Skip to main content

From X-Rays to Ion Beams: A Short History of Radiation Therapy

  • Chapter
  • First Online:
Ion Beam Therapy

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL,volume 320))

Abstract

Radiation therapy (RT) developed in several eras. Patients’ needs for more effective treatment guided the efforts. The development of ion beam therapy (IBT) can be seen as a corollary in this continuous endeavor to optimize disease control while minimizing normal-tissue damage. It could not have materialized, however, without the curiosity, ingenuity, and perseverance of researchers, engineers, and clinicians who developed important enabling technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W.C. Röntgen, Über eine neue Art von Strahlen. Vorläufige Mitteilung. In: Sitzungsberichte der physikalisch-medicinischen Gesellschaft zu Würzburg, Sitzung 30, 132–141 (1895)

    Google Scholar 

  2. M. Lederman, The early history of radiotherapy: 1895–1939. Int. J. Radiat. Oncol. Biol. Phys. 7, 639–648 (1981)

    Article  Google Scholar 

  3. A.H. Becquerel, Sur les radiations émises par phosphorescence. Compt. Rend. Acad. Sci. 122, 420–421 (1896)

    Google Scholar 

  4. P. Curie, M. Curie, Sur une substance nouvelle radioactive, contenue dans la pechblende. Compt. Rend. Acad. Sci. 127, 175 (1898)

    Google Scholar 

  5. A.H. Becquerel, P. Curie, Action physiologique des rayons de radium. Compt. Rend. Acad. Sci. 132, 1289–1291 (1901)

    Google Scholar 

  6. T.G. Lyon, The Roentgen rays as a cure for disease. Lancet 1, 326 (1896)

    Article  Google Scholar 

  7. E.H. Grubbé, Priority in the therapeutic use of X-rays. Radiology 21, 156–162 (1933)

    Google Scholar 

  8. C. Beck, Roentgen Ray Diagnosis and Therapy (Appleton, London, 1904)

    Google Scholar 

  9. L. Freund, Elements of General Radiotherapy for Practitioners (Rehman, New York, 1904)

    Google Scholar 

  10. H.S. Kaplan, Basic principles in radiation oncology. Cancer 39(Suppl 2), 689–693 (1977)

    Google Scholar 

  11. C. Regaud, R. Ferroux, Discordance des effets de rayons X, d’une part dans la peau, d’autre part dans le testicule, par le fractionnement de la dose. Compt. Rend. Soc. Biol. 97, 431–434 (1927)

    Google Scholar 

  12. H. Coutard, Principles of X-ray therapy of malignant disease. Lancet 2, 1–12 (1934)

    Article  Google Scholar 

  13. W.D. Coolidge, A powerful Röntgen ray tube with a pure electron discharge. Phys. Rev. 2, 409–413 (1913)

    Article  ADS  Google Scholar 

  14. J. Campbell, Web site on Lord Ernest Rutherford, including a comprehensive bibliography at http://www.rutherford.org.nz/bibliography.htm (accessed 4 March 2010). Campbell is the author of a comprehensive biography: Rutherford Scientist Supreme, (AAS, Christchurch, New Zealand, 1999)

  15. R.F. Robison, The race for megavoltage. Acta Oncol. 34, 1055–1074 (1995)

    Article  Google Scholar 

  16. W.D. Coolidge, Cathode-ray and Roentgen-ray work in progress. Am. J. Roentgenol. 19,313–321 (1928)

    Google Scholar 

  17. E.D. Courant, Early Milestones in the Evolution of Accelerators, in Reviews of Accelerator Science and Technology, vol. 1, ed. by A.W. Chao (World Scientific, Singapore, 2008), pp. 1–5

    Google Scholar 

  18. R.J. Van de Graaff, A 1 500 000 volt electrostatic generator. Phys. Rev. 38, 1919–1920 (1931)

    Google Scholar 

  19. J.D. Cockcroft, E.T.S. Walton, Experiments with high velocity positive ions. Proc. R. Soc. Lond. A 129, 477–489 (1930)

    Article  ADS  Google Scholar 

  20. J.D. Cockcroft, E.T.S. Walton, Experiments with high velocity positive ions. (I) Further developments in the method of obtaining high velocity positive ions. Proc. R. Soc. Lond. A 136, 619–630 (1932)

    Google Scholar 

  21. E.O. Lawrence, M.S. Livingston, The production of high speed light ions without the use of high voltages. Phys. Rev. 40, 19–35 (1932)

    Article  ADS  Google Scholar 

  22. R.S. Stone, J.H. Lawrence, P.D. Aebersold, A preliminary report on the use of fast neutrons in the treatment of malignant disease. Radiology 37, 322–327 (1940)

    Google Scholar 

  23. D.W. Kerst, Acceleration of electrons by magnetic induction. Phys. Rev. 58, 841 (1940)

    Article  ADS  Google Scholar 

  24. D.W. Kerst, The acceleration of electrons by magnetic induction. Phys. Rev. 60, 47–53 (1941)

    Article  ADS  Google Scholar 

  25. E.M. McMillan, The origin of the synchrotron. Phys. Rev. 69, 534 (1946)

    Article  ADS  Google Scholar 

  26. C.J. Karzmark, N.C. Pering, Electron linear accelerators for radiation therapy: history, principles, and contemporary developments. Phys. Med. Biol. 18, 321–354 (1973)

    Article  Google Scholar 

  27. R.J. Berry, Therapeutic uses of X-rays. Int. J. Radiat. Biol. 15, 873–895 (1985)

    Google Scholar 

  28. H.S. Kaplan, Historic milestones in radiobiology and radiation therapy. Semin. Oncol. 6, 479–489 (1979)

    Google Scholar 

  29. G.H. Fletcher, Supervoltage radiotherapy for cancer of the uterine cervix. Br. J. Radiol. 35, 5–17 (1962)

    Article  Google Scholar 

  30. ASTRO Web site, http://www.astro.org/AboutUs/SocietyHistory/index.aspx (accessed 4 Mar 2010)

  31. R.R. Wilson, Radiological use of fast protons. Radiology 47, 487–491 (1946)

    Google Scholar 

  32. M.L.M. Boone, J.H. Lawrence, W.G. Connor, et al., Introduction to the use of protons and heavy ions in radiation therapy: historical perspective. Int. J. Radiat. Oncol. Biol. Phys. 3, 65–69 (1977)

    Article  Google Scholar 

  33. C.A. Tobias, J.E. Roberts, J.H. Lawrence, et al., Irradiation hypophysectomy and related studies using 340 MeV protons and 190 MeV deuterons. Peaceful Uses Atom. Energy 10, 95–96 (1956)

    Google Scholar 

  34. C.A. Tobias, Failla Memorial lecture. The future of heavy-ion science in biology and medicine. Radiat. Res. 103, 1–33 (1985)

    Google Scholar 

  35. R.N. Kjellberg, A. Shintani, A.G. Frantz, B. Kliman, Proton beam therapy in acromegaly. N. Engl. J. Med. 278, 689–695 (1968)

    Article  Google Scholar 

  36. H. Suit, M. Goitein, J. Munzenrider, et al., Evaluation of the clinical applicability of proton beams in definitive fractionated radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 8,2199–2205 (1982)

    Article  Google Scholar 

  37. J.E. Munzenrider, M. Austin-Seymour, P.J. Blitzer, et al., Proton therapy at Harvard. Strahlentherapie 161, 756–763 (1985)

    Google Scholar 

  38. Particles, newsletter of the Particle Therapy Co-operative Group, vol. 36, July 2005. This issue is the most recent available online, at http://ptcog.web.psi.ch/archive_particles.html. Accessed 5 Mar 2010

  39. J.M. Slater, I.R. Neilsen, W.T. Chu, et al., Radiotherapy treatment planning using ultrasound-sonic graph pen-computer system. Cancer 34, 96–99 (1974)

    Article  Google Scholar 

  40. I.R. Neilsen, J.M. Slater, D.W. Shreyer, CT Scanner Assumes Key role in Computer-Based Radiotherapy Planning System, in Medinfo 80: Proc3rd World Conf Med Informatics ed. by D.A.B. Lindberg, S. Kaihara. (North Holland, Amsterdam, 1980), pp. 25–28

    Google Scholar 

  41. M. Goitein, M. Abrams, Multi-dimensional treatment planning: I. Delineation of anatomy. Int. J. Radiat. Oncol. Biol. Phys. 9, 777–787 (1983)

    Article  Google Scholar 

  42. M. Goitein, M. Abrams, D. Rowell, et al., Multi-dimensional treatment planning: II. Beam’s eye-view, back projection, and projection through CT sections. Int. J. Radiat. Oncol. Biol. Phys. 9, 789–797 (1983)

    Google Scholar 

  43. J.O. Archambeau, G.W. Bennett, G.S. Levine, et al., Proton radiation therapy. Radiology 110, 445–457 (1974)

    Google Scholar 

  44. J.M. Slater, D.W. Miller, J.O. Archambeau, Development of a hospital-based proton beam treatment center. Int. J. Radiat. Oncol. Biol. Phys. 14, 761–775 (1988)

    Article  Google Scholar 

  45. J.M. Slater, J.O. Archambeau, D.W. Miller, et al., The proton treatment center at Loma Linda University Medical Center: rationale for and description of its development. Int. J. Radiat. Oncol. Biol. Phys. 22, 383–389 (1992)

    Article  Google Scholar 

  46. P.H. Fowler, D.H. Perkins, The possibility of therapeutic application of beams of negativepi-mesons. Nature 189, 524–528 (1961)

    Article  ADS  Google Scholar 

  47. M.M. Kligerman, W.C. Black, J.M. Yuhas, et al., Current status of clinical pion radiotherapy. Radiology 125, 489–492 (1977)

    Google Scholar 

  48. C.F. von Essen, M.A. Bagshaw, S.E. Bush, et al., Long-term results of pion therapy at Los Alamos. Int. J. Radiat. Oncol. Biol. Phys. 13, 1389–1398 (1987)

    Article  Google Scholar 

  49. R. Greiner, C.F. von Essen, H. Blattmann, et al., Results of curative pion therapy at SIN. Strahlentherapie 161, 797–800 (1985)

    Google Scholar 

  50. T. Pickles, G.B. Goodman, C.J. Fryer, et al., Pion conformal radiation of prostate cancer: results of a randomized study. Int. J. Radiat. Oncol. Biol. Phys. 43, 47–55 (1999)

    Article  Google Scholar 

  51. C.A. Tobias, J.H. Lawrence, J. Lyman, et al., Response of the Nervous System to Ionizing Irradiation, in Progress Report on Pituitary Irradiation, ed. by T.J. Haley, R.S. Snider. (Little, Brown, New York, 1964), pp. 19–35

    Google Scholar 

  52. D. Lindstadt, J. Castro, D. Char, et al., Long-term results of helium ion irradiation of uveal melanoma. Int. J. Radiat. Oncol. Biol. Phys. 19, 613–618 (1990)

    Article  Google Scholar 

  53. I.D. Kaplan, J.R. Castro, T.L. Phillips, Helium charged particle radiotherapy for meningioma: experience at UCLBL. Int. J. Radiat. Oncol. Biol. Phys. 28, 257–261 (1993)

    Google Scholar 

  54. J.R. Castro, D.E. Linstadt, J.P. Bahary, et al., Experience in charged particle irradiation of tumors of the skull base: 1977–1992. Int. J. Radiat. Oncol. Biol. Phys. 29, 647–655 (1994)

    Article  Google Scholar 

  55. J.R. Castro, J.M. Quivey, Clinical experience and expectations with helium and heavy ion irradiation. Int. J. Radiat. Oncol. Biol. Phys. 3, 127–131 (1977)

    Article  Google Scholar 

  56. J.R. Castro, W.T. Saunders, C.A. Tobias, et al., Treatment of cancer with heavy charged particles. Int. J. Radiat. Oncol. Biol. Phys. 8, 2191–2108 (1982)

    Article  Google Scholar 

  57. C.A. Tobias, E.A. Blakely, E.L. Alpen, et al., Molecular and cellular radiobiology of heavy ions. Int. J. Radiat. Oncol. Biol. Phys. 8, 2109–2120 (1982)

    Article  Google Scholar 

  58. V. Uhl, J.R. Castro, K. Knopf, et al., Preliminary results in heavy charged particle irradiation of bone sarcoma. Int. J. Radiat. Oncol. Biol. Phys. 24, 755–759 (1992)

    Article  Google Scholar 

  59. R. Schoenthaler, J.R. Castro, F.E. Halberg, T.L. Phillips, Definitive postoperative irradiation of bile duct carcinoma with charged particles and/or photons. Int. J. Radiat. Oncol. Biol. Phys. 27, 75–82 (1993)

    Article  Google Scholar 

  60. R. Schoenthaler, J.R. Castro, P.L. Petti, et al., Charged particle irradiation of sacral chordomas. Int. J. Radiat. Oncol. Biol. Phys. 26, 291–298 (1993)

    Article  Google Scholar 

  61. According to a document available on the PTCOG Web site, at http://ptcog.web.psi.ch/Archive/Patientenzahlen-updateMar2010.pdf (accessed 6 March 2010), 433 patients were treated with heavy ions at Berkeley from 1975 to 1992. Pion trials at Los Alamos yielded 230 patients treated from 1974 to 1982

  62. PTCOG Web site, summary of current ion beam therapy facilities. Available at http://ptcog.web.psi.ch/ptcentres.html. Accessed 6 Mar 2010

  63. D. Schulz-Ertner, H. Tsujii, Particle radiation therapy using proton and heavier ion beams. J. Clin. Oncol. 25, 953–964 (2007)

    Article  Google Scholar 

  64. D. Schulz-Ertner, The clinical experience with particle therapy in adults. Cancer J. 15, 306–311 (2009)

    Article  Google Scholar 

  65. H. Eickhoff, U. Linz, Medical Applications of Accelerators, in Reviews of Accelerator Science and Technology, ed. by A.W. Chao, W. Chou, vol. 1 (World Scientific, Singapore, 2008), pp. 143–161

    Google Scholar 

  66. P. Rubin, G.W. Casarett, Clinical Radiation Pathology, vols. 1 and 2 (W.B. Saunders, Philadelphia, 1968)

    Google Scholar 

  67. P. Rubin, C.J. Johnston, J.P. Williams, et al., A perpetual cascade of cytokines postirradiation leads to pulmonary fibrosis. Int. J. Radiat. Oncol. Biol. Phys. 33, 99–109 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. Slater .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Slater, J.M. (2012). From X-Rays to Ion Beams: A Short History of Radiation Therapy. In: Linz, U. (eds) Ion Beam Therapy. Biological and Medical Physics, Biomedical Engineering, vol 320. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21414-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21414-1_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21413-4

  • Online ISBN: 978-3-642-21414-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics