholar 

  • Zannikos PN, Rohatagi S, Jensen BK (2001) Pharmacokinetic-pharmacodynamic modeling of the antilipolytic effects of an adenosine receptor agonist in healthy volunteers. J Clin Pharmacol 41:61–69

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William F. Kiesman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kiesman, W.F., Elzein, E., Zablocki, J. (2009). A1 Adenosine Receptor Antagonists, Agonists, and Allosteric Enhancers. In: Wilson, C., Mustafa, S. (eds) Adenosine Receptors in Health and Disease. Handbook of Experimental Pharmacology, vol 193. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89615-9_2

Download citation

Publish with us

Policies and ethics