Skip to main content

Monitoring and Control of Anesthesia Using Multivariable Self-Organizing Fuzzy Logic Structure

  • Chapter
Fuzzy Systems in Bioinformatics and Computational Biology

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 242))

Summary

In this chapter, the design and implementation of Self-Organizing Fuzzy Logic Controller (SOFLC) is explored with a particular application to control a multivariable model of anesthesia. A concept called decomposition of multivariable self-organizing fuzzy logic structure is proposed in this chapter. Hence, the basic forms of a simple 2 terms SOFLC to a multi-term complex multi-input/multi-output (MIMO) controller will be presented. Different design strategies of MIMO will be outlined and the application of SOFLC systems to muscle relaxation and depth of anesthesia control will be explored in the simulations. After comparison with four different MIMO controllers, the successful simulation results have given confidence to perform on-line clinical trials at the operating theatre in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, A.P., Cashman, J.N.: Anaesthesia, analgesia and intensive care. Edward Arnold, London (1991)

    Google Scholar 

  2. Allen, R., Smith, D.: Neuro-fuzzy closed-loop control of depth of anaesthesia. Artificial Intelligence in Medicine 21, 185–191 (2001)

    Article  Google Scholar 

  3. Chuang, C.T., Fan, S.Z., Shieh, J.S.: Muscle relaxation controlled by automated administration of cisatracurium. Biomedical Engineering- Applications, Basis & Communications 18(6), 284–295 (2006)

    Article  Google Scholar 

  4. Chuang, C.T., Fan, S.Z., Shieh, J.S.: The use of intensive manual control to model cisatracurium pharmacokinetics and pharmacodynamics for neuromuscular block. Journal of Medical and Biological Engineering 26(4), 187–193 (2006)

    Google Scholar 

  5. Ciresi, G., Akay, M.: Fuzzy logic in medical control applications. Biomedical Engineering-Applications Basis Communications 8(6), 471–487 (1996)

    Google Scholar 

  6. Elkfafi, M., Shieh, J.S., Linkens, D.A., Peacock, J.E.: Intelligent signal processing of evoked potentials for anaesthesia monitoring and control. IEE Proc. Control Theory and Appl. 144(4), 354–360 (1997)

    Article  MATH  Google Scholar 

  7. Elkfafi, M., Shieh, J.S., Linkens, D.A., Peacock, J.E.: Fuzzy logic for auditory evoked response monitoring and control of depth of anaesthesia. Fuzzy Sets and Systems 100, 29–43 (1998)

    Article  Google Scholar 

  8. Gao, Y., Er, M.J.: Online adaptive fuzzy neural identification and control of a class of mimo nonlinear systems. IEEE Transactions on Fuzzy Systems 11(4), 462–477 (2003)

    Article  Google Scholar 

  9. Gupta, M.M., Kiszka, J.B., Trojan, G.M.: Multivariable structure of fuzzy control systems. IEEE Transactions on Systems, Man, and Cybernetics 16(5), 638–656 (1986)

    Article  MATH  Google Scholar 

  10. Huang, S.J., Shieh, Fu, M., Kao, M.C.: Fuzzy logic control for intracranial pressure via continuous propofol sedation in a neurosurgical intensive care unit. Medical Engineering & Physics 28(7), 639–647 (2006)

    Article  Google Scholar 

  11. Kim, Y.T., Bien, Z.: Robust self-learning fuzzy controller design for a class of nonlinear mimo systems. Fuzzy Sets and Systems 111(2), 117–135 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kosko, B.: Neural networks and fuzzy systems. Prentice-Hall International, Inc., Singapore (1991)

    Google Scholar 

  13. Linkens, D.A.: Adaptive and intelligent control in anesthesia. IEEE Control Systems Magazine, 6–11 (1992)

    Google Scholar 

  14. Linkens, D.A.: The role of intelligent systems engineering in biomedicine. Biomedical Engineering - Applications Basis Communications 8(5), 385–391 (1996)

    MathSciNet  Google Scholar 

  15. Linkens, D.A., Hasnain, S.B.: Self-organizing fuzzy logic control and application to muscle relaxant anaesthesia. IEE Proceedings, Part D 138, 274–284 (1991)

    MATH  Google Scholar 

  16. MacLeod, A.D., Asbury, A.J., Gray, W.M., Linkens, D.A.: Automatic control of neuromuscular block with atracurium. British Journal of Anaesthesia 63, 31–35 (1989)

    Article  Google Scholar 

  17. Mahfouf, M.: Generalised predictive control (gpc) in the operating theatre. In: Linkens, D.A. (ed.) Intelligent Control in Biomedicine, pp. 37–78. Taylor & Francis, London (1994)

    Google Scholar 

  18. Mahfouf, M., Abbod, M.F.: A comparative study of generalized predictive control (gpc) and intelligent self-organizing fuzzy logic control (soflc) for multivariable anaesthesia. In: Linkens, D.A. (ed.) Intelligent Control in Biomedicine, pp. 79–132. Taylor & Francis, London (1994)

    Google Scholar 

  19. Mahfouf, M., Abbod, M.F., Linkens, D.A.: Survey of fuzzy logic monitoring and control utilization in medicine. Artificial Intelligence in Medicine 21(1), 27–42 (2001)

    Article  Google Scholar 

  20. Mahfouf, M., Linkens, D.A., Asbury, A.J., Gray, W.M., Peacock, J.E.: Generalised predictive control (gpc) in the operating theatre. IEE Proceedings, Part D 139, 404–420 (1992)

    Google Scholar 

  21. Martin, J.F., Smith, N.T., Quinn, M.L., Schneider, A.M.: Supervisory adaptive control of arterial pressure during cardiac surgery. IEEE Transactions on Biomedical Engineering 39(4), 389–393 (1992)

    Article  Google Scholar 

  22. Mason, D.G., Ross, J.J., Edwards, N.D., Linkens, D.A., Reilly, C.S.: Self-learning fuzzy control of atracurium-induced neuromuscular block during surgery. Medical & Biological Engineering & Computing 35, 498–503 (1997)

    Article  Google Scholar 

  23. Meier, R., Nieuwland, J., Zbinden, A.M., Hacisalihzade, S.S.: Fuzzy logic control of blood pressure during anesthesia. IEEE Control Systems Magazine 12(12), 12–17 (1992)

    Article  Google Scholar 

  24. Millard, R.K., Monk, C.R., Woodcock, T.E., Roberts, C.P.: Controlled hypotension during ent surgery using self-tuners. Computational Biology and Medicine 17, 1–18 (1988)

    Article  Google Scholar 

  25. Nie, J., Lee, T.H.: Self-organizing rule-based control of multivariable nonlinear servomechanisms. Fuzzy Sets and Systems 3, 285–304 (1997)

    Article  MathSciNet  Google Scholar 

  26. Procyk, T.J., Mamdani, E.H.: A linguistic self-organizing process controller. Automatica 15, 15–30 (1979)

    Article  MATH  Google Scholar 

  27. Ross, J.J., Mason, D.G., Linkens, D.A., Edwards, N.D.: Self-learning fuzzy logic control of neuromuscular block. British Journal of Anesthesia 78, 412–415 (1997)

    Google Scholar 

  28. Shieh, J.S., Chang, L.W., Fan, S.Z., Liu, C.C.: Fuzzy logic control of propofol infusion using quantitative and qualitative approaches. Biomedical Engineering-Applications, Basis & Communications 9(6), 350–360 (1997)

    Google Scholar 

  29. Shieh, J.S., Chang, L.W., Fan, S.Z., Liu, C.C., Huang, H.H.: Automatic control of anaesthesia using hierarchical structure. Biomedical Engineering-Applications, Basis & Communication 10(4), 195–202 (1998)

    Google Scholar 

  30. Shieh, J.S., Chang, L.W., Yang, T.C., Liu, C.C.: An enhanced patient controlled analgesia (epca) for the extracorporeal shock wave lithotripsy (eswl). Biomedical Engineering-Applications, Basis & Communications 19(1), 7–17 (2007)

    Article  Google Scholar 

  31. Shieh, J.S., Fan, S.Z., Chang, L.W., Liu, C.C.: Hierarchical rule-based monitoring and fuzzy logic control for neuromuscular block. Journal of Clinical Monitoring and Computing 16, 583–592 (2000)

    Article  Google Scholar 

  32. Shieh, J.S., Fan, S.Z., Shi, W.L.: The intelligent architecture for simulation of inhalational anaesthesia. Biomedical Engineering-Application, Basis & Communications 16(5), 272–280 (2004)

    Article  Google Scholar 

  33. Shieh, J.S., Kao, M.H., Liu, C.C.: Genetic fuzzy modelling and control of bispectral index (bis) for general intravenous anaesthesia. Medical Engineering & Physics 28(2), 134–148 (2006)

    Article  Google Scholar 

  34. Shieh, J.S., Linkens, D.A., Asbury, A.J.: A hierarchical system of on-line advisory for monitoring and controlling the depth of anesthesia using self-organizing fuzzy logic. Engineering Applications of Artificial Intelligence 18(3), 307–316 (2005)

    Article  Google Scholar 

  35. Shieh, J.S., Linkens, D.A., Peacock, J.E.: Hierarchical rule-based and self-organizing fuzzy logic control of anesthesia. IEEE Transaction on Systems, Man, and Cybernetics, Part C: Applications and Reviews 9(1), 98–109 (1999)

    Article  Google Scholar 

  36. Shieh, J.S., Linkens, D.A., Peacock, J.E.: A computer screen-based simulator for hierarchical fuzzy logic monitoring and control of depth of anaesthesia. Mathematics and Computers in Simulation 67(3), 251–265 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  37. Tatnall, M.L., Morris, P., West, P.G.: Controlled anaesthesia: An approach using patient characteristics identified during uptake. British Journal of Anaesthesia 53, 1019–1026 (1981)

    Article  Google Scholar 

  38. Tong, R.M.: Synthesis of fuzzy models for industrial processes – some recent results. International Journal of General Systems 4, 143–162 (1978)

    Article  MATH  Google Scholar 

  39. Uys, P.C., Morrell, D.F., Bradlow, H.S., Rametti, L.B.: Self-tuning microprocessor-based closed-loop control of atracurium-induced neuromuscular blockade. British Journal of Anaesthesia 61, 685–692 (1988)

    Article  Google Scholar 

  40. Zbinden, A.M., Feigenwinter, P., Petersen-Felix, S., Hacisalihzade, S.: Arterial pressure control with isoflurane using fuzzy logic. British Journal of Anaesthesia 74, 66–72 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shieh, J.S., Abbod, M.F., Hsu, C.Y., Huang, S.J., Han, Y.Y., Fan, S.Z. (2009). Monitoring and Control of Anesthesia Using Multivariable Self-Organizing Fuzzy Logic Structure. In: Jin, Y., Wang, L. (eds) Fuzzy Systems in Bioinformatics and Computational Biology. Studies in Fuzziness and Soft Computing, vol 242. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89968-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89968-6_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89967-9

  • Online ISBN: 978-3-540-89968-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics