Skip to main content

Recent Developments in Adenosine A2A Receptor Ligands

  • Chapter
  • First Online:
Adenosine Receptors in Health and Disease

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 193))

Abstract

The development of potent and selective agonists and antagonists of adenosine receptors (ARs) has been a target of medicinal chemistry research for several decades, and recently the US Food and Drug Administration has approved LexiscanTM, an adenosine derivative substituted at the 2 position, for use as a pharmacologic stress agent in radionuclide myocardial perfusion imaging. Currently, some other adenosine A2A receptor (A2AAR) agonists and antagonists are undergoing preclinical testing and clinical trials. While agonists are potent antiinflammatory agents also showing hypotensive effects, antagonists are being developed for the treatment of Parkinson’s disease.

However, since there are still major problems in this field, including side effects, low brain penetration (for the targeting of CNS diseases), short half-life, or lack of in vivo effects, the design and development of new AR ligands is a hot research topic.

This review presents an update on the medicinal chemistry of A2AAR agonists and antagonists, and stresses the strong need for more selective ligands at the human A2AAR subtype, in particular in the case of agonists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADA:

Adenosine deaminase

Ado:

Adenosine

AK:

Adenosine kinase

AR:

Adenosine receptor

CCPA:

2-Chloro-N 6-cyclopentyladenosine

CHA:

N 6-Cyclohexyladenosine

CHO:

Chinese hamster ovarian

CNS:

Central nervous system

CPA:

N 6-Cyclopentyladenosine

HEAdo:

2-(Hexyn-1-yl)adenosine

HENECA:

2-Hexynyl-NECA

MECA:

N-Methylcarboxamidoadenosine

NECA:

N-Ethylcarboxamidoadenosine

PEAdo:

2-Phenylethynyladenosine

PENECA:

2-PhenylethynylNECA

PHPAdo:

2-Phenylhydroxypropynyladenosine

PHPNECA:

2-PhenyhydroxypropynylNECA

PIA:

N 6-(2-Phenylisopropyl)adenosine

QSAR:

Quantitative structure–activity relationships

References

  • Abiru T, Miyashita T, Watanabe Y, Yamaguchi T, Machida H, Matsuda A (1992) Nucleosides and nucleotides. 107. 2-(cycloalkylalkynyl)adenosines: adenosine A2 receptor agonists with potent antihypertensive effects. J Med Chem 35:2253–2260

    PubMed  CAS  Google Scholar 

  • Abiru T, Endo K, Machida H (1995) Differential vasodilatory action of 2-octynyladenosine (YT-146), an adenosine A2 receptor agonist, in the isolated rat femoral artery and vein. Eur J Pharmacol 281:9–15

    PubMed  CAS  Google Scholar 

  • Akkari R, Burbiel JC, Hockemeyer J, Müller CE (2006) Recent progress in the development of adenosine receptor ligands as antiinflammatory drugs. Curr Top Med Chem 6:1375–1399

    PubMed  CAS  Google Scholar 

  • Alanine A, Anselm L, Steward L, Thomi S, Vifian W, Groaning MD (2004) Synthesis and SAR evaluation of 1,2,4-triazoles as A2A receptor antagonists. Bioorg Med Chem Lett 14:817–821

    PubMed  CAS  Google Scholar 

  • Alexander SP, Millns PJ (2001) [3H]ZM241385—an antagonist radioligand for adenosine A2A receptors in rat brain. Eur J Pharmacol 411:205–210

    PubMed  CAS  Google Scholar 

  • Baraldi PG, Manfredini S, Simoni D, Zappaterra L, Zocchi C, Dionisotti S, Ongini E (1994) Synthesis of new pyrazolo[4,3-e]1,2,4-triazolo[1,5-c] pyrimidine and 1,2,3-triazolo[4, 5-e]1,2,4-triazolo[1,5-c] pyrimidine displaying potent and selective activity as A2A adenosine receptor antagonists. Bioorg Med Chem Lett 4:2539–2544

    CAS  Google Scholar 

  • Baraldi PG, Cacciari B, Spalluto G, Pineda de las Infantas y Villatoro MJ, Zocchi C, Dionisotti S, Ongini E (1996a) Pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine derivatives: potent and selective A2A adenosine antagonists. J Med Chem 39:1164–1171

    Google Scholar 

  • Baraldi PG, Cacciari B, Spalluto G, Pineda de las Infants MJ, Zocchi C, Ferrara S, Dionisotti S, Ferra DS (1996b) 1,2,3-Triazolo[5,4-e]1,2,4-triazolo[1,5-c]pyrimidine derivatives: a new class of A2A adenosine receptor antagonists. Farmaco 51:297–300

    Google Scholar 

  • Baraldi PG, Cacciari B, Pineda de Las Infantas MJ, Romagnoli R, Spalluto G, Volpini R, Costanzi S, Vittori S, Cristalli G, Melman N, Park KS, Ji XD, Jacobson KA (1998a) Synthesis and biological activity of a new series of N 6-arylcarbamoyl, 2-(Ar)alkynyl-N 6-arylcarbamoyl, and N 6-carboxamido derivatives of adenosine-5-N-ethyluronamide as A1 and A3 adenosine receptor agonists. J Med Chem 41:3174–3185

    PubMed  CAS  Google Scholar 

  • Baraldi PG, Cacciari B, Spalluto G, Bergonzoni M, Dionisotti S, Ongini E, Varani K, Borea PA (1998b) Design, synthesis, and biological evaluation of a second generation of pyrazolo[4, 3-e]-1,2,4-triazolo[1,5-c]pyrimidines as potent and selective A2A adenosine receptor antagonists. J Med Chem 41:2126–2133

    PubMed  CAS  Google Scholar 

  • Baraldi PG, Cacciari B, Romagnoli R, Spalluto G, Moro S, Klotz KN, Leung E, Varani K, Gessi S, Merighi S, Borea PA (2000) Pyrazolo[4,3-e]1,2,4-triazolo[1,5-c]pyrimidine derivatives as highly potent and selective human A3 adenosine receptor antagonists: influence of the chain at the N(8) pyrazole nitrogen. J Med Chem 43:4768–4780

    PubMed  CAS  Google Scholar 

  • Baraldi PG, Cacciari B, Romagnoli R, Klotz KN, Spalluto G, Varani K, Gessi S, Merighi S, Borea PA (2001) Pyrazolo[4,3-e]1,2,4-triazolo[1,5-c]pyrimidine derivatives as adenosine receptor ligands: a starting point for searching for A2B adenosine receptor antagonists. Drug Dev Res 53:225–235

    CAS  Google Scholar 

  • Baraldi PG, Cacciari B, Romagnoli R, Spalluto G, Monopoli A, Ongini E, Varani K, Borea PA (2002) 7-Substituted 5-amino-2-(2-furyl)pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidines as A2A adenosine receptor antagonists: a study on the importance of modifications at the side chain on the activity and solubility. J Med Chem 45:115–126

    PubMed  CAS  Google Scholar 

  • Baraldi PG, Tabrizi MA, Gessi S, Borea PA (2008) Adenosine receptor antagonists: translating medicinal chemistry and pharmacology into clinical utility. Chem Rev 108:238–263

    PubMed  CAS  Google Scholar 

  • Beukers MW, Chang LC, von Frijtag Drabbe Kunzel JK, Mulder-Krieger T, Spanjersberg RF, Brussee J, IJzerman AP (2004) New, non-adenosine, high-potency agonists for the human adenosine A2B receptor with an improved selectivity profile compared to the reference agonist N-ethylcarboxamidoadenosine. J Med Chem 47:3707–3709

    PubMed  CAS  Google Scholar 

  • Bilkei-Gorzo A, Abo-Salem OM, Hayallah AM, Michel K, Müller CE, Zimmer A (2008) Adenosine receptor subtype-selective antagonists in inflammation and hyperalgesia. Naunyn Schmiedebergs Arch Pharmacol 377:65–76

    PubMed  CAS  Google Scholar 

  • Bosch MP, Campos F, Niubo I, Rosell G, Diaz JL, Brea J, Loza MI, Guerrero A (2004) Synthesis and biological activity of new potential agonists for the human adenosine A2A receptor. J Med Chem 47:4041–4053

    PubMed  CAS  Google Scholar 

  • Brambilla R, Cottini L, Fumagalli M, Ceruti S, Abbracchio MP (2003) Blockade of A2A adenosine receptors prevents basic fibroblast growth factor-induced reactive astrogliosis in rat striatal primary astrocytes. Glia 43:190–194

    PubMed  Google Scholar 

  • Bruns RF (1980) Adenosine receptor activation in human fibroblasts: nucleoside agonists and antagonists. Can J Physiol Pharmacol 58:673–691

    PubMed  CAS  Google Scholar 

  • Bruns RF, Lu GH, Pugsley TA (1986) Characterization of the A2 adenosine receptor labeled by [3H]NECA in rat striatal membranes. Mol Pharmacol 29:331–346

    PubMed  CAS  Google Scholar 

  • Cacciari B, Pastorin G, Spalluto G (2003) Medicinal chemistry of A2A adenosine receptor antagonists. Curr Top Med Chem 3:403–411

    PubMed  CAS  Google Scholar 

  • Camaioni E, Di Francesco E, Vittori S, Volpini R, Cristalli G (1997) Adenosine receptor agonists: synthesis and biological evaluation of the diastereoisomers of 2-(3-hydroxy-3-phenyl-1-propyn-1-yl)NECA. Bioorg Med Chem 5:2267–2275

    PubMed  CAS  Google Scholar 

  • Camaioni E, Costanzi S, Vittori S, Volpini R, Klotz KN, Cristalli G (1998) New substituted 9-alkylpurines as adenosine receptor ligands. Bioorg Med Chem 6:523–533

    PubMed  CAS  Google Scholar 

  • Carriba P, Ortiz O, Patkar K, Justinova Z, Stroik J, Themann A, Müller C, Woods AS, Hope BT, Ciruela F, Casado V, Canela EI, Lluis C, Goldberg SR, Moratalla R, Franco R, Ferré S (2007) Striatal adenosine A2A and cannabinoid CB1 receptors form functional heteromeric complexes that mediate the motor effects of cannabinoids. Neuropsychopharmacology 32:2249–2259

    PubMed  CAS  Google Scholar 

  • Caulkett PWR, Jones G, McPartlin M, Renshaw ND, Stewart SK, Wright B (1995) Adenine isosteres with bridgehead nitrogen. Part 1. Two independent syntheses of the [1,2,4]triazolo[1,5-a][1,3,5]triazine ring system leading to a range of substituents in the 2, 5 and 7 positions. J Chem Soc Perkin Trans 1:801

    Google Scholar 

  • Chebib M, McKeveney D, Quinn RJ (2000) 1-Phenylpyrazolo[3,4-d]pyrimidines; structure–activity relationships for C6 substituents at A1 and A2A adenosine receptors. Bioorg Med Chem 8:2581–2590

    PubMed  CAS  Google Scholar 

  • Colotta V, Catarzi D, Varano F, Cecchi L, Filacchioni G, Martini C, Trincavelli L, Lucacchini A (1999) 4-Amino-6-benzylamino-1,2-dihydro-2-phenyl-1,2,4-triazolo [4,3-alpha]-quinoxalin-1-one: a new A2A adenosine receptor antagonist with high selectivity versus A1 receptors. Arch Pharm 332:39–41

    CAS  Google Scholar 

  • Colotta V, Catarzi D, Varano F, Cecchi L, Filacchioni G, Martini C, Trincavelli L, Lucacchini A (2000) 1,2,4-Triazolo[4,3-a]quinoxalin-1-one: a versatile tool for the synthesis of potent and selective adenosine receptor antagonists. J Med Chem 43:1158–1164

    PubMed  CAS  Google Scholar 

  • Colotta V, Catarzi D, Varano F, Filacchioni G, Martini C, Trincavelli L, Lucacchini A (2003) Synthesis of 4-amino-6-(hetero)arylalkylamino-1,2,4-triazolo[4,3-a]quinoxalin-1-one derivatives as potent A2A adenosine receptor antagonists. Bioorg Med Chem 11:5509–5518

    PubMed  CAS  Google Scholar 

  • Cristalli G (2000) Patent no WO2001062768

    Google Scholar 

  • Cristalli G, Grifantini M, Vittori S, Balduini W, Cattabeni F (1985) Adenosine and 2-chloadenosine deaza analogues as adenosine receptor agonists. Nucleosides Nucleotides 4:625–639

    CAS  Google Scholar 

  • Cristalli G, Franchetti P, Grifantini M, Vittori S, Klotz KN, Lohse MJ (1988) Adenosine receptor agonists: synthesis and biological evaluation of 1-deaza analogues of adenosine derivatives. J Med Chem 31:1179–1183

    PubMed  CAS  Google Scholar 

  • Cristalli G, Eleuteri A, Vittori S, Volpini R, Lohse MJ, Klotz KN (1992) 2-Alkynyl derivatives of adenosine and adenosine-5-N-ethyluronamide as selective agonists at A2 adenosine receptors. J Med Chem 35:2363–2368

    PubMed  CAS  Google Scholar 

  • Cristalli G, Vittori S, Thompson RD, Padgett WL, Shi D, Daly JW, Olsson RA (1994a) Inhibition of platelet aggregation by adenosine receptor agonists. Naunyn–Schmiedeberg’s Arch Pharmacol 349:644–650

    Google Scholar 

  • Cristalli G, Volpini R, Vittori S, Camaioni E, Monopoli A, Conti A, Dionisotti S, Zocchi C, Ongini E (1994b) 2-Alkynyl derivatives of adenosine-5-N-ethyluronamide: selective A2 adenosine receptor agonists with potent inhibitory activity on platelet aggregation. J Med Chem 37:1720–1726

    PubMed  CAS  Google Scholar 

  • Cristalli G, Camaioni E, Vittori S, Volpini R, Borea PA, Conti A, Dionisotti S, Ongini E, Monopoli A (1995) 2-Aralkynyl and 2-heteroalkynyl derivatives of adenosine-5-N-ethyluronamide as selective A2A adenosine receptor agonists. J Med Chem 38:1462–1472

    PubMed  CAS  Google Scholar 

  • Cristalli G, Camaioni E, Di Francesco E, Volpini R, Vittori S (1996) Chemical and pharmacological profile of selective adenosine receptor agonists. In: Giardinà D, Piergentili S, Pigini M (eds) Perspectives in receptor research. Pharmaco Chemistry Library, Elsevier, Amsterdam, pp 165–180

    Google Scholar 

  • Cristalli G, Camaioni E, Costanzi S, Vittori S, Volpini R, Klotz KN (1998) Characterization of potent ligands at human recombinant adenosine receptors. Drug Dev Res 45:176–181

    CAS  Google Scholar 

  • Cristalli G, Costanzi S, Lambertucci C, Lupidi G, Vittori S, Volpini R, Camaioni E (2001) Adenosine deaminase: functional implications and different classes of inhibitors. Med Res Rev 21:105–128

    PubMed  CAS  Google Scholar 

  • Cristalli G, Lambertucci C, Taffi S, Vittori S, Volpini R (2003) Medicinal chemistry of adenosine A2A receptor agonists. Curr Top Med Chem 3:387–401

    PubMed  CAS  Google Scholar 

  • Cristalli G, Cacciari B, Dal Ben D, Lambertucci C, Moro S, Spalluto G, Volpini R (2007) Highlights on the development of A2A adenosine receptor agonists and antagonists. ChemMedChem 2:260–281

    PubMed  CAS  Google Scholar 

  • Cusack NJ, Hourani SM (1981) 5-N-Ethylcarboxamidoadenosine: a potent inhibitor of human platelet aggregation. Br J Pharmacol 72:443–447

    PubMed  CAS  Google Scholar 

  • CVT (2008) CV Therapeutics and Astellas announce FDA approval for Lexiscan(TM) (regadenoson) injection. http://www.cvt.com/PressRelease.aspx?releaseID=1128317

  • Dall’Igna OP, Fett P, Gomes MW, Souza DO, Cunha RA, Lara DR (2007) Caffeine and adenosine A2A receptor antagonists prevent beta-amyloid (25–35)-induced cognitive deficits in mice. Exp Neurol 203:241–245

    PubMed  Google Scholar 

  • Daly JW (1982) Adenosine receptors: targets for future drugs. J Med Chem 25:197–207

    PubMed  CAS  Google Scholar 

  • Daly JW, Padgett WL, Shamim MT (1986) Analogues of caffeine and theophylline: effect of structural alterations on affinity at adenosine receptors. J Med Chem 29:1305–1308

    PubMed  CAS  Google Scholar 

  • Daly JW, Hide I, Müller CE, Shamim M (1991) Caffeine analogs: structure–activity relationships at adenosine receptors. Pharmacology 42:309–321

    PubMed  CAS  Google Scholar 

  • Daly JW, Padgett WL, Secunda SI, Thompson RD, Olsson RA (1993) Structure-activity relationships for 2-substituted adenosines at A1 and A2 adenosine receptors. Pharmacology 46:91–100

    PubMed  CAS  Google Scholar 

  • de Zwart M, Link R, von Frijtag Drabbe Kunzel JK, Cristalli G, Jacobson KA, Townsend-Nicholson A, IJzerman AP (1998) A functional screening of adenosine analogues at the adenosine A2B receptor: a search for potent agonists. Nucleosides Nucleotides 17:969–985

    PubMed  Google Scholar 

  • de Zwart M, Kourounakis A, Kooijman H, Spek AL, Link R, von Frijtag Drabbe Kunzel JK, IJzerman AP (1999a) 5-N-substituted carboxamidoadenosines as agonists for adenosine receptors. J Med Chem 42:1384–1392

    PubMed  Google Scholar 

  • de Zwart M, Vollinga RC, Beukers MW, Sleegers DF, Von Frijtag Drabbe Künzel J, de Groote M, IJzerman AP (1999b) Potent antagonists for the human adenosine A2B receptor. Derivatives of the triazolotriazine adenosine receptor antagonist ZM241385 with high affinity. Drug Dev Res 48:95–103

    Google Scholar 

  • Del Giudice MR, Borioni A, Mustazza C, Gatta F, Dionisotti S, Zocchi C, Ongini E (1996) (E)-1-(Heterocyclyl or cyclohexyl)-2-[1,3,7-trisubstituted(xanthin-8-yl)]ethenes as adenosine A2A receptors antagonists. Eur J Med Chem 31:59–63

    Google Scholar 

  • DeMet EM, Chicz-DeMet A (2002) Localization of adenosine A2A-receptors in rat brain with [3H]ZM-241385. Naunyn–Schmiedeberg’s Arch Pharmacol 366:478–481

    Google Scholar 

  • Dionisotti S, Conti A, Sandoli D, Zocchi C, Gatta F, Ongini E (1994) Effects of the new A2 adenosine receptor antagonist 8FB-PTP, an 8-substituted pyrazolo-triazolo-pyrimidine, on in vitro functional models. Br J Pharmacol 112:659–665

    PubMed  CAS  Google Scholar 

  • Dionisotti S, Ferrara S, Molta C, Zocchi C, Ongini E (1996) Labeling of A2A adenosine receptors in human platelets by use of the new nonxanthine antagonist radioligand [3H]SCH 58261. J Pharmacol Exp Ther 278:1209–1214

    PubMed  CAS  Google Scholar 

  • Dionisotti S, Ongini E, Zocchi C, Kull B, Arslan G, Fredholm BB (1997) Characterization of human A2A adenosine receptors with the antagonist radioligand [3H]-SCH 58261. Br J Pharmacol 121:353–360

    PubMed  CAS  Google Scholar 

  • Dowling JE, Vessels JT, Haque S, Chang HX, van Vloten K, Kumaravel G, Engber T, Jin X, Phadke D, Wang J, Ayyub E, Petter RC (2005) Synthesis of [1,2,4]triazolo[1,5-a]pyrazines as adenosine A2A receptor antagonists. Bioorg Med Chem Lett 15:4809–4813

    PubMed  CAS  Google Scholar 

  • Drabczynska A, Schumacher B, Müller CE, Karolak-Wojciechowska J, Michalak B, Pekala E, Kiec-Kononowicz K (2003) Impact of the aryl substituent kind and distance from pyrimido[2, 1-f]purindiones on the adenosine receptor selectivity and antagonistic properties. Eur J Med Chem 38:397–402

    PubMed  CAS  Google Scholar 

  • Drabczynska A, Müller CE, Schumacher B, Hinz S, Karolak-Wojciechowska J, Michalak B, Pekala E, Kiec-Kononowicz K (2004) Tricyclic oxazolo[2,3-f]purinediones: potency as adenosine receptor ligands and anticonvulsants. Bioorg Med Chem 12:4895–4908

    PubMed  CAS  Google Scholar 

  • Drabczynska A, Müller CE, Lacher SK, Schumacher B, Karolak-Wojciechowska J, Nasal A, Kawczak P, Yuzlenko O, Pekala E, Kiec-Kononowicz K (2006) Synthesis and biological activity of tricyclic aryloimidazo-, pyrimido-, and diazepinopurinediones. Bioorg Med Chem 14:7258–7281

    PubMed  CAS  Google Scholar 

  • Drabczynska A, Müller CE, Schiedel A, Schumacher B, Karolak-Wojciechowska J, Fruzinski A, Zobnina W, Yuzlenko O, Kiec-Kononowicz K (2007) Phenylethyl-substituted pyrimido[2, 1-f]purinediones and related compounds: structure–activity relationships as adenosine A1 and A2A receptor ligands. Bioorg Med Chem 15:6956–6974

    PubMed  CAS  Google Scholar 

  • Eggbrecht H, Gossl M (2006) Regadenoson (CV Therapeutics/Astellas). Curr Opin Investig Drugs 7:264–271

    PubMed  Google Scholar 

  • El Yacoubi M, Ledent C, Parmentier M, Ongini E, Costentin J, Vaugeois JM (2001) In vivo labelling of the adenosine A2A receptor in mouse brain using the selective antagonist [3H]SCH 58261. Eur J Neurosci 14:1567–1570

    PubMed  CAS  Google Scholar 

  • Erickson RH, Hiner RN, Feeney SW, Blake PR, Rzeszotarski WJ, Hicks RP, Costello DG, Abreu ME (1991) 1,3,8-trisubstituted xanthines. Effects of substitution pattern upon adenosine receptor A1/A2 affinity. J Med Chem 34:1431–1435

    PubMed  CAS  Google Scholar 

  • Ferré S, Diamond I, Goldberg SR, Yao L, Hourani SM, Huang ZL, Urade Y, Kitchen I (2007) Adenosine A2A receptors in ventral striatum, hypothalamus and nociceptive circuitry implications for drug addiction, sleep and pain. Prog Neurobiol 83:332–347

    PubMed  Google Scholar 

  • Ferré S, Ciruela F, Borycz J, Solinas M, Quarta D, Antoniou K, Quiroz C, Justinova Z, Lluis C, Franco R, Goldberg SR (2008) Adenosine \({\mathrm{A}}_{1}\mbox{ \textendash }\mathrm{{A}_{2A}}\) receptor heteromers: new targets for caffeine in the brain. Front Biosci 13:2391–2399

    PubMed  Google Scholar 

  • Flhor A, Riemer C (2006) Patent no. WO 200507592

    Google Scholar 

  • Francis JE, Cash WD, Psychoyos S, Ghai G, Wenk P, Friedmann RC, Atkins C, Warren V, Furness P, Hyun JL, Stone GA, Desai M, Williams M (1988) Structure–activity profile of a series of novel triazoloquinazoline adenosine antagonists. J Med Chem 31:1014–1020

    PubMed  CAS  Google Scholar 

  • Francis JE, Webb RL, Ghai GR, Hutchison AJ, Moskal MA, deJesus R, Yokoyama R, Rovinski SL, Contardo N, Dotson R, Barclay B, Stone GA, Jarvis MF (1991) Highly selective adenosine A2 receptor agonists in a series of N-alkylated 2-aminoadenosines. J Med Chem 34:2570–2579

    PubMed  CAS  Google Scholar 

  • Fredholm BB, Lindstrom K, Dionisotti S, Ongini E (1998) [3H]SCH 58261, a selective adenosine A2A receptor antagonist, is a useful ligand in autoradiographic studies. J Neurochem 70:1210–1216

    Article  PubMed  CAS  Google Scholar 

  • Fredholm BB, Bättig K, Holmén J, Nehlig A, Zvartau EE (1999) Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 51:83–133

    PubMed  CAS  Google Scholar 

  • Fuxe K, Marcellino D, Genedani S, Agnati L (2007) Adenosine A2A receptors, dopamine D2 receptors and their interactions in Parkinson’s disease. Mov Disord 22:1990–2017

    PubMed  Google Scholar 

  • Gao Z, Li Z, Baker SP, Lasley RD, Meyer S, Elzein E, Palle V, Zablocki JA, Blackburn B, Belardinelli L (2001) Novel short-acting A2A adenosine receptor agonists for coronary vasodilation: inverse relationship between affinity and duration of action of A2A agonists. J Pharmacol Exp Ther 298:209–218

    PubMed  CAS  Google Scholar 

  • Gao ZG, Mamedova LK, Chen P, Jacobson KA (2004) 2-Substituted adenosine derivatives: affinity and efficacy at four subtypes of human adenosine receptors. Biochem Pharmacol 68:1985–1993

    PubMed  CAS  Google Scholar 

  • Gatta F, Del Giudice MR, Borioni A, Borea PA, Dionisotti S, Ongini E (1993) Synthesis of imidazo[1,2-c]pyrazolo[4,3-e]pyrimidines, pyrazolo[4,3-e]1,2,4-triazolo[1,5-c]pyrimidines and 1,2,4-triazolo[5,1-i]purines: new potent adenosine A2 receptor antagonists. Eur J Med Chem 28:569–577

    CAS  Google Scholar 

  • Gessi S, Varani K, Merighi S, Ongini E, Borea PA (2000) A2A adenosine receptors in human peripheral blood cells. Br J Pharmacol 129:2–11

    PubMed  CAS  Google Scholar 

  • Gonzalez MP, Teran C, Teijeira M, Gonzalez-Moa MJ (2005) GETAWAY descriptors to predicting A2A adenosine receptors agonists. Eur J Med Chem 40:1080–1086

    PubMed  CAS  Google Scholar 

  • Gordi T (2006) Patent no. WO2006044856

    Google Scholar 

  • Grahner B, Winiwarter S, Lanzner W, Müller CE (1994) Synthesis and structure–activity relationships of deazaxanthines: analogs of potent A1- and A2-adenosine receptor antagonists. J Med Chem 37:1526–1534

    PubMed  CAS  Google Scholar 

  • Hasan A, Hussain T, Mustafa SJ, Srivastava PC (1994) 2-Substituted thioadenine nucleoside and nucleotide analogues: synthesis and receptor subtype binding affinities (1). Bioconjug Chem 5:364–369

    PubMed  CAS  Google Scholar 

  • Hirani E, Gillies J, Karasawa A, Shimada J, Kase H, Opacka-Juffry J, Osman S, Luthra SK, Hume SP, Brooks DJ (2001) Evaluation of [4-O-methyl-11C]KW-6002 as a potential PET ligand for mapping central adenosine A2A receptors in rats. Synapse 42:164–176

    PubMed  CAS  Google Scholar 

  • Hockemeyer J, Burbiel JC, Müller CE (2004) Multigram-scale syntheses, stability, and photoreactions of A2A adenosine receptor antagonists with 8-styrylxanthine structure: potential drugs for Parkinson’s disease. J Org Chem 69:3308–3318

    PubMed  CAS  Google Scholar 

  • Holschbach MH, Bier D, Stusgen S, Wutz W, Sihver W, Coenen HH, Olsson RA (2006) Synthesis and evaluation of 7-amino-2-(2(3)-furyl)-5-phenylethylamino-oxazolo[5,4-d]pyrimidines as potential A2A adenosine receptor antagonists for positron emission tomography (PET). Eur J Med Chem 41:7–15

    PubMed  CAS  Google Scholar 

  • Homma H, Watanabe Y, Abiru T, Murayama T, Nomura Y, Matsuda A (1992) Nucleosides and nucleotides. 112. 2-(1-Hexyn-1-yl)adenosine-5-uronamides: a new entry of selective A2 adenosine receptor agonists with potent antihypertensive activity. J Med Chem 35:2881–2890

    PubMed  CAS  Google Scholar 

  • Hutchison AJ, Webb RL, Oei HH, Ghai GR, Zimmerman MB, Williams M (1989) CGS 21680C, an A2 selective adenosine receptor agonist with preferential hypotensive activity. J Pharmacol Exp Ther 251:47–55

    PubMed  CAS  Google Scholar 

  • Hutchison AJ, Williams M, de Jesus R, Yokoyama R, Oei HH, Ghai GR, Webb RL, Zoganas HC, Stone GA, Jarvis MF (1990) 2-(Arylalkylamino)adenosin-5-uronamides: a new class of highly selective adenosine A2 receptor ligands. J Med Chem 33:1919–1924

    PubMed  CAS  Google Scholar 

  • IJzerman AP, Von Frijtag Drabbe Kuenzel JK, Vittori S, Cristalli G (1994) Purine-substituted adenosine derivatives with small N 6-substituents as adenosine receptor agonists. Nucleosides Nucleotides 13:2267–2281

    CAS  Google Scholar 

  • IJzerman AP, van der Wenden NM (1997) Modulators of adenosine uptake, release, and inactivation. In: Jacobson KA, Jarvis MF (eds) Purinergic approaches in experimental therapeutics. Wiley-Liss, New York, pp 129–148

    Google Scholar 

  • Impagnatiello F, Bastia E, Ongini E, Monopoli A (2000) Adenosine receptors in neurological disorders. Emerg Ther Targets 4:635–663

    CAS  Google Scholar 

  • Ishiwata K, Noguchi J, Toyama H, Sakiyama Y, Koike N, Ishii S, Oda K, Endo K, Suzuki F, Senda M (1996) Synthesis and preliminary evaluation of [11C]KF17837, a selective adenosine A2A antagonist. Appl Radiat Isot 47:507–511

    PubMed  CAS  Google Scholar 

  • Ishiwata K, Sakiyama Y, Sakiyama T, Shimada J, Toyama H, Oda K, Suzuki F, Senda M (1997) Myocardial adenosine A2A receptor imaging of rabbit by PET with [11C]KF17837. Ann Nucl Med 11:219–225

    Article  PubMed  CAS  Google Scholar 

  • Ishiwata K, Noguchi J, Wakabayashi S, Shimada J, Ogi N, Nariai T, Tanaka A, Endo K, Suzuki F, Senda M (2000a) 11C-labeled KF18446: a potential central nervous system adenosine A2A receptor ligand. J Nucl Med 41:345–354

    PubMed  CAS  Google Scholar 

  • Ishiwata K, Ogi N, Shimada J, Nonaka H, Tanaka A, Suzuki F, Senda M (2000b) Further characterization of a CNS adenosine A2A receptor ligand [11C]KF18446 with in vitro autoradiography and in vivo tissue uptake. Ann Nucl Med 14:81–89

    PubMed  CAS  Google Scholar 

  • Ishiwata K, Shimada J, Wang WF, Harakawa H, Ishii S, Kiyosawa M, Suzuki F, Senda M (2000c) Evaluation of iodinated and brominated [11C]styrylxanthine derivatives as in vivo radioligands mapping adenosine A2A receptor in the central nervous system. Ann Nucl Med 14:247–253

    PubMed  CAS  Google Scholar 

  • Ishiwata K, Ogi N, Hayakawa N, Oda K, Nagaoka T, Toyama H, Suzuki F, Endo K, Tanaka A, Senda M (2002) Adenosine A2A receptor imaging with [11C]KF18446 PET in the rat brain after quinolinic acid lesion: comparison with the dopamine receptor imaging. Ann Nucl Med 16:467–475

    PubMed  CAS  Google Scholar 

  • Ishiwata K, Kawamura K, Kimura Y, Oda K, Ishii K (2003a) Potential of an adenosine A2A receptor antagonist [11C]TMSX for myocardial imaging by positron emission tomography: a first human study. Ann Nucl Med 17:457–462

    PubMed  CAS  Google Scholar 

  • Ishiwata K, Wang WF, Kimura Y, Kawamura K, Ishii K (2003b) Preclinical studies on [11C]TMSX for mapping adenosine A2A receptors by positron emission tomography. Ann Nucl Med 17:205–211

    PubMed  CAS  Google Scholar 

  • Jackson EK, Herzer WA, Suzuki F (1993) KF17837 is an A2 adenosine receptor antagonist in vivo. J Pharmacol Exp Ther 267:1304–1310

    PubMed  CAS  Google Scholar 

  • Jacobson KA, Gao ZG (2006) Adenosine receptors as therapeutic targets. Nat Rev Drug Discov 5:247–264

    PubMed  CAS  Google Scholar 

  • Jacobson KA, Kirk KL, Padgett W, Daly JW (1985) Probing the adenosine receptor with adenosine and xanthine biotin conjugates. FEBS Lett 184:30–35

    PubMed  CAS  Google Scholar 

  • Jacobson KA, Ukena D, Kirk KL, Daly JW (1986) [3H]Xanthine amine congener of 1,3-dipropyl-8-phenylxanthine: an antagonist radioligand for adenosine receptors. Proc Natl Acad Sci USA 83:4089–4093

    PubMed  CAS  Google Scholar 

  • Jacobson KA, Gallo-Rodriguez C, Melman N, Fischer B, Maillard M, van Bergen A, van Galen PJ, Karton Y (1993a) Structure–activity relationships of 8-styrylxanthines as A2-selective adenosine antagonists. J Med Chem 36:1333–1342

    PubMed  CAS  Google Scholar 

  • Jacobson KA, Shi D, Gallo-Rodriguez C, Manning M, Jr., Müller C, Daly JW, Neumeyer JL, Kiriasis L, Pfleiderer W (1993b) Effect of trifluoromethyl and other substituents on activity of xanthines at adenosine receptors. J Med Chem 36:2639–2644

    PubMed  CAS  Google Scholar 

  • Jacobson KA, Siddiqi SM, Olah ME, Ji XD, Melman N, Bellamkonda K, Meshulam Y, Stiles GL, Kim HO (1995) Structure–activity relationships of 9-alkyladenine and ribose-modified adenosine derivatives at rat A3 adenosine receptors. J Med Chem 38:1720–1735

    PubMed  CAS  Google Scholar 

  • Jacobson KA, Ji X, Li AH, Melman N, Siddiqui MA, Shin KJ, Marquez VE, Ravi RG (2000) Methanocarba analogues of purine nucleosides as potent and selective adenosine receptor agonists. J Med Chem 43:2196–2203

    PubMed  CAS  Google Scholar 

  • Jarvis MF, Schulz R, Hutchison AJ, Do UH, Sills MA, Williams M (1989) [3H]CGS 21680, a selective A2 adenosine receptor agonist directly labels A2 receptors in rat brain. J Pharmacol Exp Ther 251:888–893

    PubMed  CAS  Google Scholar 

  • Ji XD, Jacobson KA (1999) Use of the triazolotriazine [3H]ZM 241385 as a radioligand at recombinant human A2B adenosine receptors. Drug Des Discov 16:217–226

    PubMed  CAS  Google Scholar 

  • Kalda A, Yu L, Oztas E, Chen JF (2006) Novel neuroprotection by caffeine and adenosine A2A receptor antagonists in animal models of Parkinson’s disease. J Neurol Sci 248:9–15

    PubMed  CAS  Google Scholar 

  • Kelly M, Bailey A, Ledent C, Kitchen I, Hourani S (2004) Characterization of [3H]ZM 241385 binding in wild-type and adenosine A2A receptor knockout mice. Eur J Pharmacol 504:55–59

    PubMed  CAS  Google Scholar 

  • Kiec-Kononowicz K, Drabczynska A, Pekala E, Michalak B, Müller CE, Schumacher B, Karolak-Wojciechowska J, Duddeck H, Rockitt S, Wartchow R (2001) New developments in A1 and A2 adenosine receptor antagonists. Pure Appl Chem 73:1411–1420

    CAS  Google Scholar 

  • Kim YC, Ji XD, Jacobson KA (1996) Derivatives of the triazoloquinazoline adenosine antagonist (CGS15943) are selective for the human A3 receptor subtype. J Med Chem 39:4142–4148

    PubMed  CAS  Google Scholar 

  • Kiselgof E, Tulshian DB, Arik L, Zhang H, Fawzi A (2005) 6-(2-Furanyl)-9H-purin-2-amine derivatives as A2A adenosine antagonists. Bioorg Med Chem Lett 15:2119–2122

    PubMed  CAS  Google Scholar 

  • Klotz KN (2000) Adenosine receptors and their ligands. Naunyn–Schmiedeberg’s Arch Pharmacol 362:382–391

    Google Scholar 

  • Klotz KN, Lohse MJ, Schwabe U, Cristalli G, Vittori S, Grifantini M (1989) 2-Chloro-N 6- [3H]cyclopentyladenosine ([3H]CCPA)—a high affinity agonist radioligand for A1 adenosine receptors. Naunyn–Schmiedeberg’s Arch Pharmacol 340:679–683

    Google Scholar 

  • Klotz KN, Hessling J, Hegler J, Owman C, Kull B, Fredholm BB, Lohse MJ (1998) Comparative pharmacology of human adenosine receptor subtypes—characterization of stably transfected receptors in CHO cells. Naunyn-Schmiedeberg’s Arch Pharmacol 357:1–9

    CAS  Google Scholar 

  • Klotz KN, Camaioni E, Volpini R, Kachler S, Vittori S, Cristalli G (1999) 2-Substituted N-ethylcarboxamidoadenosine derivatives as high-affinity agonists at human A3 adenosine receptors. Naunyn–Schmiedeberg’s Arch Pharmacol 360:103–108

    Google Scholar 

  • Klotz KN, Kachler S, Lambertucci C, Vittori S, Volpini R, Cristalli G (2003) 9-Ethyladenine derivatives as adenosine receptor antagonists: 2- and 8-substitution results in distinct selectivities. Naunyn–Schmiedeberg’s Arch Pharmacol 367:629–634

    Google Scholar 

  • Knutsen LJ, Weiss SM (2001) KW-6002 (Kyowa Hakko Kogyo). Curr Opin Investig Drugs 2:668–673

    PubMed  CAS  Google Scholar 

  • Knutsen LJ, Lau J, Petersen H, Thomsen C, Weis JU, Shalmi M, Judge ME, Hansen AJ, Sheardown MJ (1999) N-substituted adenosines as novel neuroprotective A1 agonists with diminished hypotensive effects. J Med Chem 42:3463–3477

    PubMed  CAS  Google Scholar 

  • Lambertucci C, Volpini R, Costanzi S, Taffi S, Vittori S, Cristalli G (2003) 2-Phenylhydroxypropynyladenosine derivatives as high potent agonists at A2B adenosine receptor subtype. Nucleosides Nucleotides Nucleic Acids 22:809–812

    PubMed  CAS  Google Scholar 

  • Lambertucci C, Cristalli G, Dal Ben D, Kachare DD, Bolcato C, Klotz KN, Spalluto G, Volpini R (2007a) New 2,6,9-trisubstituted adenines as adenosine receptor antagonists: a preliminary SAR profile. Purinergic Signal 3:339–346

    PubMed  CAS  Google Scholar 

  • Lambertucci C, Vittori S, Mishra RC, Dal Ben D, Klotz KN, Volpini R, Cristalli G (2007b) Synthesis and biological activity of trisubstituted adenines as A2A adenosine receptor antagonists. Nucleosides Nucleotides Nucleic Acids 26:1443–1446

    PubMed  CAS  Google Scholar 

  • Ledent C, Vaugeois JM, Schiffmann SN, Pedrazzini T, El Yacoubi M, Vanderhaeghen JJ, Costentin J, Heath JK, Vassart G, Parmentier M (1997) Aggressiveness, hypoalgesia and high blood pressure in mice lacking the adenosine A2A receptor. Nature 388:674–678

    PubMed  CAS  Google Scholar 

  • Lohse MJ, Klotz KN, Schwabe U, Cristalli G, Vittori S, Grifantini M (1988) 2-Chloro-N 6- cyclopentyladenosine: a highly selective agonist at A1 adenosine receptors. Naunyn–Schmiedeberg’s Arch Pharmacol 337:687–689

    Google Scholar 

  • Marian T, Boros I, Lengyel Z, Balkay L, Horvath G, Emri M, Sarkadi E, Szentmiklosi AJ, Fekete I, Tron L (1999) Preparation and primary evaluation of [11C]CSC as a possible tracer for mapping adenosine A2A receptors by PET. Appl Radiat Isot 50:887–893

    PubMed  CAS  Google Scholar 

  • Massip S, Guillon J, Bertarelli D, Bosc JJ, Leger JM, Lacher S, Bontemps C, Dupont T, Müller CE, Jarry C (2006) Synthesis and preliminary evaluation of new 1- and 3-[1-(2-hydroxy-3-phenoxypropyl)]xanthines from 2-amino-2-oxazolines as potential A1 and A2A adenosine receptor antagonists. Bioorg Med Chem 14:2697–2719

    PubMed  CAS  Google Scholar 

  • Matasi JJ, Caldwell JP, Hao J, Neustadt B, Arik L, Foster CJ, Lachowicz J, Tulshian DB (2005) The discovery and synthesis of novel adenosine receptor (A2A) antagonists. Bioorg Med Chem Lett 15:1333–1336

    PubMed  CAS  Google Scholar 

  • Mathot RA, Van der Wenden EM, Soudijn W, IJzerman AP, Danhof M (1995) Deoxyribose analogues of N 6-cyclopentyladenosine (CPA): partial agonists at the adenosine A1 receptor in vivo. Br J Pharmacol 116:1957–1964

    PubMed  CAS  Google Scholar 

  • Matova MM, Nacheva RN, Boicheva SV (1997) QSAR analysis of 2-alkyloxy and 2-aralkyloxy adenosine A1- and A2-agonists. Eur J Med Chem 32:505–513

    CAS  Google Scholar 

  • Matsuda A, Shinozaki M, Yamaguchi T, Homma H, Nomoto R, Miyasaka T, Watanabe Y, Abiru T (1992) Nucleosides and nucleotides. 103. 2-Alkynyladenosines: a novel class of selective adenosine A2 receptor agonists with potent antihypertensive effects. J Med Chem 35:241–252

    PubMed  CAS  Google Scholar 

  • Melani A, Gianfriddo M, Vannucchi MG, Cipriani S, Baraldi PG, Giovannini MG, Pedata F (2006) The selective A2A receptor antagonist SCH 58261 protects from neurological deficit, brain damage and activation of p38 MAPK in rat focal cerebral ischemia. Brain Res 1073–1074:470–480

    PubMed  Google Scholar 

  • Mihara T, Mihara K, Yarimizu J, Mitani Y, Matsuda R, Yamamoto H, Aoki S, Akahane A, Iwashita A, Matsuoka N (2007) Pharmacological characterization of a novel, potent adenosine A1 and A2A receptor dual antagonist, 5-[5-amino-3-(4-fluorophenyl)pyrazin-2-yl]-1-isopropylpyridine-2(1H)-one (ASP5854), in models of Parkinson’s disease and cognition. J Pharmacol Exp Ther 323:708–719

    PubMed  CAS  Google Scholar 

  • Minetti P, Tinti MO, Carminati P, Castorina M, Di Cesare MA, Di Serio S, Gallo G, Ghirardi O, Giorgi F, Giorgi L, Piersanti G, Bartoccini F, Tarzia G (2005) 2-n-Butyl-9-methyl-8-[1,2,3]triazol-2-yl-9H-purin-6-ylamine and analogues as A2A adenosine receptor antagonists. Design, synthesis, and pharmacological characterization. J Med Chem 48:6887–6896

    PubMed  CAS  Google Scholar 

  • Mishina M, Ishiwata K, Kimura Y, Naganawa M, Oda K, Kobayashi S, Katayama Y, Ishii K (2007) Evaluation of distribution of adenosine A2A receptors in normal human brain measured with [11C]TMSX PET. Synapse 61:778–784

    PubMed  CAS  Google Scholar 

  • Monopoli A, Conti A, Zocchi C, Casati C, Volpini R, Cristalli G, Ongini E (1994) Pharmacology of the new selective A2A adenosine receptor agonist 2-hexynyl-5-N-ethylcarboxamidoadenosine. Arzneimittelforschung 44:1296–1304

    PubMed  CAS  Google Scholar 

  • Monopoli A, Lozza G, Forlani A, Mattavelli A, Ongini E (1998) Blockade of adenosine A2A receptors by SCH 58261 results in neuroprotective effects in cerebral ischaemia in rats. Neuroreport 9:3955–3959

    PubMed  CAS  Google Scholar 

  • Moro S, Gao ZG, Jacobson KA, Spalluto G (2006) Progress in the pursuit of therapeutic adenosine receptor antagonists. Med Res Rev 26:131–159

    PubMed  CAS  Google Scholar 

  • Müller CE (2000a) Adenosine receptor ligands—recent developments, part I. Agonists. Curr Med Chem 7:1269–1288

    Google Scholar 

  • Müller CE (2000b) A2A Adenosine receptor antagonists—future drugs for Parkinson’s disease? Drugs Fut 25:1043

    Google Scholar 

  • Müller CE, Ferré S (2007) Blocking striatal adenosine A2A receptors: a new strategy for basal ganglia disorders. Recent Patents CNS Drug Discov 2:1–21

    Google Scholar 

  • Müller CE, Scior T (1993) Adenosine receptors and their modulators. Pharm Acta Helv 68:77–111

    PubMed  Google Scholar 

  • Müller CE, Stein B (1996) Adenosine receptor antagonists: structures and potential therapeutic applications. Curr Pharm Des 2:501–530

    Google Scholar 

  • Müller CE, Geis U, Hipp J, Schobert U, Frobenius W, Pawlowski M, Suzuki F, Sandoval-Ramirez J (1997a) Synthesis and structure–activity relationships of 3,7-dimethyl-1-propargylxanthine derivatives, A2A-selective adenosine receptor antagonists. J Med Chem 40:4396–4405

    PubMed  Google Scholar 

  • Müller CE, Sauer R, Geis U, Frobenius W, Talik P, Pawlowski M (1997b) Aza-analogs of 8-styrylxanthines as A2A-adenosine receptor antagonists. Arch Pharm 330:181–189

    Google Scholar 

  • Müller CE, Schobert U, Hipp J, Geis U, Frobenius W, Pawlowski M (1997c) Configurationally stable analogs of styrylxanthines as A2A adenosine receptor antagonist. Eur J Med Chem 32:709–719

    Google Scholar 

  • Müller CE, Deters D, Dominik A, Pawlowski M (1998a) Syntheses of paraxanthine and isoparaxanthine analogs (1,7- and 1,9-substituted xanthine derivatives). Synthesis 93:1428–1436

    Google Scholar 

  • Müller CE, Sandoval-Ramirez J, Schobert U, Geis U, Frobenius W, Klotz KN (1998b) 8-(Sulfostyryl)xanthines: water-soluble A2A-selective adenosine receptor antagonists. Bioorg Med Chem 6:707–719

    PubMed  Google Scholar 

  • Müller CE, Maurinsh J, Sauer R (2000) Binding of [3H]MSX-2 (3-(3-hydroxypropyl)-7-methyl-8-(m-methoxystyryl)-1-propargylxanthine) to rat striatal membranes—a new, selective antagonist radioligand for A2A adenosine receptors. Eur J Pharm Sci 10:259–265

    PubMed  Google Scholar 

  • Müller CE, Thorand M, Qurishi R, Diekmann M, Jacobson KA, Padgett WL, Daly JW (2002) Imidazo[2,1-i]purin-5-ones and related tricyclic water-soluble purine derivatives: potent A2A- and A3-adenosine receptor antagonists. J Med Chem 45:3440–3450

    PubMed  Google Scholar 

  • Murphree LJ, Marshall MA, Rieger JM, MacDonald TL, Linden J (2002) Human A2A adenosine receptors: high-affinity agonist binding to receptor-G protein complexes containing Gbeta(4). Mol Pharmacol 61:455–462

    PubMed  CAS  Google Scholar 

  • Neustadt BR, Hao J, Lindo N, Greenlee WJ, Stamford AW, Tulshian D, Ongini E, Hunter J, Monopoli A, Bertorelli R, Foster C, Arik L, Lachowicz J, Ng K, Feng KI (2007) Potent, selective, and orally active adenosine A2A receptor antagonists: arylpiperazine derivatives of pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidines. Bioorg Med Chem Lett 17:1376–1380

    PubMed  CAS  Google Scholar 

  • Niiya K, Olsson RA, Thompson RD, Silvia SK, Ueeda M (1992a) 2-(N -alkylidenehydrazino)adenosines: potent and selective coronary vasodilators. J Med Chem 35:4557–4561

    PubMed  CAS  Google Scholar 

  • Niiya K, Thompson RD, Silvia SK, Olsson RA (1992b) 2-(N -aralkylidenehydrazino)adenosines: potent and selective coronary vasodilators. J Med Chem 35:4562–4566

    PubMed  CAS  Google Scholar 

  • Nonaka Y, Shimada J, Nonaka H, Koike N, Aoki N, Kobayashi H, Kase H, Yamaguchi K, Suzuki F (1993) Photoisomerization of a potent and selective adenosine A2 antagonist, (E)-1,3-dipropyl-8-(3,4-dimethoxystyryl)-7-methylxanthine. J Med Chem 36:3731–3733

    PubMed  CAS  Google Scholar 

  • Nonaka H, Ichimura M, Takeda M, Nonaka Y, Shimada J, Suzuki F, Yamaguchi K, Kase H (1994a) KF17837 ((E)-8-(3,4-dimethoxystyryl)-1,3-dipropyl-7-methylxanthine), a potent and selective adenosine A2 receptor antagonist. Eur J Pharmacol 267:335–341

    PubMed  CAS  Google Scholar 

  • Nonaka H, Mori A, Ichimura M, Shindou T, Yanagawa K, Shimada J, Kase H (1994b) Binding of [3H]KF17837S, a selective adenosine A2 receptor antagonist, to rat brain membranes. Mol Pharmacol 46:817–822

    PubMed  CAS  Google Scholar 

  • Ohno M, Gao ZG, Van Rompaey P, Tchilibon S, Kim SK, Harris BA, Gross AS, Duong HT, Van Calenbergh S, Jacobson KA (2004) Modulation of adenosine receptor affinity and intrinsic efficacy in adenine nucleosides substituted at the 2-position. Bioorg Med Chem 12:2995–3007

    PubMed  CAS  Google Scholar 

  • Palmer TM, Poucher SM, Jacobson KA, Stiles GL (1995) 125I-4-(2-[7-Amino-2-[2-furyl] [1,2,4]triazolo[2,3-a][1,3,5] triazin-5-yl-amino]ethyl)phenol, a high affinity antagonist radioligand selective for the A2A adenosine receptor. Mol Pharmacol 48:970–974

    PubMed  CAS  Google Scholar 

  • Pedata F, Gianfriddo M, Turchi D, Melani A (2005) The protective effect of adenosine A2A receptor antagonism in cerebral ischemia. Neurol Res 27:169–174

    PubMed  CAS  Google Scholar 

  • Peng H, Kumaravel G, Yao G, Sha L, Wang J, Van Vlijmen H, Bohnert T, Huang C, Vu CB, Ensinger CL, Chang H, Engber TM, Whalley ET, Petter RC (2004) Novel bicyclic piperazine derivatives of triazolotriazine and triazolopyrimidines as highly potent and selective adenosine A2A receptor antagonists. J Med Chem 47:6218–6229

    PubMed  CAS  Google Scholar 

  • Petzer JP, Steyn S, Castagnoli KP, Chen JF, Schwarzschild MA, Van der Schyf CJ, Castagnoli N (2003) Inhibition of monoamine oxidase B by selective adenosine A2A receptor antagonists. Bioorg Med Chem 11:1299–1310

    PubMed  CAS  Google Scholar 

  • Pfleger K, Seifen E, Schondorf H (1969) Inosine potentiation of the effect of adenosine on the heart. Biochem Pharmacol 18:43–51

    PubMed  CAS  Google Scholar 

  • Pinna A, Wardas J, Cristalli G, Morelli M (1997) Adenosine A2A receptor agonists increase Fos-like immunoreactivity in mesolimbic areas. Brain Res 759:41–49

    PubMed  CAS  Google Scholar 

  • Pinna A, Volpini R, Cristalli G, Morelli M (2005) New adenosine A2A receptor antagonists: actions on Parkinson’s disease models. Eur J Pharmacol 512:157–164

    PubMed  CAS  Google Scholar 

  • Poucher SM, Keddie JR, Singh P, Stoggall SM, Caulkett PW, Jones G, Coll MG (1995) The in vitro pharmacology of ZM 241385, a potent, non-xanthine A2A selective adenosine receptor antagonist. Br J Pharmacol 115:1096–1102

    PubMed  CAS  Google Scholar 

  • Prasad RN, Bariana DS, Fung A, Savic M, Tietje K, Stein HH, Brondyk H, Egan RS (1980) Modification of the 5 position of purine nucleosides. 2. Synthesis and some cardiovascular properties of adenosine-5-(N-substituted)carboxamides. J Med Chem 23:313–319

    PubMed  CAS  Google Scholar 

  • Richardson PJ, Kase H, Jenner PG (1997) Adenosine A2A receptor antagonists as new agents for the treatment of Parkinson’s disease. Trends Pharmacol Sci 18:338–344

    PubMed  CAS  Google Scholar 

  • Rieger JM, Brown ML, Sullivan GW, Linden J, Macdonald TL (2001) Design, synthesis, and evaluation of novel A2A adenosine receptor agonists. J Med Chem 44:531–539

    PubMed  CAS  Google Scholar 

  • Salamone JD, Betz AJ, Ishiwari K, Felsted J, Madson L, Mirante B, Clark K, Font L, Korbey S, Sager TN, Hockemeyer J, Müller CE (2008) Tremorolytic effects of adenosine A2A antagonists: implications for parkinsonism. Front Biosci 13:3594–3605

    PubMed  CAS  Google Scholar 

  • Sarges R, Howard HR, Browne RG, Lebel LA, Seymour PA, Koe BK (1990) 4-Amino [1,2,4]triazolo[4,3-a]quinoxalines. A novel class of potent adenosine receptor antagonists and potential rapid-onset antidepressants. J Med Chem 33:2240–2254

    CAS  Google Scholar 

  • Sauer R, Maurinsh J, Reith U, Fülle F, Klotz KN, Müller CE (2000) Water-soluble phosphate prodrugs of 1-propargyl-8-styrylxanthine derivatives, A2A-selective adenosine receptor antagonists. J Med Chem 43:440–448

    PubMed  CAS  Google Scholar 

  • Schapira AH, Bezard E, Brotchie J, Calon F, Collingridge GL, Ferger B, Hengerer B, Hirsch E, Jenner P, Le Novere N, Obeso JA, Schwarzschild MA, Spampinato U, Davidai G (2006) Novel pharmacological targets for the treatment of Parkinson’s disease. Nat Rev Drug Discov 5:845–854

    PubMed  CAS  Google Scholar 

  • Schwarzschild MA, Agnati L, Fuxe K, Chen JF, Morelli M (2006) Targeting adenosine A2A receptors in Parkinson’s disease. Trends Neurosci 29:647–654

    PubMed  CAS  Google Scholar 

  • Seale TW, Abla KA, Shamim MT, Carney JM, Daly JW (1988) 3,7-Dimethyl-1-propargylxanthine: a potent and selective in vivo antagonist of adenosine analogs. Life Sci 43:1671–1684

    PubMed  CAS  Google Scholar 

  • Shamim MT, Ukena D, Padgett WL, Daly JW (1989) Effects of 8-phenyl and 8-cycloalkyl substituents on the activity of mono-, di-, and trisubstituted alkylxanthines with substitution at the 1-, 3-, and 7-positions. J Med Chem 32:1231–1237

    PubMed  CAS  Google Scholar 

  • Shimada J, Koike N, Nonaka H, Shiozaki S, Yanagawa K, Kanda T, Kobayashi H, Ichimura M, Nakamura J, Kase H, Suzuki F (1997) Adenosine A2A antagonists with potent anti-cataleptic activity. Bioorg Med Chem Lett 7:2349–2352

    CAS  Google Scholar 

  • Siddiqi SM, Jacobson KA, Esker JL, Olah ME, Ji XD, Melman N, Tiwari KN, Secrist JA 3rd, Schneller SW, Cristalli G, et al. (1995) Search for new purine- and ribose-modified adenosine analogues as selective agonists and antagonists at adenosine receptors. J Med Chem 38:1174–1188

    PubMed  CAS  Google Scholar 

  • Silverman LS, Caldwell JP, Greenlee WJ, Kiselgof E, Matasi JJ, Tulshian DB, Arik L, Foster C, Bertorelli R, Monopoli A, Ongini E (2007) 3H-[1,2,4]-Triazolo[5,1-i]purin-5-amine derivatives as adenosine A2A antagonists. Bioorg Med Chem Lett 17:1659–1662

    PubMed  CAS  Google Scholar 

  • Slee DH, Chen Y, Zhang X, Moorjani M, Lanier MC, Lin E, Rueter JK, Williams JP, Lechner SM, Markison S, Malany S, Santos M, Gross RS, Jalali K, Sai Y, Zuo Z, Yang C, Castro-Palomino JC, Crespo MI, Prat M, Gual S, Diaz JL, Saunders J (2008a) 2-Amino-N-pyrimidin-4-ylacetamides as A2A receptor antagonists: 1. Structure–activity relationships and optimization of heterocyclic substituents. J Med Chem 51:1719–1729

    PubMed  CAS  Google Scholar 

  • Slee DH, Moorjani M, Zhang X, Lin E, Lanier MC, Chen Y, Rueter JK, Lechner SM, Markison S, Malany S, Joswig T, Santos M, Gross RS, Williams JP, Castro-Palomino JC, Crespo MI, Prat M, Gual S, Diaz JL, Jalali K, Sai Y, Zuo Z, Yang C, Wen J, O’Brien Z, Petroski R, Saunders J (2008b) 2-Amino-N-pyrimidin-4-ylacetamides as A2A receptor antagonists: 2. Reduction of hERG activity, observed species selectivity, and structure–activity relationships. J Med Chem 51:1730–1739

    PubMed  CAS  Google Scholar 

  • Slee DH, Zhang X, Moorjani M, Lin E, Lanier MC, Chen Y, Rueter JK, Lechner SM, Markison S, Malany S, Joswig T, Santos M, Gross RS, Williams JP, Castro-Palomino JC, Crespo MI, Prat M, Gual S, Diaz JL, Wen J, O’Brien Z, Saunders J (2008c) Identification of novel, water-soluble, 2-amino-N-pyrimidin-4-yl acetamides as A2A receptor antagonists with in vivo efficacy. J Med Chem 51:400–406

    PubMed  CAS  Google Scholar 

  • Svenningsson P, Nomikos GG, Ongini E, Fredholm BB (1997) Antagonism of adenosine A2A receptors underlies the behavioural activating effect of caffeine and is associated with reduced expression of messenger RNA for NGFI-A and NGFI-B in caudate-putamen and nucleus accumbens. Neuroscience 79:753–764

    PubMed  CAS  Google Scholar 

  • Takahashi RN, Pamplona FA, Prediger RD (2008) Adenosine receptor antagonists for cognitive dysfunction: a review of animal studies. Front Biosci 13:2614–2632

    PubMed  CAS  Google Scholar 

  • Taylor MD, Moos WH, Hamilton HW, Szotek DS, Patt WC, Badger EW, Bristol JA, Bruns RF, Heffner TG, Mertz TE (1986) Ribose-modified adenosine analogues as adenosine receptor agonists. J Med Chem 29:346–353

    PubMed  CAS  Google Scholar 

  • Thorsell A, Johnson J, Heilig M (2007) Effect of the adenosine A2A receptor antagonist 3,7-dimethyl-propargylxanthine on anxiety-like and depression-like behavior and alcohol consumption in Wistar rats. Alcohol Clin Exp Res 31:1302–1307

    PubMed  CAS  Google Scholar 

  • Todde S, Moresco RM, Simonelli P, Baraldi PG, Cacciari B, Spalluto G, Varani K, Monopoli A, Matarrese M, Carpinelli A, Magni F, Kienle MG, Fazio F (2000) Design, radiosynthesis, and biodistribution of a new potent and selective ligand for in vivo imaging of the adenosine A2A receptor system using positron emission tomography. J Med Chem 43:4359–4362

    PubMed  CAS  Google Scholar 

  • Ukena D, Jacobson KA, Kirk KL, Daly JW (1986) A [3H]amine congener of 1,3-dipropyl-8-phenylxanthine. A new radioligand for A2 adenosine receptors of human platelets. FEBS Lett 199:269–274

    PubMed  CAS  Google Scholar 

  • Uustare A, Vonk A, Terasmaa A, Fuxe K, Rinken A (2005) Kinetic and functional properties of [3H]ZM241385, a high affinity antagonist for adenosine A2A receptors. Life Sci 76:1513–1526

    PubMed  CAS  Google Scholar 

  • van den Berg D, Zoellner KR, Ogunrombi MO, Malan SF, Terre’Blanche G, Castagnoli N Jr, Bergh JJ, Petzer JP (2007) Inhibition of monoamine oxidase B by selected benzimidazole and caffeine analogues. Bioorg Med Chem 15:3692–3702

    PubMed  Google Scholar 

  • van der Wenden EM, von Frijtag Drabbe Kunzel JK, Mathot RA, Danhof M, IJzerman AP, Soudijn W (1995) Ribose-modified adenosine analogues as potential partial agonists for the adenosine receptor. J Med Chem 38:4000–4006

    PubMed  Google Scholar 

  • van der Wenden EM, Carnielli M, Roelen HC, Lorenzen A, von Frijtag Drabbe Kunzel JK, IJzerman AP (1998) 5-Substituted adenosine analogs as new high-affinity partial agonists for the adenosine A1 receptor. J Med Chem 41:102–108

    PubMed  Google Scholar 

  • van Tilburg EW, Gremmen M, von Frijtag Drabbe Kunzel J, de Groote M, IJzerman AP (2003) 2,8-Disubstituted adenosine derivatives as partial agonists for the adenosine A2A receptor. Bioorg Med Chem 11:2183–2192

    PubMed  Google Scholar 

  • Vittori S, Camaioni E, Di Francesco E, Volpini R, Monopoli A, Dionisotti S, Ongini E, Cristalli G (1996) 2-Alkenyl and 2-alkyl derivatives of adenosine and adenosine-5-N-ethyluronamide: different affinity and selectivity of E- and Z-diastereomers at A2A adenosine receptors. J Med Chem 39:4211–4217

    PubMed  CAS  Google Scholar 

  • Vittori S, Lorenzen A, Stannek C, Costanzi S, Volpini R, IJzerman AP, Kunzel JK, Cristalli G (2000) N-Cycloalkyl derivatives of adenosine and 1-deazaadenosine as agonists and partial agonists of the A1 adenosine receptor. J Med Chem 43:250–260

    PubMed  CAS  Google Scholar 

  • Vittori S, Costanzi S, Lambertucci C, Portino FR, Taffi S, Volpini R, Klotz KN, Cristalli G (2004) A2B adenosine receptor agonists: synthesis and biological evaluation of 2-phenylhydroxypropynyl adenosine and NECA derivatives. Nucleosides Nucleotides Nucl Acids 23:471–481

    CAS  Google Scholar 

  • Vittori S, Volpini R, Lambertucci C, Taffi S, Klotz KN, Cristalli G (2005) 2-Substituted 5-N-methylcarboxamidoadenosine (MECA) derivatives as A3 adenosine receptor ligands. Nucleosides Nucleotides Nucl Acids 24:935–938

    CAS  Google Scholar 

  • Viziano M, Ongini E, Conti A, Zocchi C, Seminati M, Pocar D (1995) 2-[N -(3-Arylallylidene)hydrazino]adenosines showing A2A adenosine agonist properties and vasodilation activity. J Med Chem 38:3581–3585

    PubMed  CAS  Google Scholar 

  • Vollmann K, Qurishi R, Hockemeyer J, Müller CE (2008) Synthesis and properties of a new water-soluble prodrug of the adenosine A2A receptor antagonist MSX-2. Molecules 13:348–359

    PubMed  CAS  Google Scholar 

  • Volpini R, Camaioni E, Vittori S, Barboni L, Lambertucci C, Cristalli G (1998) Synthesis of new nucleosides by coupling of chloropurines with 2- and 3-deoxy derivatives of N-methyl-D-ribofuranuronamide. Helv Chim Acta 81:145–152

    CAS  Google Scholar 

  • Volpini R, Camaioni E, Costanzi S, Vittori S, Klotz KN, Cristalli G (1999) Synthesis of di- and tri-substituted adenosine derivatives and their affinities at human adenosine receptor subtypes. Nucleosides Nucleotides 18:2511–2520

    PubMed  CAS  Google Scholar 

  • Volpini R, Costanzi S, Lambertucci C, Taffi S, Vittori S, Klotz KN, Cristalli G (2002) N 6-Alkyl-2-alkynyl derivatives of adenosine as potent and selective agonists at the human adenosine A3 receptor and a starting point for searching A2B ligands. J Med Chem 45:3271–3279

    PubMed  CAS  Google Scholar 

  • Volpini R, Costanzi S, Lambertucci C, Portino FR, Taffi S, Vittori S, Klotz KN, Cristalli G (2004) Adenosine receptor agonists: synthesis and binding affinity of 2-(aryl)alkylthioadenosine derivatives. ARKIVOC 301–311

    Google Scholar 

  • Volpini R, Costanzi S, Lambertucci C, Vittori S, Martini C, Trincavelli ML, Klotz KN, Cristalli G (2005) 2- and 8-Alkynyl-9-ethyladenines: synthesis and biological activity at human and rat adenosine receptors. Purinergic Signal 1:173–181

    PubMed  CAS  Google Scholar 

  • Vu CB (2005) Recent advances in the design and optimization of adenosine A2A receptor antagonists. Curr Opin Drug Discov Dev 8:458–468

    CAS  Google Scholar 

  • Vu CB, Pan D, Peng B, Sha L, Kumaravel G, Jin X, Phadke D, Engber T, Huang C, Reilly J, Tam S, Petter RC (2004a) Studies on adenosine A2A receptor antagonists: comparison of three core heterocycles. Bioorg Med Chem Lett 14:4831–4834

    PubMed  CAS  Google Scholar 

  • Vu CB, Peng B, Kumaravel G, Smits G, Jin X, Phadke D, Engber T, Huang C, Reilly J, Tam S, Grant D, Hetu G, Chen L, Zhang J, Petter RC (2004b) Piperazine derivatives of [1,2,4]triazolo[1,5-a][1,3,5]triazine as potent and selective adenosine A2A receptor antagonists. J Med Chem 47:4291–4299

    PubMed  CAS  Google Scholar 

  • Vu CB, Shields P, Peng B, Kumaravel G, Jin X, Phadke D, Wang J, Engber T, Ayyub E, Petter RC (2004c) Triamino derivatives of triazolotriazine and triazolopyrimidine as adenosine A2A receptor antagonists. Bioorg Med Chem Lett 14:4835–4838

    PubMed  CAS  Google Scholar 

  • Vu CB, Pan D, Peng B, Kumaravel G, Smits G, Jin X, Phadke D, Engber T, Huang C, Reilly J, Tam S, Grant D, Hetu G, Petter RC (2005) Novel diamino derivatives of [1,2,4]triazolo[1,5-a][1,3,5]triazine as potent and selective adenosine A2A receptor antagonists. J Med Chem 48:2009–2018

    PubMed  CAS  Google Scholar 

  • Wan W, Sutherland GR, Geiger JD (1990) Binding of the adenosine A2 receptor ligand [3H]CGS 21680 to human and rat brain: evidence for multiple affinity sites. J Neurochem 55:1763–1771

    PubMed  CAS  Google Scholar 

  • Weiss SM, Benwell K, Cliffe IA, Gillespie RJ, Knight AR, Lerpiniere J, Misra A, Pratt RM, Revell D, Upton R, Dourish CT (2003) Discovery of nonxanthine adenosine A2A receptor antagonists for the treatment of Parkinson’s disease. Neurology 61:S101–S106

    PubMed  CAS  Google Scholar 

  • Williams M, Francis J, Ghai G, Braunwalder A, Psychoyos S, Stone GA, Cash WD (1987) Biochemical characterization of the triazoloquinazoline, CGS 15943, a novel, non-xanthine adenosine antagonist. J Pharmacol Exp Ther 241:415–420

    PubMed  CAS  Google Scholar 

  • Xu K, Bastia E, Schwarzschild M (2005) Therapeutic potential of adenosine A2A receptor antagonists in Parkinson’s disease. Pharmacol Ther 105:267–310

    PubMed  CAS  Google Scholar 

  • Yan L, Burbiel JC, Maass A, Müller CE (2003) Adenosine receptor agonists: from basic medicinal chemistry to clinical development. Expert Opin Emerg Drugs 8:537–576

    PubMed  CAS  Google Scholar 

  • Yang M, Soohoo D, Soelaiman S, Kalla R, Zablocki J, Chu N, Leung K, Yao L, Diamond I, Belardinelli L, Shryock JC (2007) Characterization of the potency, selectivity, and pharmacokinetic profile for six adenosine A2A receptor antagonists. Naunyn–Schmiedeberg’s Arch Pharmacol 375:133–144

    Google Scholar 

  • Yao G, Haque S, Sha L, Kumaravel G, Wang J, Engber TM, Whalley ET, Conlon PR, Chang H, Kiesman WF, Petter RC (2005) Synthesis of alkyne derivatives of a novel triazolopyrazine as A2A adenosine receptor antagonists. Bioorg Med Chem Lett 15:511–515

    PubMed  CAS  Google Scholar 

  • Yu L, Shen HY, Coelho JE, Araujo IM, Huang QY, Day YJ, Rebola N, Canas PM, Rapp EK, Ferrara J, Taylor D, Müller CE, Linden J, Cunha RA, Chen JF (2008) Adenosine A2A receptor antagonists exert motor and neuroprotective effects by distinct cellular mechanisms. Ann Neurol 63:338–346

    PubMed  CAS  Google Scholar 

  • Yuzlenko O, Kiec-Kononowicz K (2006) Potent adenosine A1 and A2A receptors antagonists: recent developments. Curr Med Chem 13:3609–3625

    PubMed  CAS  Google Scholar 

  • Zablocki J, Palle V, Blackburn B, Elzein E, Nudelman G, Gothe S, Gao Z, Li Z, Meyer S, Belardinelli L (2001) 2-Substituted pi system derivatives of adenosine that are coronary vasodilators acting via the A2A adenosine receptor. Nucleosides Nucleotides Nucl Acids 20:343–360

    CAS  Google Scholar 

  • Zhang X, Rueter JK, Chen Y, Moorjani M, Lanier MC, Lin E, Gross RS, Tellew JE, Williams JP, Lechner SM, Markison S, Joswig T, Malany S, Santos M, Castro-Palomino JC, Crespo MI, Prat M, Gual S, Diaz JL, Saunders J, Slee DH (2008) Synthesis of N-pyrimidinyl-2-phenoxyacetamides as adenosine A2A receptor antagonists. Bioorg Med Chem Lett 18: 1778–1783

    PubMed  CAS  Google Scholar 

  • Zocchi C, Ongini E, Conti A, Monopoli A, Negretti A, Baraldi PG, Dionisotti S (1996a) The non-xanthine heterocyclic compound SCH 58261 is a new potent and selective A2A adenosine receptor antagonist. J Pharmacol Exp Ther 276:398–404

    PubMed  CAS  Google Scholar 

  • Zocchi C, Ongini E, Ferrara S, Baraldi PG, Dionisotti S (1996b) Binding of the radioligand [3H]-SCH 58261, a new non-xanthine A2A adenosine receptor antagonist, to rat striatal membranes. Br J Pharmacol 117:1381–1386

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gloria Cristalli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cristalli, G., Müller, C.E., Volpini, R. (2009). Recent Developments in Adenosine A2A Receptor Ligands. In: Wilson, C., Mustafa, S. (eds) Adenosine Receptors in Health and Disease. Handbook of Experimental Pharmacology, vol 193. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89615-9_3

Download citation

Publish with us

Policies and ethics