Skip to main content

Transepidermal Water Loss in Young and Aged Healthy Humans

  • Living reference work entry
  • First Online:
Textbook of Aging Skin

Abstract

The stratum corneum is the most important barrier to a wide range of molecules, irritants, allergens, small particles, and microorganisms. However, small amounts of water continuously diffuse from the inside to the outside which is called transepidermal water loss (TEWL). TEWL is regarded as one of the most important parameters characterizing skin barrier integrity. Elevated TEWL is usually associated with skin barrier impairments, whereas reduced or low TEWL is considered as skin barrier integrity or improvement. Available evidence suggests that the water diffusion through the stratum corneum seems to remain stable and/or to decrease during aging. Possible reasons are the flattening of the corneocytes, altered and reduced intercellular lipids, reduced natural moisturizing factor content, and/or a reduced skin surface temperature. Such a “normal” TEWL masks the decreases of functional capacity of the skin barrier function in intrinsically and extrinsically aged skin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Loewy A, Wechselmann W. The physiology and pathology of water changing and heat regulation on the part of the skin organs. (After tests on three people who are related by blood and have ectodermal inhibition cultivation, especially of the skin gland systems). Virchows Arch Pathol Anat Physiol Klin Med. 1911;206(1):79–121.

    Article  Google Scholar 

  2. Rothman S. Insensible water loss. In: Rothman S, editor. Physiology and biochemistry of the skin. Chicago: The University of Chicago; 1955. p. 233–43.

    Google Scholar 

  3. Hadgraft J, Lane ME. Transepidermal water loss and skin site: a hypothesis. Int J Pharm. 2009;373(1–2):1–3.

    Article  CAS  PubMed  Google Scholar 

  4. Xiao P, Imhof RE. Two dimensional finite element modelling for dynamic water diffusion through stratum corneum. Int J Pharm. 2012;435(1):88–92.

    Article  CAS  PubMed  Google Scholar 

  5. Kottner J, Lichterfeld A, Blume-Peytavi U. Transepidermal water loss in young and aged healthy humans: a systematic review and meta-analysis. Arch Dermatol Res. 2013;305(4):315–23.

    Article  PubMed  Google Scholar 

  6. du Plessis J, et al. International guidelines for the in vivo assessment of skin properties in non-clinical settings: part 2. Transepidermal water loss and skin hydration. Skin Res Technol. 2013;19(3):265–78.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Imhof B, McFeat G. Evaluation of the barrier function of skin using transepidermal water loss (TEWL): a critical overview. In: Barel AO, Paye M, Maibach HI, editors. Handbook of cosmetic science and technology. Boca Raton: CRC Press; 2014. p. 131–9.

    Google Scholar 

  8. Imhof RE, et al. Closed-chamber transepidermal water loss measurement: microclimate, calibration and performance. Int J Cosmet Sci. 2009;31(2):97–118.

    Article  CAS  PubMed  Google Scholar 

  9. Rogiers V. EEMCO guidance for the assessment of transepidermal water loss in cosmetic sciences. Skin Pharmacol Appl Skin Physiol. 2001;14(2):117–28.

    Article  CAS  PubMed  Google Scholar 

  10. Pinnagoda J, et al. Guidelines for transepidermal water loss (TEWL) measurement. A report from the standardization group of the European Society of Contact Dermatitis. Contact Dermatitis. 1990;22(3):164–78.

    Article  CAS  PubMed  Google Scholar 

  11. Tagami H. Location-related differences in structure and function of the stratum corneum with special emphasis on those of the facial skin. Int J Cosmet Sci. 2008;30(6):413–34.

    Article  CAS  PubMed  Google Scholar 

  12. Firooz A, et al. Variation of biophysical parameters of the skin with age, gender, and body region. Sci World J. 2012;2012:386936.

    Article  Google Scholar 

  13. Luebberding S, Krueger N, Kerscher M. Skin physiology in men and women: in vivo evaluation of 300 people including TEWL, SC hydration, sebum content and skin surface pH. Int J Cosmet Sci. 2013;35(5):477–83.

    Article  CAS  PubMed  Google Scholar 

  14. Lu N, et al. Characteristic differences in barrier and hygroscopic properties between normal and cosmetic dry skin. I. Enhanced barrier analysis with sequential tape-stripping. Int J Cosmet Sci. 2014;36(2):167–74.

    Article  CAS  PubMed  Google Scholar 

  15. Sextius P, et al. Large scale study of epidermal recovery after stratum corneum removal: dynamics of genomic response. Exp Dermatol. 2010;19(3):259–68.

    Article  CAS  PubMed  Google Scholar 

  16. Kottner J, et al. Characterisation of epidermal regeneration in vivo: a 60-day follow-up study. J Wound Care. 2013;22(8):395–400.

    Article  CAS  PubMed  Google Scholar 

  17. Angelova-Fischer I, et al. Tandem repeated irritation in aged skin induces distinct barrier perturbation and cytokine profile in vivo. Br J Dermatol. 2012;167(4):787–93.

    Article  CAS  PubMed  Google Scholar 

  18. Boireau-Adamezyk E, Baillet-Guffroy A, Stamatas GN. Age-dependent changes in stratum corneum barrier function. Skin Res Technol. 2014;20(4):409–15.

    Article  CAS  PubMed  Google Scholar 

  19. Rawlings AV. The stratum corneum and aging. In: Farage MA, Miller KW, Maibach HI, editors. Textbook of aging skin. Berlin/Heidelberg: Springer; 2010. p. 55–75.

    Chapter  Google Scholar 

  20. Alikhan A. Transepidermal water loss and aging. In: Farage MA, Miller KW, Maibach HI, editors. Textbook of aging skin. Berlin/Heidelberg: Springer; 2010. p. 696–703.

    Google Scholar 

  21. Wilhelm K-P, Brandt M, Maibach HI. Transepidermal water loss and barrier function of aging human skin. In: Fluhr J et al., editors. Bioengineering of the skin: water and the stratum corneum. New York/London: Informa Healthcare; 2005. p. 143–58.

    Google Scholar 

  22. Sato N, Kitahara T, Fujimura T. Age-related changes of stratum corneum functions of skin on the trunk and the limbs. Skin Pharmacol Physiol. 2014;27(4):181.

    Article  CAS  PubMed  Google Scholar 

  23. Trojahn C, et al. Characterizing facial skin ageing in humans: disentangling extrinsic from intrinsic biological phenomena. Biomed Res Int. 2015;2015:318586.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Kottner J, et al. Do repeated skin barrier measurements influence each other’s results? An explorative study. Skin Pharmacol Physiol. 2014;27(2):90–6.

    Article  PubMed  Google Scholar 

  25. Marks R. Measurement of biological ageing in human epidermis. Br J Dermatol. 1981;104(6):627–33.

    Article  CAS  PubMed  Google Scholar 

  26. Helmbold P, et al. Detection of a physiological juvenile phase and the central role of pericytes in human dermal microvascular aging. J Invest Dermatol. 2006;126(6):1419–21.

    Article  CAS  PubMed  Google Scholar 

  27. Ghadially R. Aging and the epidermal permeability barrier: implications for contact dermatitis. Am J Contact Dermat. 1998;9(3):162–9.

    CAS  PubMed  Google Scholar 

  28. Pierard GE. The quandary of climacteric skin ageing. Dermatology. 1996;193(4):273–4.

    Article  CAS  PubMed  Google Scholar 

  29. Bhawan J, et al. Photoaging versus intrinsic aging: a morphologic assessment of facial skin. J Cutan Pathol. 1995;22(2):154–9.

    Article  CAS  PubMed  Google Scholar 

  30. Zheng Y, et al. Cathepsin d repairing role in photodamaged skin barrier. Skin Pharmacol Physiol. 2015;28(2):97–102.

    Article  CAS  PubMed  Google Scholar 

  31. Reed JT, Elias PM, Ghadially R. Integrity and permeability barrier function of photoaged human epidermis. Arch Dermatol. 1997;133(3):395–6.

    Article  CAS  PubMed  Google Scholar 

  32. Kikuchi-Numagami K, et al. Functional and morphological studies of photodamaged skin on the hands of middle-aged Japanese golfers. Eur J Dermatol. 2000;10(4):277–81.

    CAS  PubMed  Google Scholar 

  33. Blaak J, et al. Irritability of skin barrier: a comparison of chronologically aged and photo-aged skin in elderly and young adults. Eur Geriatr Med. 2011;2:208–11.

    Article  Google Scholar 

  34. Ghadially R, et al. The aged epidermal permeability barrier. Structural, functional, and lipid biochemical abnormalities in humans and a senescent murine model. J Clin Invest. 1995;95(5):2281–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Tagami H, et al. Environmental effects on the functions of the stratum corneum. J Investig Dermatol Symp Proc. 2001;6(1):87–94.

    Article  CAS  PubMed  Google Scholar 

  36. Jia Q, Nash F. Pathology of aging skin. In: Farage MA, Miller KW, Maibach HI, editors. Textbook of aging skin. Berlin/Heidelberg: Springer; 2010. p. 277–91.

    Chapter  Google Scholar 

  37. Kuh D, et al. Life course epidemiology, ageing research, and maturing cohort studies: a dynamic combination for understanding healthy ageing. In: Kuh D et al., editors. A life course approach to healthy ageing. Oxford: Oxford University Press; 2014. p. 3–15.

    Google Scholar 

  38. Sextius P, et al. Analysis of gene expression dynamics revealed delayed and abnormal epidermal repair process in aged compared to young skin. Arch Dermatol Res. 2015;307:351–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Ranzer MJ, DiPietro LA. Impaired wound repair and delayed angiogenesis. In: Farage MA, Miller KW, Maibach HI, editors. Textbook of aging skin. Berlin: Springer; 2010. p. 897–906.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kottner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Kottner, J., Vogt, A., Lichterfeld, A., Blume-Peytavi, U. (2015). Transepidermal Water Loss in Young and Aged Healthy Humans. In: Farage, M., Miller, K., Maibach, H. (eds) Textbook of Aging Skin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27814-3_127-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27814-3_127-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27814-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics