Skip to main content

Combined PET/MR Imaging Using 68Ga-DOTATOC for Radiotherapy Treatment Planning in Meningioma Patients

  • Conference paper
  • First Online:
Theranostics, Gallium-68, and Other Radionuclides

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 194))

Abstract

Hybrid imaging is beneficial for improved medical diagnosis and therapy planning today. Hybrid imaging describes the prospective correlation of two or more complementary sets of imaging information, such as functional and anatomical image volumes. Correlation can be performed through physically combined imaging modalities, such as PET/CT, SPECT/CT, or PET/MR. Here we present first results from employing fully integrated PET/MR tomography for intensity-modulated radiotherapy (IMRT) treatment planning in patients with meningioma using [68Ga]-DOTATOC as the biomarker of choice. Combined PET/MR offers higher soft tissue contrast and the ability to add functional information to the plain combination of MR-based anatomy and PET-based metabolic and molecular information. Furthermore, fully integrated PET/MR employs novel PET technology that is neither available in PET-only nor PET/CT systems. Despite the current lack of broad clinical evidence, integrated PET/MR may become particularly important and clinically useful for improved, individualized RT therapy planning for brain lesions. In particular, logistical and diagnostic benefits of integrated PET/MR-based treatment planning over treatment planning based on PET/CT data may be expected in meningioma patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APD:

Avalanche photodiode

CT:

Computed tomography

DCE:

Dynamic contrast enhanced

DOTATOC:

1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-d-Phe1-Tyr3-octreotide (TOC)

DWI:

Diffusion-weighted imaging

FDG:

[18F]-Fluorodeoxyglucose

FET:

O-(2-[18F]-Fluoroethyl)-l-tyrosine

GTV:

Gross target volume

IMRT:

Intensity-modulated radiation therapy

MET:

Methionine

MI:

Mutual information

mL:

Milliliter

MRI:

Magnetic resonance imaging

MRS:

Magnetic resonance spectroscopy

OSEM:

Ordered-subsets expectation maximization

p.i.:

Post injection

PET:

Positron emission tomography

PTV:

Planning target volume

RT:

Radiation therapy

SNR:

Signal-to-noise ratio

SPECT:

Single-photon emission computed tomography

TBR:

Tumor-to-blood ratio

TV:

Target volume

References

  • Astner ST, Dobrei-Ciuchendea M, Essler M et al (2008) Effect of 11C-methionine-positron emission tomography on gross tumor volume delineation in stereotactic radiotherapy of skull base meningiomas. Int J Radiat Oncol Biol Phys 72(4):1161–1167

    Article  PubMed  Google Scholar 

  • Beyer T, Pichler B (2009) A decade of combined imaging: from a PET attached to a CT to a PET inside an MR. Eur J Nucl Med Mol Imaging 36(Suppl 1):S1–S2

    Article  PubMed  Google Scholar 

  • Beyer T, Weigert M, Quick HH et al (2008) MR-based attenuation correction for torso-PET/MR imaging: pitfalls in mapping MR to CT data. Eur J Nucl Med Mol Imaging 35(6):1142–1146

    Article  PubMed  Google Scholar 

  • Beyer T, Freudenberg LS, Townsend DW et al (2011) The future of hybrid imaging—part 3: combined PET/MR and small animal imaging, other imaging combinations and additional concerns. Insights Imaging 2(3):235–246

    Article  PubMed  Google Scholar 

  • Bisdas S, Nägele T, Schlemmer HP et al (2009) Switching on the lights for real-time multimodality tumor neuroimaging: the integrated positron-emission tomography/MR imaging system. AJNR Am J Neuroradiol 31(4):610–614

    Article  PubMed  Google Scholar 

  • Boss A, Bisdas S, Kolb A et al (2010) Hybrid PET/MRI of intracranial masses: initial experiences and comparison to PET/CT. J Nucl Med 51(8):1198–1205

    Article  PubMed  Google Scholar 

  • Brix G, Lechel U, Glatting G et al (2005) Radiation exposure of patients undergoing whole-body dual-modality FDG-PET/CT examinations. J Nucl Med 46(4):608–613

    PubMed  CAS  Google Scholar 

  • Budinger T (1983) Time-of-flight positron emission tomography: status relative to conventional PET. J Nucl Med 24(1):73–78

    PubMed  CAS  Google Scholar 

  • Czernin J, Allen-Auerbach M, Schelbert HR (2007) Improvements in cancer staging with PET/CT: literature-based evidence as of September 2006. J Nucl Med 48(Suppl 1):78S–88S

    PubMed  CAS  Google Scholar 

  • Debus J, Wuendrich M, Pirzkall A et al (2001) High efficacy of fractionated stereotactic radiotherapy of large base-of-skull meningiomas: long-term result. J Clin Oncol 19(15):3547–3553

    PubMed  CAS  Google Scholar 

  • Fallanca F, Giovacchini G, Picchio M et al (2009) Incidental detection by [11C]choline PET/CT of meningiomas in prostate cancer patients. Q J Nucl Med Mol Imaging 53(4):417–421

    PubMed  CAS  Google Scholar 

  • Gehler B, Paulsen F, Öksüz MÖ et al (2009) [68Ga]-DOTATOC-PET/CT for meningioma IMRT treatment planning. Radiat Oncol 4:56

    Article  PubMed  Google Scholar 

  • Grosu AL, Weber WA, Astner ST et al (2006) 11C-methionine PET improves the target volume delineation of meningiomas treated with stereotactic fractionated radiotherapy. Int J Radiat Oncol Biol Phys 66(2):339–344

    Article  PubMed  CAS  Google Scholar 

  • Henze M, Schuhmacher J, Hipp P et al (2001) PET imaging of somatostatin receptors using [68GA]DOTA-D-Phe1-Tyr3-octreotide: first results in patients with meningiomas. J Nucl Med 42(7):1053–1056

    PubMed  CAS  Google Scholar 

  • Henze M, Dimitrakopoulou-Strauss A, Milker-Zabel S et al (2005) Characterization of 68Ga-DOTA-D-Phe1-Tyr3-octreotide kinetics in patients with meningiomas. J Nucl Med 46(5):763–769

    PubMed  CAS  Google Scholar 

  • Hofmann M, Steinke F, Scheel V et al (2008) MRI-based attenuation correction for PET/MRI: a novel approach combining pattern recognition and atlas registration. J Nucl Med 49(11):1875–1883

    Article  PubMed  Google Scholar 

  • Hofmann M, Pichler B, Schölkopf B et al (2009) Towards quantitative PET/MRI: a review of MR-based attenuation correction techniques. Eur J Nucl Med Mol Imaging 36(Suppl 1):S93–S103

    Article  PubMed  Google Scholar 

  • Hyun SH, Choi JY, Lee KH et al (2011) Incidental focal 18F-FDG uptake in the pituitary gland: clinical significance and differential diagnostic criteria. J Nucl Med 52(4):547–550

    Article  PubMed  Google Scholar 

  • Kinahan PE, Hasegawa BH, Beyer T (2003) X-ray-based attenuation correction for positron emission tomography/computed tomography scanners. Semin Nucl Med 33(3):166–179

    Article  PubMed  Google Scholar 

  • Lee JW, Kang KW, Park SH et al (2009) 18F-FDG PET in the assessment of tumor grade and prediction of tumor recurrence in intracranial meningioma. Eur J Nucl Med Mol Imaging 36(10):1574–1582

    Article  PubMed  Google Scholar 

  • Liu RS, Chang CP, Guo WY et al (2010) 1–11C-acetate versus 18F-FDG PET in detection of meningioma and monitoring the effect of gamma-knife radiosurgery. J Nucl Med 51(6):883–891

    Article  PubMed  Google Scholar 

  • Milker-Zabel S, Zabel-du Bois A, Henze M et al (2006) Improved target volume definition for fractionated stereotactic radiotherapy in patients with intracranial meningiomas by correlation of CT, MRI, and [68Ga]-DOTATOC-PET. Int J Radiat Oncol Biol Phys 65(1):222–227

    Article  PubMed  Google Scholar 

  • Milker-Zabel S, Zabel-du Bois A, Huber P et al (2007) Intensity-modulated radiotherapy for complex-shaped meningioma of the skull base: long-term experience of a single institution. Int J Radiat Oncol Biol Phys 68(3):858–863

    Article  PubMed  Google Scholar 

  • Nestle U, Weber W, Hentschel M, Grosu AL (2009) Biological imaging in radiation therapy: role of positron emission tomography. Phys Med Biol 54(1):R1–R25

    Article  PubMed  Google Scholar 

  • Nyuyki F, Plotkin M, Graf R et al (2010) Potential impact of (68)Ga-DOTATOC PET/CT on stereotactic radiotherapy planning of meningiomas. Eur J Nucl Med Mol Imaging 37(2):310–318

    Article  PubMed  Google Scholar 

  • Pichler B, Kolb A, Nägele T et al (2010) PET/MRI: paving the way for the next generation of clinical multimodality imaging applications. J Nucl Med 51(3):333–336

    Article  PubMed  Google Scholar 

  • Rutten I, Cabay JE, Withofs N et al (2007) PET/CT of skull base meningiomas using 2-18F-fluoro-l-tyrosine: initial report. J Nucl Med 48(5):720–725

    Article  PubMed  CAS  Google Scholar 

  • Schlemmer HP, Pichler BJ, Schmand M et al (2008) Simultaneous MR/PET imaging of the human brain: feasibility study. Radiology 248(3):1028–1035

    Article  PubMed  Google Scholar 

  • Schmand M, Burbar Z, Corbeil JL et al (2007) BrainPET: first human tomograph for simultaneous (functional) PET and MR imaging. J Nucl Med 48(6):45P

    Google Scholar 

  • Schulthess G, Burger C (2010) Integrating imaging modalities: what makes sense from a workflow perspective? Eur J Nucl Med Mol Imaging 37(5):980–990

    Article  Google Scholar 

  • Thorwarth D, Henke G, Müller AC et al (2011) Simultaneous [68Ga]DOTATOC PET/MR for IMRT treatment planning of meningeoma: first experience. Int J Radiat Oncol Biol Phys 81(1):277–283

    Article  PubMed  Google Scholar 

  • Townsend DW (2008) Multimodality imaging of structure and function. Phys Med Biol 53(4):R1–R39

    Article  PubMed  CAS  Google Scholar 

  • Warburg O (1956) On the origin of cancer cells. Science 123:306–314

    Article  Google Scholar 

  • Werner MK, Schwenzer NF, Thorwarth D (2011) Hybrid MR/PET imaging: principles, problems and potential for radiotherapy. Der Nuklearmediziner 34:108–113

    Article  Google Scholar 

  • Zaidi H (2007) Is MR-guided attenuation correction a viable option for dual-modality PET/MR imaging? Radiology 244(3):639–642

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

NS, SW, GH, MR, AK, BP for help with patient management, data acquisition, image analysis and data interpretation. DT is supported by the European Social Fund and the Ministry of Science, Research, and the Arts Baden-Württemberg. This work was supported by the Imaging Science Institute (ISI) Tübingen. Mirada Imaging, UK (w3.mirada-medical.com): Software fusion and image display.

Duality-of-Interest

T.B. is president and founder of Switzerland-based cmi-experts GmbH. The Imaging Science Institute of Tübingen is supported by Siemens Healthcare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Thorwarth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Thorwarth, D., Müller, AC., Pfannenberg, C., Beyer, T. (2013). Combined PET/MR Imaging Using 68Ga-DOTATOC for Radiotherapy Treatment Planning in Meningioma Patients. In: Baum, R., Rösch, F. (eds) Theranostics, Gallium-68, and Other Radionuclides. Recent Results in Cancer Research, vol 194. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27994-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27994-2_23

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27993-5

  • Online ISBN: 978-3-642-27994-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics