Skip to main content

Abstract

The lungfishes or Dipnoi form an extremely ancient group of fishes which appeared in the lower Devonian and reached the zenith of its evolution in late Devonian and Carboniferous times (Moy-Thomas and Miles 1971). A variety of fossil lungfishes have been described from geological formations all over the world, but in the recent fauna this group is represented by only six species. These are distributed over three genera, the African genus Protopterus with four species, the South American genus Lepidosiren with a single species and the Australian genus Neoceratodus, also with one species. The Australian lungfish, Neoceratodus forsteri, which closely resembles the dipnoans of early Mesozoic age, is almost certainly the most primitive of the three modern types. Its long, fusiform body is slightly compressed laterally, and is covered with large, rounded scales. The earliest lungfishes possessed leaf-shaped pectoral and pelvic fins with a strong axial skeleton and a proximal fleshy portion covered with scales. Similar paired fins are present in Neoceratodus

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ali MA, Anctil M (1973) Retina of the South American lungfish, Lepidosiren paradoxa Fitzinger. Can J Zool 51:969–972

    CAS  PubMed  Google Scholar 

  • Allis PA (1897) The cranial muscles and cranial and first spinal nerves in Amia calva. J Morphol 12:487–808

    Google Scholar 

  • Altner H (1968) Untersuchungen an Ependym und Ependymorganen im Zwischenhirn niederer Wirbeltiere (Neoceratodus, Urodelen, Anuren). Z Zellforsch 84:102–140

    CAS  PubMed  Google Scholar 

  • Ariëns Kappers CU (1929) The evolution of the nervous system. Bohn, Haarlem, VI+335 pp

    Google Scholar 

  • Ariëns Kappers J (1965) Survey of the innervation of the epiphysis cerebri and the accessory pineal organs of vertebrates. Progr Brain Res 10:87–151

    Google Scholar 

  • Ariëns Kappers CU, Huber GC, Crosby EC (1936) The comparative anatomy of the nervous system of vertebrates, including man. MacMillan, New York, XVII+1845 pp

    Google Scholar 

  • Ball JN (1981) Hypothalamic control of the pars distalis in fishes, amphibians and reptiles. Gen Comp Endocrinol 44:135–170

    CAS  PubMed  Google Scholar 

  • Bargmann W, Lindner E, Andres KM (1967) Ãœber Synapsen an endokrinen Epithelzellen und die Definition sekretorischer Neurone. Untersuchungen am Zwischenlappen der Katzenhypophyse. Z Zellforsch Mikrosk Anat 77:282–298

    CAS  PubMed  Google Scholar 

  • Bemis WE, Burggren WW (1986) The biology and evolution of lungfishes. J Morphol Suppl 1:1–83

    Google Scholar 

  • Bergquist H (1932) Zur Morphologie des Zwischenhirns bei niederen Wirbeltieren. Acta Zool 13:57–304

    Google Scholar 

  • Bergquist H (1954) Ontogenesis of diencephalic nuclei in vertebrates. A comparative study. Kgl Fysiogr Sällsk Lund Handl NF 65 6:1–34

    Google Scholar 

  • Bergquist H, Këllén B (1954) Notes on the early histogenesis and morphogenesis of the central nervous system in vertebrates. J Comp Neurol 100:627–660

    CAS  PubMed  Google Scholar 

  • Bern HA (1969) Urophysis and caudal neurosecretory system. In: Hoar WS, Randall DJ (eds) Fish physiology, vol II. Academic Press, New York, pp 399–418

    Google Scholar 

  • Bertmar G (1968a) Phylogeny and evolution in lungfishes. Acta Zool [Stockholm] 49:189–201

    Google Scholar 

  • Bertmar G (1968b) Lungfish phylogeny. In: Orvig T (ed) Current problems of lower vertebrate phylogeny. Fourth Nobel Symposium. Almqvist and Wiksell, Stockholm, pp 259–283

    Google Scholar 

  • Bing R, Burckhardt R (1905) Das Centralnervensystem von Ceratodus forsten. Jenaische Denkschriften 4:513–584

    Google Scholar 

  • Burckhardt R, (1892) Das Centralnervensystem von Protopterus annectens. Friedlander, Berlin, 64 pp

    Google Scholar 

  • Capanna E, Clairambault P (1973) Some considerations on the forebrain of the bipulmonate Dipnoi. Rend Cont Accad Naz Lincei 55:603–608

    Google Scholar 

  • Clairambault P, Capanna E (1973) Suggestion for a revision of the cytoarchitectonics of the telencephalon of Protopterus, Protopterus annectens (Owen). Boll Zool 40:149–171

    Google Scholar 

  • Clairambault P, Flood C (1975) Les centres visuels primaires de Protopterus dolloi Boulenger. J Hirnforsch 16:497–509

    CAS  PubMed  Google Scholar 

  • Clairambault P, Capanna E, Chanconie M, Pinganaud G (1974a) Tipologia neurale del septum telencefalico di un Dipnoi lepidosireniforme (Protopterus dolloi Boulenger). Rend Cont Accad Naz Lincei 56:423–431

    Google Scholar 

  • Clairambault P, Capanna E, Chanconie M, Pinganaud G (1974b) Typologie neuronique du complexe strioamygdaloide de Protopterus dolloi Boulenger. Rend Cont Accad Naz Lincei 56:1017–1025

    Google Scholar 

  • Clairambault P, Capanna E, Chanconie M, Pinganaud G (1974c) Architectural pattern of the diencephalon and mesencephalon of the African lungfish Protopterus dolloi. Boll Zool 41:107–122

    Google Scholar 

  • Colin Nicol J (1952) Autonomic nervous systems in lower chordates. Biol Rev 27:1–50

    Google Scholar 

  • Cordier R (1936) Les organes sensoriels cutanés du Protoptère. Bull Acad R Méd Belg Sci V Sér 22:474–483

    Google Scholar 

  • Dorn E (1957) Ãœber das Zwischenhirn-Hypophysen-System von Protopterus annectens. Z Zellforsch 46:108–114

    CAS  PubMed  Google Scholar 

  • Elliot Smith G (1908) The cerebral cortex in Lepidosiren, with comparative notes on the interpretation of certain features of the forebrain in other vertebrates. Anat Anz 33:513–540

    Google Scholar 

  • Fahrenholz C (1929) Ãœber die ‘Drüsen’ und die Sinnesorgane in der Haut des Lungenfisches. Z Mikrosk Anat Forsch 16:55–74

    Google Scholar 

  • Follett BK, Heller H (1964) The neurohypophysial hormones of lungfishes and amphibians. J Physiol 172:92–106

    CAS  PubMed  Google Scholar 

  • Forey PL (1986) Relationships of lungfishes. J Morphol Suppl 1:75–91

    Google Scholar 

  • Gerlach J (1933) Ãœber das Gehirn von Protopterus annectens. Ein Beitrag zur Morphologie des Dipnoerhirnes. Anat Anz 75:305–448

    Google Scholar 

  • Goossens N, Diericks K, Vandesande F (1978) Immunocytochemical study of the neurohypophysial hormone producing system of the lungfish, Protopterus aethiopicus. Cell Tiss Res 190:69–77

    CAS  Google Scholar 

  • Greenwood PH (1986) The natural history of African lungfishes. J Morphol Suppl 1:163–179

    Google Scholar 

  • Heimer L, Wilson RD (1975) The subcortical projections of the allocortex: Similarities in the neural associations of the hippocampus, the piriform cortex, and the neocortex. In: Santini M (ed) Golgi centennial symposium proceedings. Raven, New York, pp 177–193

    Google Scholar 

  • Heimer L, Switzer RD, Hoesen GW van (1982) Ventral striatum and ventral pallidum. Components of the motor system? Trends Neurosci 5:83–87

    Google Scholar 

  • Herrick CJ (1905) The central gustatory paths in the brains of bony fishes. J Comp Neurol 15:375–456

    Google Scholar 

  • Herrick CJ (1906) On the centers for taste and touch in the medulla oblongata of fishes. J Comp Neurol 16:403–439

    Google Scholar 

  • Herrick CJ (1917) The internal structure of the midbrain and thalamus of Necturus. J Comp Neurol 28:315–348

    Google Scholar 

  • Herrick CJ (1921) The connections of the vomeronasal nerve, accessory olfactory bulb and amygdala in Amphibia. J Comp Neurol 33:213–280

    Google Scholar 

  • Herrick CJ (1927) The amphibian forebrain. IV. The cerebral hemispheres of Amblystoma. J Comp Neurol 43:231–325

    Google Scholar 

  • Herrick CJ (1930) The medulla oblongata of Necturus. J Comp Neurol 50:1–96

    Google Scholar 

  • Herrick CJ (1933) The amphibian forebrain. VI. Necturus. J Comp Neurol 58:1–288

    Google Scholar 

  • Herrick CJ (1935) A topographic analysis of the thalamus and midbrain of amblystoma. J Comp Neurol 62:239–261

    Google Scholar 

  • Herrick CJ (1948) The brain of the tiger salamander. University of Chicago Press, Chicago, X+407 pp

    Google Scholar 

  • Holmes EB (1985) Are lungfishes the sister group of tetrapods?. Biol J Linn Soc 25:379–397

    Google Scholar 

  • Holmes RL, Ball JN (1974) The pituitary gland. A comparative account. Cambridge University Press, Cambridge, X+397 pp

    Google Scholar 

  • Holmgren N (1922) Points of view concerning forebrain morphology in lower vertebrates. J Comp Neurol 34:391–440

    Google Scholar 

  • Holmgren N, Horst CJ van der (1925) Contribution to the morphology of the brain of Ceratodus. Acta Zool 6:59–165

    Google Scholar 

  • Holmgren U (1959) On the pineal area and adjacent structures of the brain of the dipnoan fish, Protopterus annectens (Owen). Brev Mus Comp Zool 108:1–7

    Google Scholar 

  • Jakway JS, Riss W (1972) Retinal projections in the tiger salamander, Ambystoma triginum. Brain Behav Evol 5:401–442

    CAS  PubMed  Google Scholar 

  • Jarvik E (1968a) The systematic position of the dipnoi. In: Ørvig T (ed) Current problems of lower vertebrate phylogeny. Fourth Nobel Symposium. Almqvist and Wiksell, Stockholm, pp 223–245

    Google Scholar 

  • Jarvik E (1968b) Aspects of vertebrate physiology. In: Ørvig T (ed) Current problems of lower vertebrate phylogeny. Fourth Nobel Symposium. Almqvist and Wiksell, Stockholm, pp 497–527

    Google Scholar 

  • Jarvik E (1980) Basic structure and evolution of vertebrates, vol 2 Academic Press, London, XIII+337pp

    Google Scholar 

  • Jeener R (1930) Evolution des centres diencéphaliques périventriculaires des Téléostomes. Proc Kon Ned Akad Wet [Amsterdam] B 33:1–16

    Google Scholar 

  • Johnston JB (1911a) The telencephalon of selachians. J Comp Neurol 21:1–113

    Google Scholar 

  • Johnston JB (1911b) The telencephalon of ganoids and teleosts. J Comp Neurol 21:489–591

    Google Scholar 

  • Johnston JB (1923) Further contributions to the study of the evolution of the forebrain. J Comp Neurol 35:337–481

    Google Scholar 

  • Joss JMP, Williamson S, Trimble J, Dores RM (1990) The adenohypophysis of the Australian lungfish, Neoceratodus forsteri — an immunocytological study. Gen Comp Endocrinol 80:274–287

    CAS  PubMed  Google Scholar 

  • Källén B (1951a) Some remarks on the ontogeny of the telencephalon in some lower vertebrates. Acta Anat 11:537–548

    PubMed  Google Scholar 

  • Källén B (1951b) Embryological studies on the nuclei and their homologication in the vertebrate forebrain. Kgl Fysiogr Sällsk Lund Handl N F 47 5:1–35

    Google Scholar 

  • Keenan E (1928) The phylogenetic development of the substantia gelatinosa Rolandi, part I. Fishes. Proc Kon Ned Akad Wet [Amsterdam] 31:837–854

    Google Scholar 

  • Kemp A (1982) The embryological development of the Queensland lungfish, Neoceratodus forsteri (Krefft). Mem Qd Mus 20:553–597

    Google Scholar 

  • Kemp A (1986) The biology of the Australian lungfish, Neoceratodus forsteri (Krefft 1870). J Morphol Suppl 1:181–198

    Google Scholar 

  • Kerr T, Oordt PGWJ van (1966) The pituitary of the African lungfish, Protopterus. Gen Comp Endocrinol 7:549–558

    CAS  PubMed  Google Scholar 

  • Knowles F (1965) Evidence for a dual control, by neurosecretion of hormone synthesis and hormone release in the pituitary of the dogfish, Scyliorhinus stellaris. Phil Trans R Soc London B 249:435–456

    CAS  Google Scholar 

  • Kokoros JJ, Northcutt RG (1977) Telencephalic efferents of the tiger salamander, Ambystoma tigrinum tigrinum (Green). J Comp Neurol 173:613–628

    CAS  PubMed  Google Scholar 

  • Kölliker A (1896) Nervensystem des Menschen und der Thiere. In: Handbuch der Gewebelehre des Menschen, vol 2. Engelmann, Leipzig, pp 334

    Google Scholar 

  • Kremers JWPM, Nieuwenhuys R (1979) Topological analysis of the brain stem of the crossopterygian fish Latimeria chalumnae. J Comp Neurol 187:613–638

    CAS  PubMed  Google Scholar 

  • Kuhlenbeck H (1929a) Ãœber die Grundbestandteile des Zwischenhirnbauplans der Anamnier. Morphol Jahrb 63:50–95

    Google Scholar 

  • Kuhlenbeck H (1929b) Die Grundbestandteile des Endhirns im Lichte der Bauplanlehre. Anat Anz 67:1–51

    Google Scholar 

  • Locy WA (1905) On a newly recognized nerve connected with the forebrain of selachians. Anat Anz 26:33–63; 111-123

    Google Scholar 

  • McCormick CA (1982) The organisation of the octavolateralis area in actinopterygian fishes: a new interpretation. J Morphol 171:159–181

    Google Scholar 

  • Meyer A, Dolven SI (1992) Molecules, fossils, and the origin of tetrapods. J Mol Evol 35:102–113

    CAS  PubMed  Google Scholar 

  • Meyer A, Wilson AC (1990) Origin of tetrapods inferred from their mitochondrial DNA affiliation to lungfish. J Mol Evol 31:359–364

    CAS  PubMed  Google Scholar 

  • Moy-Thomas JA, Miles RS (1971) Palaeozoic fishes. Chapman and Hall, London, XI+259 pp

    Google Scholar 

  • Nieuwenhuys R (1967a) Comparative anatomy of olfactory centres and tracts. Progr Brain Res 23:1–64

    CAS  Google Scholar 

  • Nieuwenhuys R (1967b) Comparative anatomy of the cerebellum. Progr Brain Res 25:1–93

    CAS  Google Scholar 

  • Nieuwenhuys R (1969) A survey of the structure of the forebrain in higher bony fishes. Ann NY Acad Sci 167:31–64

    Google Scholar 

  • Nieuwenhuys R (1972) Topological analysis of the brain stem of the lamprey Lampetra fluviatilis. J Comp Neurol 145:165–178

    CAS  PubMed  Google Scholar 

  • Nieuwenhuys R, Hickey M (1965) A survey of the forebrain of the Australian lungfish Neoceratodus forsteri. J Hirnforsch 7:433–452

    CAS  PubMed  Google Scholar 

  • Nieuwenhuys R, Meek J (1990) The telencephalon of sarcopterygian fishes. In: Jones EG, Peters A (eds) Cerebral cortex, vol 8A: comparative structure and evolution of cerebral cortex, part I. Plenum, New York, pp 75–106

    Google Scholar 

  • Northcutt RG (1977) Retinofugal projections in the lepidosirenid lungfishes. J Comp Neurol 174:553–574

    CAS  PubMed  Google Scholar 

  • Northcutt RG (1980) Retinal projections in the Australian lungfish. Brain Res 185:85–90

    CAS  PubMed  Google Scholar 

  • Northcutt RG (1986) Lungfish neural characters and their bearing on sarcopterygian phylogeny. J Morphol Suppl 1:277–297

    Google Scholar 

  • Northcutt RG (1995) The forebrain of Gnathostomes: in search of a morphotype. Brain Behav Evol 46:275–318

    CAS  PubMed  Google Scholar 

  • Northcutt RG, Reiner A, Karten HR (1988) An immunohistochemical study of the telencephalon of the spiny dogfish, Squalus acanthias. J Comp Neurol 277:250–267

    CAS  PubMed  Google Scholar 

  • Onstott D, Elde R (1986) Immunohistochemical localisation of urotensin I/corticotropin-releasing factor, urotensin II, and serotonin immunoreactivities in the caudal spinal cord of nonteleost fishes. J Comp Neurol 249:205–225

    CAS  PubMed  Google Scholar 

  • Opdam P, Nieuwenhuys R (1976) Topological analysis of the brain stem of the axolotl Ambystoma mexicanum. J Comp Neurol 165:285–306

    CAS  PubMed  Google Scholar 

  • Palmgren A (1921) Embryological and morphological studies on the mid-brain and cerebellum of vertebrates. Acta Zool 2:1–94

    Google Scholar 

  • Panchen AL, Smithson TR (1987) Character diagnosis, fossils and the origin of tetrapods. Biol Rev 62:341–438

    Google Scholar 

  • Pfeiffer W (1968a) Retina und Retinomotorik der Dipnoi und Brachiopterygii. Z Zellforsch 89:62–72

    CAS  PubMed  Google Scholar 

  • Pfeiffer W (1968b) Die Fahrenholzschen organe der Dipnoi und Brachiopterygii. Z Zellforsch 90:127–147

    CAS  PubMed  Google Scholar 

  • Pinkus F (1894) Ãœber einen noch nicht beschriebenen Hirnnerven des Protopterus annectens. Anat Anz 9:562–566

    Google Scholar 

  • Pinkus F (1895) Die Hirnnerven des Protopterus annectens. Morphol Arb (Schwalbe) 4:275–346

    Google Scholar 

  • Reiner A, Northcutt RG (1987) An immunohistochemical study of the telencephalon of the African lungfish, Protopterus annectens. J Comp Neurol 256:463–481

    CAS  PubMed  Google Scholar 

  • Reiner A, Northcutt RG (1992) An immunohistochemical study of the telencephalon of the Senegal bichir (Polypterus senegalus). J Comp Neurol 319:359–386

    CAS  PubMed  Google Scholar 

  • Ronan MC, Northcutt RG (1985) The origins of descending spinal projections in lepidosirenid lungfishes. J Comp Neurol 241:435–444

    CAS  PubMed  Google Scholar 

  • Rosen DE, Forey PL, Gardiner BG, Patterson C (1981) Lungfishes, tetrapods, paleontology, and plesiomorphology. Bull Am Mus Nat Hist 167:163–275

    Google Scholar 

  • Roth A (1973) Electroreceptors in Brachiopterygii and Dipnoi. Naturwissenschaften 60:106

    CAS  PubMed  Google Scholar 

  • Roth A, Tscharntke H (1976) Ultrastructure of the ampullary electroreceptors in lungfish and brachiopterygii. Cell Tiss Res 173:95–108

    CAS  Google Scholar 

  • Rudebeck B (1945) Contributions to forebrain morphology in dipnoi. Acta Zool 26:10–157

    Google Scholar 

  • Schnitzlein HN (1966) The olfactory tubercle of the African lungfish, Protopterus. Ala J Med Sci 3:39–45

    Google Scholar 

  • Schnitzlein HN, Crosby EC (1967) The telencephalon of the lungfish, Protopterus. J Hirnforsch 9:105–149

    CAS  PubMed  Google Scholar 

  • Schnitzlein HN, Crosby EC (1968) The epithalamus and thalamus of the lungfish, Protopterus. J Hirnforsch 10:351–371

    CAS  PubMed  Google Scholar 

  • Schober A, Meyer DL, von Bartheld CS (1994) Central projections of the nervus terminalis and the nervus praeopticus in the lungfish brain revealed by nitric oxide synthase. J Comp Neurol 349:1–19

    CAS  PubMed  Google Scholar 

  • Schultze H-P (1986) Dipnoans as sarcopterygians. J Morphol Suppl 1:39–74

    Google Scholar 

  • Schultze H-P, Campbell KWS (1986) Characterization of the dipnoi, a monophyletic group. J Morphol Suppl 1:25–37

    Google Scholar 

  • Sewertzoff AN (1902) Zur Entwicklungsgeschichte des Ceratodus forsteri. Anat Anz 21:593–608

    Google Scholar 

  • Smeets WJAJ, Nieuwenhuys R (1976) Topological analysis of the brain stem of the sharks Squalus acantinas and Scyliorhinus canicula. J Comp Neurol 165:333–368

    CAS  PubMed  Google Scholar 

  • Smeets WJAJ, Nieuwenhuys R, Roberts BL (1983) The central nervous system of cartilaginous fishes. Structure and functional correlations. Springer, Berlin Heidelberg New York, IX+266pp

    Google Scholar 

  • Smith IC (1955) Giant nerve fibres in Protopterus. J Physiol 129:42–43

    CAS  PubMed  Google Scholar 

  • Thors F, Nieuwenhuys R (1979) Topological analysis of the brain stem of the lungfish Lepidosiren paradoxa. J Comp Neurol 187:589–612

    CAS  PubMed  Google Scholar 

  • Tsuneki K (1986) A survey of occurrence of about seventeen circumventricular organs in brains of various vertebrates with special reference to lower groups. J Hirnforsch 27:441–470

    CAS  PubMed  Google Scholar 

  • Vallarino M, Bunel DT, Vaudry H (1992) Alpha-melanocytestimulating hormone (a-MSH) in the brain of the African lungfish, Protopterus annectens: immunohistochemical localization and biochemical characterization. J Comp Neurol 322:266–274

    CAS  PubMed  Google Scholar 

  • Vallarino M, Tranchand-Bunel D, Thoumas J-L, Masini MA, Conlon JM, Fournier A, Pelletier G, Vaudry H (1995) Neuropeptide tyrosine in the brain of the African lungfish, Protopterus annectens: immunohistochemical localization and biochemical characterization. J Comp Neurol 356:537–551

    CAS  PubMed  Google Scholar 

  • von Bartheld CS (1992) Oculomotor and sensory mesencephalic trigeminal neurons in lungfishes: phylogenetic implications. Brain Behav Evol 39:247–263

    Google Scholar 

  • von Bartheld CS, Meyer DL (1988) Central projections of the nervus terminalis in lampreys, lungfishes, and bichirs. Brain Behav Evol 32:151–159

    Google Scholar 

  • von Bartheld CS, Meyer DL (1990) Paraventricular organ of the lungfish Protopterus dolloi: morphology and projections of CSF-contacting neurons. J Comp Neurol 297:410–434

    Google Scholar 

  • von Bartheld CS, Claas B, Münz H, Meyer DL (1988) Primary olfactory projections and the nervus terminalis in the African lungfish. Implications for the phylogeny of cranial nerves. Am J Anat 182:325–334

    Google Scholar 

  • von Bartheld CS, Collin SP, Meyer DL (1990) Dorsomedial telencephalon of lungfishes: a pallial or subpallial structure? Criteria based on histology, connectivity, and histochemistry. J Comp Neurol 294:14–29

    Google Scholar 

  • Whiting HP, Bannister LH, Barwick RE, Bone Q (1992) Early locomotor behaviour and the structure of the nervous system in embryos and larva of the Australian lungfish, Neoceratodus forsteri. J Zool [London] 226:175–198

    Google Scholar 

  • Wilson DM (1959) Function of giant Mauthner’s neurons in the lungfish. Science 129:341–342

    Google Scholar 

  • Wingstrand KG (1956) The structure of the pituitary in the African lungfish Protopterus annectens (Owen). Videnskab Medd Dansk Naturh Foren 118:193–210

    Google Scholar 

  • Yokobori S, Hasegawa M, Ueda T, Okada N, Nishikawa K, Watanabe K (1994) Relationship among coelacanths, lungfishes, and tetrapods: a phylogenetic analysis based on mitochondrial cytochrome oxidase I gene sequences. J Mol Evol 38:602–609

    CAS  PubMed  Google Scholar 

  • Zambrano D, Iturriza FC (1972) Histology and ultrastructure of the neurohypophysis of the South American lungfish, Lepidosiren paradoxa. Z Zellforsch 131:47–62

    CAS  PubMed  Google Scholar 

  • Zambrano D, Iturriza FC (1973) Hypothalamic-hypophysial relationships in the South American lungfish Lepidosiren paradoxa. Gen Comp Endocrinol 20:256–273

    CAS  PubMed  Google Scholar 

Download references

Authors

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nieuwenhuys, R. (1998). Lungfishes. In: The Central Nervous System of Vertebrates. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18262-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18262-4_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62127-7

  • Online ISBN: 978-3-642-18262-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics