Skip to main content

Pharmacodynamic Evaluation: Diabetes Methodologies

Methods in Clinical Pharmacology

  • Reference work entry
Drug Discovery and Evaluation: Methods in Clinical Pharmacology

Abstract

Endogenous insulin is the chief regulator of glucose homeostasis. It is formed in pancreatic beta cells and released into the portal vein in a pulsatile manner to act on the liver, muscle, other body organs, and on peripheral tissues. Insulin reduces hepatic glycogenolysis and gluconeogenesis, promotes glucose uptake and glycogenesis in liver and muscle, and triggers conversion of excess glucose to fatty acids for storage as triglycerides in adipose tissue (Hellman 2009; Zierler 1999).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

REFERENCES AND FURTHER READING

  • American Diabetic Association (ADA) (1998) Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diab Care 21:5–19

    Google Scholar 

  • American Diabetes Association (ADA) (2008) Standards of medical care in diabetes – 2008. Diab Care 31:S12–S54

    Article  CAS  Google Scholar 

  • Anderson L, Jørgensen PN, Jensen LB, Walsh D (2000) A new insulin immunoassay specific for the rapid-acting insulin analog, insulin asprt, suitable for bioavailability, bioequivalence, and pharmacokinetic studies. Clin Biochem 33(8):627–633

    Article  Google Scholar 

  • Aungst BJ, Rogers NJ, Shefter E (1988) Comparison of nasal, rectal, buccal, sublingual and intramuscular insulin efficacy and the effects of a bile salt absorption promoter. J Pharmacol Exp Ther 244(1):23–27

    CAS  PubMed  Google Scholar 

  • Becker RHA, Frick AD, Wessels DH, Scholtz HE (2003) Pharmacodynamics and pharmacokinetics of a new rapidly acting insulin analog, insulin glulisine (abstract). Diabetes 52(suppl 1):A110

    Google Scholar 

  • Becker RHA, Frick AD, Burger F, Scholtz H, Potgieter JH (2005a) A comparison of the steady-state pharmacokinetics and pharmacodynamics of a novel rapid-acting insulin analog, insulin glulisine, and regular human insulin in healthy volunteers using the euglycemic clamp technique. Exp Clin Endocr Diab 113:292–297

    Article  CAS  Google Scholar 

  • Becker RHA, Frick AD, Burger F, Potgieter JH, Scholtz H (2005b) Insulin glulisine, a new rapid-acting insulin analogue, displays a rapid time-action profile in obese non-diabetic subjects. Exp Clin Endocr Diab 113:435–443

    Article  CAS  Google Scholar 

  • Becker RHA (2007) Insulin glulisine complementing basal insulins: a review of structure and activity. Diab Technol Ther 9:109–121

    Article  CAS  Google Scholar 

  • Becker RHA, Frick AD, Nosek L, Heinemann L, Rave K (2007) Dose-response relationship of insulin glulisine in subjects with type 1 diabetes. Diab Care 30(10):2506–2507

    Article  CAS  Google Scholar 

  • Becker RHA, Frick AD (2008) Clinical pharmacokinetics and pharmacodynamics of insulin glulisine. Clin Pharmacokinet 47(1):7–20

    Article  CAS  PubMed  Google Scholar 

  • Becker RHA, Frick AD, Teichert L, Nosek L, Heinemann L, Heise T, Rave K (2008) Fluctuation and reproducibility of exposure and effect of insulin glargine in healthy subjects. Diab Obes Metab 10:1105–1113

    Article  CAS  Google Scholar 

  • Becker RHA (2008) Letter to the editor – reply. Diab Technol Ther 10:54–56

    Article  Google Scholar 

  • Becker RHA, Frick AD, Teichert L, Nosek L, Heinemann L, Heise T, Rave K (2009) Dose-response relationship of insulin glulisine in subjects with type 1 diabetes. Diab Obes Metab 11:60–68

    Article  CAS  Google Scholar 

  • Becker RHA, Sha S, Frick A, Fountaine RJ (2006) The effect of smoking cessation and subsequent resumption on absorption of inhaled insulin (Exubera). Diab Care 29:277–282

    Article  Google Scholar 

  • Berger M (1993) Oral insulin 1922–1992: the history of continuous ambition and failure. In: Berger M, Gries FA (eds) Frontiers in insulin pharmacology. Thieme Verlag, Stuttgart, pp 144–148

    Google Scholar 

  • Bernstein G (2008) Delivery of insulin to the buccal mucosa utilizing the RapidMist system. Expert Opin Drug Deliv 5(9):1047–1055

    Article  CAS  PubMed  Google Scholar 

  • Best CH (1972) Nineteen hundred twenty-one in Toronto. Diabetes 21(2 Suppl):385–395

    CAS  PubMed  Google Scholar 

  • Binder C, Lauritzen T, Faber O, Pramming S (1984) Insulin pharmacokinetics. Diab Care 7:188–199

    Article  Google Scholar 

  • Black C, Cummins E, Royle P, Philip S, Waugh N (2007) The clinical effectiveness and cost-effectiveness of inhaled insulin in diabetic mellitus: a systematic review and economic evaluation. Health Technol Assess 11(33):1–126

    CAS  PubMed  Google Scholar 

  • Bliss M (1993) Rewriting medical history: Charles Best and the Banting and Best myth. J Hist Med Allied Sci 48(3):253–274

    Article  CAS  PubMed  Google Scholar 

  • Bliss M (2005) Resurrections in Toronto: the emergence of insulin. Horm Res 64(suppl 2):98–102

    Article  CAS  PubMed  Google Scholar 

  • Brange J, Ribel U, Hansen JF, Dodson G, Hansen MT, Havelund S et al (1988) Monomeric insulins obtained by protein engineering and their medical implications. Nature 333:679–682

    Article  CAS  PubMed  Google Scholar 

  • Bristow AF, Barrowcliffe T, Bangham DR (2006) Standardization of biological medicines: the first hundred years, 1900–2000. Notes Rec R Soc Lond 60(3):271–289

    Article  PubMed  Google Scholar 

  • Bruce DG, Chisholm DJ, Storlien LH, Borkman M, Kraegen EW (1991) Meal-time intranasal insulin delivery in type 2 diabetes. Diabet Med 8:366–370

    Article  CAS  PubMed  Google Scholar 

  • Burger F, Scholtz H, Frick AD, Becker RHA (2004) Pharmacodynamics and pharmacokinetics of insulin glulisine versus insulin lispro and regular human insulin in patients with type 1 diabetes (abstract). Diabetes 53(suppl 2):A557

    Google Scholar 

  • Cecv G (1993) Dermal insulin. In: Berger M, Gries FA (eds) Frontiers in insulin pharmacology. Thieme Verlag, Stuttgart, pp 161–172

    Google Scholar 

  • Chow SC, Liu JP (eds) (2000) Design and analysis of bioavailability and bioequivalence studies, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  • Chow SC, Shao J (eds) (2002) Statistics in drug research – methodology and recent developments. Marcel Dekker, New York

    Google Scholar 

  • Coates PA, Ismail IS, Luzio SD, Griffiths I, Ollerton RL, Volund A, Owens DR (1995) Intranasal insulin: the effects of three dose regimens on postprandial glycaemic profiles in type II diabetic subjects. Diabet Med 12:235–239

    Article  CAS  PubMed  Google Scholar 

  • Danemann D (2006) Type 1 diabetes. Lancet 367:847–858

    Article  CAS  Google Scholar 

  • Danne T, Becker RHA, Heise T, Bittner C, Frick AD, Rave K (2005) Pharmacokinetics, prandial glucose control, and safety of insulin glulisine in children and adolescents with type 1 diabetes. Diab Care 28:2100–2105

    Article  CAS  Google Scholar 

  • DeFronzo R, Tobin JD, Andres R (1979) Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol 237(3):E214–E223

    CAS  PubMed  Google Scholar 

  • DeVries JH, Nattrass M, Pieber TR (2007) Refining basal insulin therapy what have we learned in the age of analogues? Diabetes Metab Res Rev 23:441–454

    Article  CAS  PubMed  Google Scholar 

  • de Jongh SE, Laquer E, Nehring K (1925) Über Insulinzufuhr auf anderen Wegen als durch subkutane oder intravenöse Einspritzung. Biochem Z 163:25–389

    Google Scholar 

  • DeVries JH, Eskes SA, Snoek FJ, Pouwer F, van Ballegooie E, Spijker AJ, Kostense PJ, Seubert M, Heine RJ (2002) Continuous intraperitoneal insulin infusion in patients with ‚brittle’ diabetes: favourable effects on glycaemic control and hospital stay. Diabet Med 19:496–501

    Article  CAS  PubMed  Google Scholar 

  • Drejer K, Vaag A, Bech K, Hansen P, Sorensen AR, Mygind N (1992) Intranasal administration of insulin with phospholipid as absorption enhancer: pharmacokinetics in normal subjects. Diabet Med 9:335–340

    Article  CAS  PubMed  Google Scholar 

  • Diabetes Control and Complication Trial/Epidemiology of Diabetes Interventions and Complications Research Group (2002) Effect of intensive therapy on the microvascular complications of type 1 diabetes mellitus. JAMA 287:2563–2569

    Article  Google Scholar 

  • El-Khatib FH, Russell SJ, Nathan DM, Sutherlin RG, Damiano ER (2010) A bihormonal closed-loop artificial pancreas for type 1 diabetes. Sci Transl Med 2(27):27ra27

    Google Scholar 

  • EMEA/CHMP Annex to Guideline on similar biological medicinal products containing biotechnology-derived proteins as active substance: non-clinical and clinical issues. Guidance on similar medicinal products containing recombinant human soluble insulin. EMEA/CHMP/BMWP/32775/2005

    Google Scholar 

  • EMEA/CHMP Draft-Guideline on the investigation of bioequivalence. London, 24 July 2008. CPMP/EWP/QWP/1401/98 Rev. 1

    Google Scholar 

  • EMA/CPMP Guideline on clinical investigation of medicinal products in the treatment of diabetes mellitus (Draft), London 20 January 2010, CPMP/EWP/1080/00 Rev. 1

    Google Scholar 

  • EMEA/CPMP Guideline on potency labeling for insulin analogue containing products with particular reference to the use of “International Units” or Units”. EMEA/CHMP/BWP/124446/2005

    Google Scholar 

  • Ferrannini E, Mari A (1998) How to measure insulin sensitivity. J Hypertens 16:895–906

    Article  CAS  PubMed  Google Scholar 

  • Fogt EJ, Dodd LM, Jenning EM, Clemens AH (1978) Development and evaluation of a glucose analyzer for a glucose controlled insulin infusion system (Biostator). Clin Chem 24:1366–1372

    CAS  PubMed  Google Scholar 

  • Frick A, Scholtz HE, Burger F, Becker RHA (2004) Absorption of insulin glulisine when mixed with NPH insulin (abstract). Diabetes 53(Suppl 2):A321

    Google Scholar 

  • Fineberg SE, Kawabata TT, Krasner AS, Fineberg NS (2007a) Insulin antibodies with pulmonary delivery of insulin. Diab Technol Ther 9(Suppl 1):S-102–S-110

    CAS  Google Scholar 

  • Fineberg SE, Kawabata TT, Finco-Kent D, Fountaine RJ, Finch GL, Krasner AS (2007b) Immunological responses to exogenous insulin. Endocr Rev 28(6):635–652

    Article  CAS  Google Scholar 

  • Frauman AG, Cooper ME, Parsons BJ, Jerums G, Louis WJ (1987) Long-term use of intranasal insulin in insulin-dependent diabetic patients. Diab Care 10:573–578

    Article  CAS  Google Scholar 

  • Gaohua L, Kimura H (2009) A mathematical model of brain glucose homeostasis. Theor Biol Med Model 6:26

    Article  PubMed  CAS  Google Scholar 

  • Garg S, Kelly WC (2009) Insulin delivery via lungs – is it still possible? Diab Technol Ther 11(Suppl 2):S-1–S-3

    CAS  Google Scholar 

  • Gännslein M (1925) Über inhalation von insulin. Klin Wochenschr 4(2):71

    Article  Google Scholar 

  • Gerich J, Becker RHA, Zhu R, Bolli GB (2006) Fluctuation of serum basal insulin levels following single and multiple dosing of insulin glargine. Diab Technol Ther 8:237–243

    Article  CAS  Google Scholar 

  • Goeddel DV, Kleid DG, Bolivar F, Heyneker HL et al (1979) Expression in Escherichia coli of chemically synthesized genes for human insulin. Proc Natl Acad Sci USA 76(1):106–110

    Article  CAS  PubMed  Google Scholar 

  • Grevenstuk A, Laquer E (1925) Insulin. Seine Darstellung, physiologische und pharmakologische Wirkung mit besonderer Berücksichtigung seiner Wertbestimmung (Eichung). München, J. F. Bergmann

    Google Scholar 

  • Gwinnup G, Elias AN (1990) The physiologic replacement of insulin. N Engl J Med 322:333–334

    Article  Google Scholar 

  • Haidar SH, Kwon Y, Lionberger R, Yu LX (2008a) Bioavailability and bioequivalence. In: Krishna R, Yu L (eds) Biopharmaceutics applications in drug development. Springer, New York, pp 262–289

    Chapter  Google Scholar 

  • Haidar SH, Davit B, Chen M-L, Conner D, Lee LM, Li QH, Lionberger R et al (2008b) Bioequivalence approaches for highly variable drugs and drug products. Pharm Res 25(1):237–241

    Article  CAS  PubMed  Google Scholar 

  • Havelund S, Plum A, Ribel U, Jonassen I, Volund A, Markussen J, Kurtzhals P (2004) The mechanism of protraction of insulin detemir, a long-acting, acylated analog of human insulin. Pharm Res 21:1498–1504

    Article  CAS  PubMed  Google Scholar 

  • Harper NJ, Gray S, de Groot J, Parker JM et al (2007) The design and performance of the Exubera® pulmonary insulin delivery system. Diab Technol Ther 9(Suppl 1):S16–S27

    CAS  Google Scholar 

  • Heinemann L, Anderson JH (2004) Measurement of insulin absorption and insulin action. Diab Technol Ther 6:698–718

    Article  CAS  Google Scholar 

  • Heinemann L (ed) (2004) Time-action profiles of insulin preparations. Die Deutsche Bibliothek – CIP-Einheitsaufnahme. ISBN: 3-87409-364-6. Kirchheim Mainz

    Google Scholar 

  • Heise T, Bott S, Rave K, Dressler A, Rosskamp R, Heinemann L (2002) No evidence for accumulation of insulin glargine (LANTUS): a multiple injection study in patients with Type 1 diabetes. Diabet Med 19(6):490–495

    Article  CAS  PubMed  Google Scholar 

  • Heise T, Nosek L, Rønn BB, Endahl L, Heinemann L, Kapitza C, Draeger E (2004) Lower within-subject variability of insulin detemir in comparison to NPH insulin and insulin glargine in people with type 1 diabetes. Diabetes 53:1614–1620

    Article  CAS  PubMed  Google Scholar 

  • Heise T, Pieber TR (2007) Towards peakless, reproducible and long-acting insulins. An assessment of the basal analogues based on isoglycaemic clamp studies. Diabet Obes Metab 9:648–659

    Article  CAS  Google Scholar 

  • Heise T, Nosek L, Spitzer H, Heinemann L, Niemöller E, Frick AD, Becker RHA (2007) Insulin glulisine: a faster onset of action compared with insulin lispro. Diabetes Obes Metab 9:746–753

    Article  CAS  PubMed  Google Scholar 

  • Hellman B (2009) Pulsatility of insulin release – a clinically important phenomenon. Ups J Med Sci 114:193–205

    Article  PubMed  Google Scholar 

  • Heinemann L, Jacques Y (2009) Oral insulin and buccal insulin: a critical reappraisal. J Diabetes Sci Technol 3(3):568–584

    PubMed  Google Scholar 

  • Heller S, Kozlovski P, Kurtzhals P (2007) Insulin’s 85th anniversary – an enduring medical miracle. Diabet Res Clin Pract 78(2):149–158

    Article  CAS  Google Scholar 

  • Henkin RI (2010) Inhaled insulin-Intrapulmonary, intranasal, and other routes of administration: mechanisms of action. Nutrition 26(1):33–39

    Article  CAS  PubMed  Google Scholar 

  • Heubner W, de Jongh SE, Laquer E (1924) Über inhalation von insulin. Klin Wochenschr 3(28):2342–2343

    Article  CAS  Google Scholar 

  • Heubner W (1925) Über inhalation, insbesondere von insulin. Münch Med Wochenschr 6:244–245

    Google Scholar 

  • Hilsted J, Madsbad S, Hvidberg A, Rasmussen MH, Krarup T, Ipsen H, Hansen B, Pedersen M, Djurup R, Oxenbull B (1995) Intranasal insulin therapy: the clinical realities. Diabetologia 38:680–684

    Article  CAS  PubMed  Google Scholar 

  • Himmelmann A, Jendle J, Mellen A, Petersen AH, Dahl UL, Wollmer P (2003) The impact of smoking on inhaled insulin. Diab Care 26:677–682

    Article  Google Scholar 

  • Hirsch IB (2007) Arguments against the use of inhaled insulin. Diabetes. Tech Ther 9(Suppl 1):S-111–S-114

    Article  Google Scholar 

  • Hirsch IB (2005) Insulin analogues. N Engl J Med 352:174–183

    Article  CAS  PubMed  Google Scholar 

  • Holman RR, Paul K, Bethel MA, Matthews DR, Neil HAW (2008) 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 359:1577–1589

    Article  CAS  PubMed  Google Scholar 

  • Holmes G, Galitz L, Hu P, Lyness W (2005) Pharmacokinetics of insulin aspart in obesity, renal impairment, or hepatic impairment. Br J Clin Pharmacol 60(5):469–476

    Article  CAS  PubMed  Google Scholar 

  • Horvath K, Bock G, Regittnig W, Bodenlenz M, Wutte A, Plank J, Magnes C, Sinner F, Fürst-Recktenwald S, Theobald K, Pieber TR (2008) Insulin glulisine, insulin lispro and regular human insulin show comparable end-organ metabolic effects: an exploratory study. Diabetes Obes Metab 10(6):484–491

    Article  CAS  PubMed  Google Scholar 

  • Holman RR (1993) Intranasal insulin in type I diabetes. In: Berger M, Gries FA (eds) Frontiers in insulin pharmacology. Thieme Verlag, Stuttgart, pp 138–142

    Google Scholar 

  • Ionescu-Tirgoviste C (1996) Insulin, the molecule of the century. Arch Physiol Biochem 104(7):807–813

    Article  CAS  PubMed  Google Scholar 

  • International Diabetes Federation (IDF). Clinical Guidelines Task Force. Global guideline for type 2 diabetes. Brussels: International Diabetes Federation, 2005 (http://www.idf.org/webdata/docs/IDF%20GGT2D.pdf)

    Google Scholar 

  • Iyer H, Khedkar A, Verma M (2010) Oral insulin – a review of current status. Diab Obes Metab 12(3):179–185

    Article  CAS  Google Scholar 

  • Jaros M, Martinek V, Piechatzek R, Frick A, Becker RHA (2004) Pharmacokinetics of insulin glulisine in non-diabetic renally impaired patients (abstract). Diabetes 53(Suppl 2):A321

    Google Scholar 

  • Joslin EP, Gray H, Root HF (1922) Insulin in hospital and home. J Metab Res 2:651–699

    CAS  Google Scholar 

  • Jurdjevic M, Tillman CEC (2004) Noble in June 1921, and his account of the discovery of insulin. Bull Hist Med 78(4):864–875

    Article  PubMed  Google Scholar 

  • Kang S, Brange J, Burch A, Volund A, Owens DR (1991) Subcutaneous insulin absorption explained by insulin’s physicochemical properties. Evidence from absorption studies of soluble human insulin and insulin analogues in humans. Diab Care 14:942–948

    Article  CAS  Google Scholar 

  • Kapitza C, Becker RHA, Frick AD, Heise T, Rave K (2004) Pharmacodynamics and pharmacokinetics of insulin glulisine with insulin lispro and regular human insulin in patients with type 2 diabetes (abstract). Diabetologia 47(Suppl 1):A265

    Google Scholar 

  • Karalis V, Macheras P, Van Peer A, Shah VP (2008) Bioavailability and bioequivalence: focus on physiological factors and variability. Pharm Res 25(8):1956–1962

    Article  CAS  PubMed  Google Scholar 

  • Kaur N, Breitbeil F, Hardy K, Kraft KS, Trantcheva I, Phanstiel O (2008) A delineation of diketopiperazine self-assembly processes: understanding the molecular events involved in Nɛ-(Fumaroyl)diketopiperazine of L-Lys (FDKP) interactions. Mol Pharm 5(2):294–315

    Article  CAS  PubMed  Google Scholar 

  • Khafagyel S, Morishita M, Onuki Y, Takayama K (2007) Current challenges in non-invasive insulin delivery systems: a comparative review. Adv Drug Deliv Rev 59(12):1521–1546

    Article  CAS  Google Scholar 

  • Kimmerle R, Griffing G, McCall A, Ruderman NB, Stoltz E, Melby JC (1991) Could intranasal insulin be useful in the treatment of non-insulin-dependent diabetes mellitus? Diabet Res Clin Pract 13:69–75

    Article  CAS  Google Scholar 

  • Klonoff DC (2003) Technological advances in the treatment of diabetes mellitus: better bioengineering begets benefits in glucose measurement, the artificial pancreas, and insulin delivery. Pediatr Endocrinol Rev 1(2):94–100

    PubMed  Google Scholar 

  • Lacey AH (1967) The unit of insulin. Diabetes 16(3):198–200

    CAS  PubMed  Google Scholar 

  • Langkjaer L, Brange J, Grodsky GM (1993) Basal-rate transdermal delivery of monomeric insulin by iontophoresis. Diabetologia 36(suppl 1):161

    Google Scholar 

  • Laqueur E, Grevenstuk A (1924) Über die Wirkung intratrachealer Zuführung von Insulin. Klin Wochenschrift 3(28):1273–1275

    Article  Google Scholar 

  • Lepore M, Pampanelli S, Fanelli C, Porcellati F, Bartocci L, Di Vincenzo A, Cordoni C, Costa E, Brunetti P, Bolli GB (2000) Pharmacokinetics and pharmacodynamics of subcutaneous injection of long-acting human insulin analog glargine, NPH insulin, and ultralente human insulin and continuous subcutaneous infusion of insulin lispro. Diabetes 49:2142–2148

    Article  CAS  PubMed  Google Scholar 

  • Leickert KH (1975) Insulin-Vorläufer – ein historischer Abriß. Erste Diabetes-Behandlungsversuche mit Pankreasextrakten [Insulin precursors – a historical synopsis. First diabetes treatment trials using pancreas extracts]. Arzneimittelforschung 25(3):439–442

    CAS  PubMed  Google Scholar 

  • Liebl A, Hoogma R, Renard E, Geelhoed-Duijvestijn PHLM, Klein E, Diglas J et al (2009) A reduction in severe hypoglycaemia in type 1 diabetes in a randomized crossover study of continuous intraperitoneal compared with subcutaneous insulin infusion. Diab Obes Metab 11:1001–1008

    Article  CAS  Google Scholar 

  • Lindsten J (2001) August Krogh and the Nobel Prize to Banting and Macleod. 2 April 2001. http://nobelprize.org/nobel_prizes/medicine/articles/lindsten/index.html

    Google Scholar 

  • Logtenberg SJJ, Kleefstra N, Groenier KH, Gans ROB, Bilo HJ (2009) Use of short-term real-time continuous glucose monitoring in type 1 diabetes patients on continuous intraperitoneal insulin infusion: a feasibility study. Diab Technol Ther 11(5):293–299

    Article  CAS  Google Scholar 

  • Mathiowitz E, Jacob JS, Jong YS, Carino GP, Chickering DE, Chatuverdi P, Santos CA, Vijayaraghavan K, Montgomery S, Bassett M, Morrell C (1997) Biologically erodable microspheres as potential oral drug delivery systems. Nature 386:410–414

    Article  CAS  PubMed  Google Scholar 

  • Miller WL (1979) Use of recombinant DNA technology for the production of polypeptides. Adv Exp Med Biol 118:153–174

    CAS  PubMed  Google Scholar 

  • Modi P, Mihic M, Lewin A (2002) The evolving role of oral insulin in the treatment of diabetes using a novel RapidMist system. Diabet Metab Res Rev 18(Suppl 1):S38–S42

    Article  CAS  Google Scholar 

  • Morishita M, Barichello JM, Takayama K, Chiba Y, Tokiwa S, Nagai T (2001) Pluronic F-127 gels incorporating highly purified unsaturated fatty acids for buccal delivery of insulin. Int J Pharm 212(2):289–293

    Article  CAS  PubMed  Google Scholar 

  • Nathan DM, Buse JB, Davidson MB, Heine RJ, Holman RR, Sherwin R, Zinman B (2006) Management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diab Care 29(8):1963–1972

    Article  Google Scholar 

  • Nolte MS, Taboga C, Salamon E, Moses A, Longenecker J, Flier J, Karam JH (1990) Biological activity of nasally administered insulin in normal subjects. Horm Metab Res 22:170–174

    Article  CAS  PubMed  Google Scholar 

  • Oe O (1938) Beeinflussung des Blutzuckergehaltes durch die Inhalation einiger inkretorischer Organpräparate. I. Insulin. Acta Dermatologica 31(5–6):75–80

    CAS  Google Scholar 

  • Owens DR, Zinman B, Bolli GB (2001) Insulins today and beyond. Lancet 358:739–746

    Article  CAS  PubMed  Google Scholar 

  • Owens DR, Zinman B, Bolli G (2003) Alternative routes of insulin delivery. Diabet Med 20(11):886–898

    Article  CAS  PubMed  Google Scholar 

  • Pan AX, de la Peña A, Yeo KP, Chan C et al (2008) Effects of smoking cessation, acute re-exposure and nicotine replacement in smokers on AIR® inhaled insulin pharmacokinetics and glucodynamics. Br J Clin Pharmacol (BJCP) 65(4):480–487

    Article  CAS  Google Scholar 

  • Patton JS, Byron PR (2007) Inhaling medicines: delivering drugs to the body through the lungs. Nat Rev Drug Discov 6(1):67–74

    Article  CAS  PubMed  Google Scholar 

  • Peppas NA, Kavimandan NJ (2006) Nanoscale analysis of protein and peptide absorption: insulin absorption using complexation and pH-sensitive hydrogels as delivery vehicles. Eur J Pharm Sci 29(3–4):183–197

    Article  CAS  PubMed  Google Scholar 

  • Pfützner A, Mann AE, Steiner SS (2002) TechnosphereTM/Insulin – a new approach for effective delivery of human insulin via the pulmonary route. Diab Technol Ther 4(5):589–594

    Article  Google Scholar 

  • Pozzilli P, Raskin P, Parkin CG (2010) Review of clinical trials: update on oral insulin spray formulation. Diabet Obes Metab 12(1):91–96

    Article  CAS  Google Scholar 

  • Paulescu CN (1921) Recherches sur le Rôle du pancréas dans l’assimilation nutritive. Arch Int Physiol 17:85–109

    Google Scholar 

  • Picchini U, Ditlevsen S, De Gaetano A (2006) Modeling the euglycemic hyperinsulinemic clamp by stochastic differential equations. J Math Biol 53:771–796

    Article  PubMed  Google Scholar 

  • Polonsky KS, Given BD, Van Cauter E (1988a) Twenty-four-hour profiles and pulsatile patterns of insulin secretion in normal and obese subjects. J Clin Invest 81:442–448

    Article  CAS  PubMed  Google Scholar 

  • Polonsky KS, Given BD, Hirsch L, Shapiro ET, Tillil H, Beebe C, Galloway JA, Frank BH, Karrison T, Van Cauter E (1988b) Quantitative study of insulin secretion and clearance in normal and obese subjects. J Clin Invest 81:435–441

    Article  CAS  PubMed  Google Scholar 

  • Rave K, Heise T, Heinemann L, Boss AH (2008) Inhaled Technosphere® insulin in comparison to subcutaneous regular human insulin: time action profile and variability in subjects with type 2 diabetes. J Diabet Sci Technol 2(2):205–212

    Google Scholar 

  • Rave K, Potocka E, Boss AH, Marino M, Costello D, Chen R (2009) Pharmacokinetics and linear exposure of AFRESATM compared with the subcutaneous injection of regular human insulin. Diab Obes Metab 11(7):715–720

    Article  CAS  Google Scholar 

  • Renard E, Place J, Cantwell M, Chevassus H, Palerm CC (2010) Closed-loop insulin delivery using a subcutaneous glucose sensor and intraperitoneal insulin delivery. Diab Care 33(1):121–127

    Article  CAS  Google Scholar 

  • Richardson PC, Boss AH (2007) Technosphere® insulin technology. Diab Technol Ther 9(Suppl 1):S-65–S-72

    CAS  Google Scholar 

  • Rinke S, Berger M (1983) Die ersten Jahre der Insulintherapie. W. Zuckschwerdt, München/Bern/Wien

    Google Scholar 

  • Robitschek W (1925) Über die wirkung der inhalation vernebelten Insulins. Med Klinik 1:19

    Google Scholar 

  • Rosenstock J, Cefalu WT, Hollander PA, Klioze SS, Reis J, Duggan WT (2009) Safety and efficacy of inhaled human insulin (Exubera) during discontinuation and readministration of therapy in adults with type 2 diabetes: a 3-year randomized controlled trial. Diab Technol Ther 11(11):697–705

    Article  CAS  Google Scholar 

  • Rave K, Nosek L, Heinemann L, Frick A, Becker RHA (2004a) Insulin glulisine: Pharmacokinetic and pharmacodynamic properties in comparison with insulin lispro and regular human insulin in Japanese and Caucasian volunteers (abstract). Diabetes 53(Suppl 2):A143

    Google Scholar 

  • Rave K, Nosek L, Heinemann L, Frick A, Becker R, Kapitza C (2004b) Dependency of the metabolic effect of sc-injected human regular insulin on intra-abdominal fat in patients with type 2 diabetes. Horm Metab Res 36:307–311

    Article  CAS  PubMed  Google Scholar 

  • Rave K, Bott S, Heinemann L, Sha S, Becker RHA, Willavize SA, Heise T (2005) Time-action profile of inhaled insulin comparison with subcutaneously injected insulin lispro and regular human insulin. Diab Care 28:1077–1082

    Article  CAS  Google Scholar 

  • Rave K, Klein O, Frick AD, Becker RHA (2006) Advantage of premeal-injected insulin glulisine compared with regular human insulin in subjects with type 1 diabetes. Diab Care 29:1812–1817

    Article  CAS  Google Scholar 

  • Roden M (ed) (2007) Clinical diabetes research – methods and techniques. Wiley, Chichester

    Google Scholar 

  • Robinson DM, Wellington K (2006) Insulin glulisine. Drugs 66:861–869

    Article  CAS  PubMed  Google Scholar 

  • Rosenfeld L (2002) Insulin: discovery and controversy. Clin Chem 48(12):2270–2288

    CAS  PubMed  Google Scholar 

  • Sapin R (2003) Insulin assays: previously known and new analytical features. Clin Lab 49:113–121

    CAS  PubMed  Google Scholar 

  • Scholtz HE, Pretorius SG, Wessels DH, Venter C, Potgieter MA, Becker RHA (2003) Equipotency of insulin glargine and regular human insulin on glucose disposal in healthy subjects following intravenous infusion. Acta Diabetol 40:156–162

    Article  CAS  PubMed  Google Scholar 

  • Scholtz HE, Pretorius SG, Wessels DH, Becker RHA (2005) Pharmacokinetic and glucodynamic variability: assessment of insulin glargine, NPH insulin and insulin ultralente in healthy volunteers using a euglycaemic clamp technique. Diabetologia 48:1988–1995

    Article  CAS  PubMed  Google Scholar 

  • Sinding C (2002) Making the unit of insulin: standards, clinical work, and industry, 1920–1925. Bull Hist Med 76:231–270

    Article  PubMed  Google Scholar 

  • Smith BP, Vandenhende FR, DeSante KA, Farid NA, Welch PA, Callaghan JT, Forgue ST (2000) Confidence interval criteria for assessment of dose proportionality. Pharm Res 17(10):1278–1283

    Article  CAS  PubMed  Google Scholar 

  • Steinijans VW, Diletti E (1983) Statistical analysis of bioavailability studies: Parametric and non-parametric confidence intervals. Eur J Pharmacol 24:127–136

    CAS  Google Scholar 

  • Swinnen SGHA, Holleman F, DeVries JH (2008) The interpretation of glucose clamp studies of long-acting insulin analogues: from physiology to marketing and back. Diabetologia 51:1790–1795

    Article  CAS  PubMed  Google Scholar 

  • Salzman R, Manson JE, Griffing GT, Kimmerle R, Ruderman N, McCall A, Stoltz EI, Mullin C, Small D, Armstrong J et al (1985) Intranasal aerosolized insulin. mixed-meal studies and long-term use in type I diabetes. N Engl J Med 312:1078–1084

    Article  CAS  PubMed  Google Scholar 

  • Siekmeier R, Scheuch G (2008) Inhaled insulin – does it become reality? J Physiol Pharmacol 59(Suppl 6):81–113

    PubMed  Google Scholar 

  • Skyler J, Jovanovic L, Klioze S, Reis J, Duggan W (2007) Two-year safety and efficacy of inhaled human insulin (exubera) in adult patients with type 1 diabetes. Diab Care 30(3):579–585

    Article  CAS  Google Scholar 

  • Skyler J (2007) Pulmonary insulin delivery – state of the art 2007. Diab Technol Ther 9(Suppl 1):S-1–S-3

    Google Scholar 

  • Staub H (1924) Einführung in die insulintherapie des diabetes mellitus. Springer, Berlin

    Google Scholar 

  • Steiner S, Pfützner A, Wilson BR, Harzer O, Heinemann L, Rave K (2002) TechnosphereTM/insulin – proof of concept study with a new insulin formulation for pulmonary delivery. Exp Clin Endocrinol Diabet 110:17–21

    Article  CAS  Google Scholar 

  • Umber F, Störring FK, Föllmer W (1938) Erfolge mit einem neuartigen Depot-Insulin ohne Protaminzusatz – Surfen-Insulin. Klin Wochenschr 17(13):443–446

    Article  Google Scholar 

  • U.S. Department of Health and Human Services, Food and Drug Administration. Insulin Lispro (100 U/mL), Humalog®, Clinical Pharmacology and Biopharmaceutics Review. NDA 20-563. Rockville, MD: Food and Drug Administration, 1995

    Google Scholar 

  • U.S. Department of Health and Human Services, Food and Drug Administration. Novolog™ Insulin Aspart (rDNA Origin) Injection. NDA 20-986. Rockville, MD: Food and Drug Administration, 2000

    Google Scholar 

  • U.S. Department of Health and Human Services, Food and Drug Administration. APIDRA™ Insulin Glulisine (rDNA Origin) Injection. NDA 21-536. Rockville, MD: Food and Drug Administration, 2004

    Google Scholar 

  • U.S. Department of Health and Human Services, Food and Drug Administration. Lantus™ Insulin Glargine (rDNA Origin) Injection. NDA 21-081. Rockville, MD: Food and Drug Administration, 2000

    Google Scholar 

  • U.S. Department of Health and Human Services, Food and Drug Administration. Levemir™ Detemir (rDNA Origin) Injection. NDA 21-536 and 21-878. Rockville, MD: Food and Drug Administration, 2005

    Google Scholar 

  • U.S. Department of Health and Human Services, Food and Drug Administration. Exubera™ Inhaled insulin (rDNA Origin) Powder inhalation. NDA 21-868. Rockville, MD: Food and Drug Administration, 2006

    Google Scholar 

  • U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), December 2008, Guidance for Industry: Diabetes Mellitus – Evaluating Cardiovascular Risk in New Antidiabetic Therapies to Treat Type 2 Diabetes

    Google Scholar 

  • U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), February 2008, Guidance for Industry: Diabetes Mellitus: Developing Drugs and Therapeutic Biologics for Treatment and Prevention (Draft Guidance) (http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm071624.pdf)

    Google Scholar 

  • Von Mering J, Minkowski O (1889) Diabetes mellitus nach Pankreasextirpation. Centralblatt für klinische Medicin. Leipzig 10(23):393–394

    Google Scholar 

  • Von Mering J, Minkowski O (1890) Diabetes mellitus nach Pankreasextirpation. Archiv für experimentelle Pathologie und Pharmakologie. Leipzig 26:371–387

    Google Scholar 

  • Vølund A (1993) Conversion of insulin units to SI units. Am J Clin Nutr 58(5):714–715

    PubMed  Google Scholar 

  • Wallace TM, Matthews DR (2002) The assessment of insulin resistance in man. Diabet Med 19:527–534

    Article  CAS  PubMed  Google Scholar 

  • Weers J, Tarara TE, Clark AR (2007) Design of fine particles for pulmonary drug delivery. Expert Opin Drugt Deliv 4(3):297–313

    Article  CAS  Google Scholar 

  • White S, Bennett DB, Cheu S, Conley PW et al (2005) Exubera: pharmaceutical development of a novel product for pulmonary delivery of insulin. Diabet Technol Ther 7(6):896–906

    Article  CAS  Google Scholar 

  • Zierler K (1999) Whole body glucose metabolism. Am J Physiol Endocrinol Metab 276:409–426

    Google Scholar 

  • Zinman B (1989) The physiological replacement of insulin: an elusive goal. N Engl J Med 321:363–370

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard H. A. Becker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Becker, R.H.A. (2011). Pharmacodynamic Evaluation: Diabetes Methodologies. In: Vogel, H.G., Maas, J., Gebauer, A. (eds) Drug Discovery and Evaluation: Methods in Clinical Pharmacology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89891-7_33

Download citation

Publish with us

Policies and ethics