Skip to main content

Animals as a Source of Drugs: Bioprospecting and Biodiversity Conservation

  • Chapter
  • First Online:
Animals in Traditional Folk Medicine

Abstract

Plants and animals are undoubtedly the basis of many traditional medicine systems around the world. Although the pharmacological potential of animals used as medicines has been little explored, compared to plants, available studies show that animal natural resources are highly promising in the search for new drugs of medical or pharmaceutical interest. The exploitation of these resources, however, requires a careful strategy that allows the sustainability of the species exploited, since the exploitation of fauna in medicinal bioprospecting can result in overharvesting of target organisms. In view of this reality, economic development associated with animal bioprospecting should be preceded by a broad discussion of the conservation of biodiversity and the sustainable management of natural resources. In this chapter, we review the literature on the potential of animal-based medicines for developing new drugs, and briefly discuss the implications of bioprospecting for the conservation of these bioresources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adeodato S (1997) Os santos remédios do mar. Globo Ciência 4:20–25

    Google Scholar 

  • Aerts AM, François I, Cammue BPA, Thevissen K (2008) The mode of antifungal action of plant, insect and human defensins. Cell Mol Life Sci 65(13):2069–2079

    Article  PubMed  CAS  Google Scholar 

  • Ahn MY, Hahn BS, Lee PJ, Wu SJ, Kim YS (2006) Purification and characterization of anticoagulant protein from the tabanus, tabanus bivittatus. Arch Pharm Res 29(5):418–423

    Article  PubMed  CAS  Google Scholar 

  • Ahn MY, Ryu KS, Lee YW, Kim YS (2000) Cytotoxicity and L-amino acid oxidase activity of crude insect drugs. Arch Pharm Res 23(5):477–481

    Article  PubMed  CAS  Google Scholar 

  • Alam M, Thomson RH (1998) Handbook of natural products from marine invertebrates. Part 1 phylum mollusca. Harwood Academic Publishers, Australia

    Google Scholar 

  • Albuquerque UP, Hanazaki N (2006) As pesquisas etnodirigidas na descoberta de novas drogas de interesse médico e farmacêutico: fragilidade e perspectivas. Revista Brasileira de Farmacognosia 16:678–689

    Article  Google Scholar 

  • Alvarez B, Crisp MD, Driver F, Hooper JNA, Soest RWMV (2000) Phylogenetic relationships of the family Axinellidae (Porifera: Demospongiae) using morphological and molecular data. Zool Scripta 29:169–198

    Article  Google Scholar 

  • Alves RRN (2009) Fauna used in popular medicine in Northeast Brazil. J Ethnobiol Ethnomed 5(1):1–30. doi:10.1186/1746-4269-5-1

    Article  PubMed  Google Scholar 

  • Alves RRN, Alves HN (2011) The faunal drugstore: animal-based remedies used in traditional medicines in Latin America. J Ethnobiol Ethnomed 7(9):1–43

    Google Scholar 

  • Alves RRN, Barboza RRD, Souto WMS (2010a) A global overview of canids used in traditional medicines. Biodivers Conserv 19(6):1513–1522

    Article  Google Scholar 

  • Alves RRN, Dias TLP (2010) Usos de invertebrados na medicina popular no Brasil e suas implicações para conservação. Trop Conserv Sci 3(2):159–174

    Google Scholar 

  • Alves RRN, Rosa IL (2005) Why study the use of animal products in traditional medicines? J Ethnobiol Ethnomed 1(5):1–5. doi:10.1186/1746-4269-1

    Google Scholar 

  • Alves RRN, Rosa IL (2006) From cnidarians to mammals: the use of animals as remedies in fishing communities in NE Brazil. J Ethnopharmacol 107:259–276

    Article  PubMed  Google Scholar 

  • Alves RRN, Rosa IL (2007a) Biodiversity, traditional medicine and public health: where do they meet? J Ethnobiol Ethnomed 3(14):9. doi:10.1186/1746-4269-3-14

    Google Scholar 

  • Alves RRN, Rosa IL (2007b) Zootherapy goes to town: the use of animal-based remedies in urban areas of NE and N Brazil. J Ethnopharmacol 113:541–555. doi:10.1016/j.jep.2007.07.015

    Article  PubMed  Google Scholar 

  • Alves RRN, Rosa IL, Santana GG (2007) The role of animal-derived remedies as complementary medicine in Brazil. Bioscience 57(11):949–955

    Article  Google Scholar 

  • Alves RRN, Silva CC, Barboza RRD, Souto WMS (2009) Zootherapy as an alternative therapeutic in South America. J Altern Med Res 1(1):21–47

    Google Scholar 

  • Alves RRN, Souto WMS (2010) Etnozoologia: conceitos, considerações históricas e importância. In: Alves RRN, Souto WMS, Mourão JS (eds) A etnozoologia no Brasil: Importância, Status atual e Perspectivas, 1st edn. vol 7. NUPEEA, Recife, pp 19–40

    Google Scholar 

  • Alves RRN, Souto WMS, Barboza RRD (2010b) Primates in traditional folk medicine: a world overview. Mamm Rev 40(2):155–180. doi:10.1111/j.1365-2907.2010.00158.x

    Article  Google Scholar 

  • Amador ML, Jimeno J, Paz-Ares L, Cortes-Funes H, Hidalgo M (2003) Progress in the development and acquisition of anticancer agents from marine sources. Ann Oncol 14(11):1607–1615

    Article  PubMed  CAS  Google Scholar 

  • Amato I (1992) From’hunter magic’, a pharmacopeia? Science 258(5086):1306

    Article  PubMed  CAS  Google Scholar 

  • Andary C, Motte-Florac E, Ramos-Elorduy J (1996) Privat a chemical screening: updated methodology applied to medicinal insects. In: The 3rd European colloquium on ethnopharmacology and 1st international conference of anthropology and history of health and disease

    Google Scholar 

  • Antonelli A, Rodriguez V (2009) Brazil should facilitate research permits. Conservation Biol 23(5):1068–1074

    Google Scholar 

  • Armon PJ (1980) The use of honey in the treatment of infected wounds. Trop Doct 10(2):91

    PubMed  CAS  Google Scholar 

  • Artuso A (2002) Bioprospecting, benefit sharing, and biotechnological capacity building. World Dev 30(8):1355–1368

    Article  Google Scholar 

  • Ashwell D, Walston N (2008) An overview of the use and trade of plants and animals in traditional medicine systems in Cambodia, 1st edn. TRAFFIC Southeast Asia, Greater Mekong Programme, Ha Noi

    Google Scholar 

  • Avila C (2006) Molluscan natural products as biological models: chemical ecology, histology and laboratory culture. In: Cimino G, Gavagnin M (eds) Molluscs: progress in molecular and subcellular biology subseries marine molecular biochemistry. Springer, Berlin, pp 1–23

    Google Scholar 

  • Bankova V, Christov R, Popov S, Marcucci MC, Tsvetkova I, Kujumgiev A (1999) Antibacterial activity of essential oils from Brazilian propolis. Fitoterapia 70(2):190–193

    Article  CAS  Google Scholar 

  • Barrett CB, Lybbert TJ (2000) Is bioprospecting a viable strategy for conserving tropical ecosystems? Ecol Econ 34(3):293–300

    Article  Google Scholar 

  • Barsh R (1997) The epistemology of traditional healing systems. Hum Organ 56(1):28–37

    Google Scholar 

  • Beattie AJ, Barthlott W, Elisabetsky E, Farrel R, Kheng CT, Prance I, Rosenthal J, Simpson D, Leakey R, Wolfson M (2005) New products and industries from biodiversity. In: Hassan R, Scholes R, Ash N (eds) Ecosystems and humanwell-being, vol 1. Millennium Ecosystem Assessment, Island Press, Washington, pp 273–295

    Google Scholar 

  • Beattie AJ, Hay M, Magnusson B, Nys R, Smeathers J, Vincent JFV (2011) Ecology and bioprospecting. Austral Ecol 36(3):341–356

    Google Scholar 

  • Benkendorff K (2002) Potential conservation benefits and problems associated with bioprospecting in the marine environment. In: Lumley D, Dickman C (eds) A zoological revolution: using native fauna to assist in its own survival. Royal Zoological Society of New South Wales and Australian Museum, Mosman, pp 90–100

    Google Scholar 

  • Benkendorff K (2010) Molluscan biological and chemical diversity: secondary metabolites and medicinal resources produced by marine molluscs. Biol Rev 85:757–775

    PubMed  Google Scholar 

  • Berlinck RGS, Ogawa CA, Almeida AMP, Sanchez MAA, Malpezzi ELA, Costa LV, Hajdu E, De Freitas JC (1996) Chemical and pharmacological characterization of halitoxin from Amphimedon viridis (Porifera) from the southeastern Brazilian coast. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology and Toxicology 115(2):155–163

    CAS  Google Scholar 

  • Bernan VS, Greenstein M, Maiese WM (1997) Marine microorganisms as a source of new natural products. Adv Appl Microbiol 43:57–90

    Article  PubMed  CAS  Google Scholar 

  • Bhasin V (2007) Medical anthropology: a review. Stud Ethno-Med 1(1):1–20

    Google Scholar 

  • Bisset NG (1991) One man’s poison, another man’s medicine? J Ethnopharmacol 32(1–3):71–81

    Article  PubMed  CAS  Google Scholar 

  • Boman HG (1995) Peptide antibiotics and their role in innate immunity. Annu Rev Immunol 13(1):61–92

    Article  PubMed  CAS  Google Scholar 

  • Boman HG (2000) Innate immunity and the normal microflora. Immunol Rev 173(1):5–16

    Article  PubMed  CAS  Google Scholar 

  • Boman HG, Ingrid F, Gudmundsson GH, Jong-Youn LEE, Lidholm DA (1991) Cell-free immunity in Cecropia. Eur J Biochem 201(1):23–31

    Article  PubMed  CAS  Google Scholar 

  • Branicki FJ (1981) Surgery in western Kenya. Ann R Coll Surg Engl 63(5):348–352

    PubMed  CAS  Google Scholar 

  • Bulet P, Stocklin R (2005) Insect antimicrobial peptides: structures, properties and gene regulation. Protein Pept Lett 12(1):3–11

    Article  PubMed  CAS  Google Scholar 

  • But PP, Tam YK, Lung LC (1991) Ethnopharmacology of rhinoceros horn. II: antipyretic effects of prescriptions containing rhinoceros horn or water buffalo horn. J Ethnopharmacol 33(1–2):45–50

    PubMed  CAS  Google Scholar 

  • Calixto JB (2005) Twenty-five years of research on medicinal plants in Latin America: a personal view. J Ethnopharmacol 100(1–2):131–134

    Article  PubMed  Google Scholar 

  • Carté BK (1996) Biomedical potential of marine natural products. Bioscience 46(4):271–286

    Article  Google Scholar 

  • Cavanagh D, Beazley J, Ostapowicz F (1970) Radical operation for carcinoma of the vulva. BJOG: An Intern J Obstet Gynaecol 77(11):1037–1040

    Article  CAS  Google Scholar 

  • Chapman AD (2009) Numbers of living species in Australia and the world. Australian Biological Resources Study, Canberra

    Google Scholar 

  • Chivian E (2002a) Biodiversity: its importance to human health. Harvard Medical School, Boston

    Google Scholar 

  • Chivian E (2002b) Biodiversity: its importance to human health. Center for Health and the Global Environment. Harvard Medical School, Cambridge

    Google Scholar 

  • Chivian E, Roberts CM, Bernstein AS (2003) The threat to cone snails. Science 302(5644):391

    Article  PubMed  Google Scholar 

  • Clarke BT (1997) The natural history of amphibian skin secretions, their normal functioning and potential medical applications. Biol Rev 72(3):365–379

    Article  PubMed  CAS  Google Scholar 

  • Colwell RR (1997) Microbial biodiversity and biotechnology. In: Reaka-Kudla ML, Wilson DE, Wilson EO (eds) Biodiversity II: understanding and protecting our biological resources. National Academy Press, Washington, pp 77–98

    Google Scholar 

  • Confessor M, Mendonca L, Mourao J, Alves R (2009) Animals to heal animals: ethnoveterinary practices in semi-arid region, Northeastern Brazil. J Ethnobiol Ethnomed 5(1):37

    Article  PubMed  Google Scholar 

  • Costa-Neto EM (2000) Zootherapy based medicinal traditions in Brazil. Honey Bee 11(2):2–4

    Google Scholar 

  • Costa-Neto EM (2005) Entomotherapy, or the medicinal use of insects. J Ethnobiol 25(1):93–114

    Article  Google Scholar 

  • Costa-Neto EM (2006) Os moluscos na zooterapia: medicina tradicional e importância clínico-farmacológica. Biotemas 19(3):71–78

    Google Scholar 

  • Costa-Neto EM, Alves RRN (2010) Zooterapia: os animais na medicina popular Brasileira, Estudos & Avanços, 1st edn. vol 2. NUPEEA, Recife

    Google Scholar 

  • Cragg GM, Newman DJ (2001) Medicinals for the millennia: the historical record. Ann N Y Acad Sci 953:3–25

    Article  PubMed  CAS  Google Scholar 

  • Daly JW (1998) Thirty years of discovering arthropod alkaloids in amphibian skin†. J Nat Prod 61(1):162–172

    Article  PubMed  CAS  Google Scholar 

  • Daly JW (2003) Ernest Guenther award in chemistry of natural products. Amphibian skin: a remarkable source of biologically active arthropod alkaloids. J Med Chem 46(4):445–452

    Google Scholar 

  • Debnath A, Chatterjee U, Das M, Vedasiromoni JR, Gomes A (2007) Venom of Indian monocellate cobra and Russell’s viper show anticancer activity in experimental models. J Ethnopharmacol 111(3):681–684

    Article  PubMed  CAS  Google Scholar 

  • Demunshi Y, Chugh A (2010) Role of traditional knowledge in marine bioprospecting. Biodivers Conserv 19:3015–3033

    Article  Google Scholar 

  • Dettner K (2011) Potential pharmaceuticals from insects and their co-occurring microorganisms. In: Vilcinskas A (ed) Insect biotechnology. Springer, Berlin, pp 95–119

    Google Scholar 

  • Dhillion SS, Amundsen C (2000) Bioprospecting and the maintenance of biodiversity. In: Svarstad H, Dhillion SS (eds) Responding to bioprospecting: from biodiversity in the south to medicines in the north. Spartacus Forlag A/S, Oslo, pp 103–131

    Google Scholar 

  • Dossey AT (2010) Insects and their chemical weaponry: new potential for drug discovery. Nat Prod Rep 27:1737–1757

    Article  PubMed  CAS  Google Scholar 

  • Efem SE (1993) Recent advances in the management of Fournier’s gangrene: preliminary observations. Surgery 113(2):200–204

    PubMed  CAS  Google Scholar 

  • Efem SEE, Iwara CI (1992) The antimicrobial spectrum of honey and its clinical significance. Infection 20(4):227–229

    Article  PubMed  CAS  Google Scholar 

  • Eisner T (1990) Prospecting for nature’s chemical riches. Chemoecology 1(1):38–40

    Google Scholar 

  • Ellis R (2005) Tiger bone & rhino horn: the destruction of wildlife for traditional Chinese medicine. Shearwater Books, Washington

    Google Scholar 

  • Farnsworth NR, Bingel AS (1997) Problems and prospects of discovering new drugs from higher plants by pharmacological screening. In: Wagner H, Wolff P (eds) New natural products and plant drugs with pharmacological, biological or therapeutic activity. Springer, Berlin, pp 1–22

    Google Scholar 

  • Faulkner DJ (1998) Marine natural products. Nat Prod Rep 15(2):113–158

    Article  PubMed  CAS  Google Scholar 

  • Ferreira FS, Brito S, Ribeiro S, Almeida W, Alves RRN (2009a) Zootherapeutics utilized by residents of the community Poco Dantas, Crato-CE Brazil. J Ethnobiol Ethnomed 5(1):21

    Article  PubMed  Google Scholar 

  • Ferreira FS, Brito SV, Costa JGM, Alves RRN, Coutinho HDM, Almeida WdO (2009b) Is the body fat of the lizard Tupinambis merianae effective against bacterial infections? J Ethnopharmacol 126(2):233–237. doi:10.1016/j.jep.2009.08.038

  • Ferreira FS, Brito SV, Fernandes-Ferreira H, Alves RRN (2010) Prospecção biológica, recursos zooterápicos e sustentabilidade. In: Costa-Neto EM, Alves RRN (eds) Zooterapia: Os Animais na Medicina Popular Brasileira, 1st edn, vol 2. NUPEEA, Recife, pp 141–158

    Google Scholar 

  • Ferreira FS, Silva NLG, Matias EFF, Brito SV, Oliveira FG, Costa JGM, Coutinho HDM, Almeida WO, Alves RRN (2011) Potentiation of aminoglycoside antibiotic activity using the body fat from the snake Boa constrictor. Revista brasileira de farmacognosia 21(3):503–509

    Google Scholar 

  • Finger JM, Schuler P (2004) Poor people’s knowledge: promoting intellectual property in developing countries. A World Bank Publication, Washington

    Google Scholar 

  • Finkl CW (1984) Os medicamentos do mar. Enciclopédia dos mares 1:74–75

    Google Scholar 

  • Firn RD (2003) Bioprospecting–why is it so unrewarding? Biodivers Conserv 12(2):207–216

    Article  Google Scholar 

  • Fitter RSR (1986) Wildlife for man: how and why we should conserve our species. Collins, London

    Google Scholar 

  • Fusetani N (2000) Drugs from the Sea. Karger, New York

    Google Scholar 

  • Garson M (1997) Biodiversity and bioprospecting. Australas J Nat Resour Law and Policy 4(2):227–239

    Google Scholar 

  • Gertsch J (2009) How scientific is the science in ethnopharmacology? Historical perspectives and epistemological problems. J Ethnopharmacol 122(2):177–183

    Google Scholar 

  • Giday M, Teklehaymanot T, Animut A, Mekonnen Y (2007) Medicinal plants of the Shinasha, Agew-awi and Amhara peoples in northwest Ethiopia. J Ethnopharmacol 110:516–525. doi:10.1016/j.jep.2006.10.011

    Google Scholar 

  • Giraldi T, Ferlan I, Romeo D (1976) Antitumour activity of equinatoxin. Chem Biol Interact 13(3–4):199–203

    Article  PubMed  CAS  Google Scholar 

  • Gomes A, Bhattacharjee P, Mishra R, Biswas AK, Dasgupta SC, Giri B, Debnath A, Gupta SD, Das T (2010) Anticancer potential of animal venoms and toxins. Indian J Exp Biol 48(2):93–103

    PubMed  CAS  Google Scholar 

  • Haefner B (2003) Drugs from the deep: marine natural products as drug candidates. Drug Discovery Today 8(12):536–544

    Article  PubMed  CAS  Google Scholar 

  • Haygood MG, Schmidt EW, Davidson SK, Faulkner DJ (1999) Microbial symbionts of marine invertebrates: opportunities for microbial biotechnology. J Mol Microbiol Biotechnol 1(1):33–43

    PubMed  CAS  Google Scholar 

  • Heinrich M, Ankli A, Frei B, Weimann C, Sticher O (1998) Medicinal plants in Mexico: healers’ consensus and cultural importance. Soc Sci Med 47(11):1859–1871

    Article  PubMed  CAS  Google Scholar 

  • Honda A, Yamamoto Y, Mori Y, Yamada Y, Kikuchi H (1985) Antileukemic effect of coral-prostanoids clavulones from the stolonifer on human myeloid leukemia (HL-60) cells. Biochem Biophys Res Commun 130(2):515–523

    Article  PubMed  CAS  Google Scholar 

  • Houghton PJ, Howes MJ, Lee CC, Steventon G (2007) Uses and abuses of in vitro tests in ethnopharmacology: visualizing an elephant. J Ethnopharmacol 110(3):391–400

    Google Scholar 

  • Hultmark D, Steiner H, Rasmuson T, Boman HG (1980) Insect immunity. Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia. Eur J Biochem 106(1):7–16

    Article  PubMed  CAS  Google Scholar 

  • Hunt B, Vincent ACJ (2006) Scale and sustainability of marine bioprospecting for pharmaceuticals. AMBIO: A Jo Human Environ 35(2):57–64

    Google Scholar 

  • Ireland CM, Copp BR, Foster MP, McDonald LA, Radisky DC, Swersey JC (1993) Biomedical potential of marine natural products. Mar Biotechnol 1:1–43

    CAS  Google Scholar 

  • Jensen JB, Camp CD (2003) Human exploitation of amphibians: direct and indirect impacts. In: Semlitsch RD (ed) Amphibian conservation. Smithsonian Books, Washington, pp 199–213

    Google Scholar 

  • Jensen PR, Fenical W (1994) Strategies for the discovery of secondary metabolites from marine bacteria: ecological perspectives. Annu Rev Microbiol 48(1):559–584

    Article  PubMed  CAS  Google Scholar 

  • Karthikeyan R, Karthigayan S, Sri Balasubashini M, Somasundaram ST, Balasubramanian T (2008) Inhibition of Hep2 and HeLa cell proliferation in vitro and EAC tumor growth in vivo by Lapemis curtus (Shaw 1802) venom. Toxicon 51(1):157–161

    Article  PubMed  CAS  Google Scholar 

  • Kellert SR (1993) Values and perceptions of invertebrates. Conserv Biol 7(4):845–855

    Article  Google Scholar 

  • Kijjoa A, Sawangwong P (2004) Drugs and cosmetics from the sea. Marine Drugs 2:73–82

    Article  CAS  Google Scholar 

  • Koru O, Toksoy F, Acikel CH, Tunca YM, Baysallar M, Uskudar Guclu A, Akca E, Ozkok Tuylu AI, Sorkun K, Tanyuksel M (2007) In vitro antimicrobial activity of propolis samples from different geographical origins against certain oral pathogens. Anaerobe 13(3–4):140–145

    Article  PubMed  CAS  Google Scholar 

  • Kujumgiev A, Tsvetkova I, Serkedjieva Y, Bankova V, Christov R, Popov S (1999) Antibacterial, antifungal and antiviral activity of propolis of different geographic origin. J Ethnopharmacol 64(3):235–240

    Article  PubMed  CAS  Google Scholar 

  • Kunin WE, Lawton JH (1996) Does biodiversity matter? Evaluating the case for conserving species. In: Gaston KJ (ed) Biodiversity. A biology of numbers and difference. Blackwell Science, Oxford, pp 367–387

    Google Scholar 

  • Laird SA (2002) Biodiversity and traditional knowledge: equitable partnerships in practice. Earthscan/James & James, London

    Google Scholar 

  • Lee SKH (1999) Trade in traditional medicine using endangered species: an international context. Paper presented at the 2nd Australian symposium on traditional medicine and wildlife conservation, Melbourne

    Google Scholar 

  • Lee YK, Lee JH, Lee HK (2001) Microbial symbiosis in marine sponges. J Microbiol 39:254–264

    Google Scholar 

  • Lev E (2003) Traditional healing with animals (zootherapy): medieval to present-day Levantine practice. J Ethnopharmacol 85:107–118. doi:10.1016/S0378-8741(02)00377-X

    Google Scholar 

  • Lev E (2006) Healing with animals in the Levant from the 10th to the 18th cent. J Ethnobiol Ethnomed 2(11):9. doi:10.1186/1746-4269-2-11

  • Lev E, Amar Z (2002) Ethnopharmacological survey of traditional drugs sold in the Kingdom of Jordan. J Ethnopharmacol 82:131–145

    Article  PubMed  Google Scholar 

  • Makhubu L (1998) Bioprospecting in an African context. Science 282(5386):41–42

    Article  PubMed  CAS  Google Scholar 

  • Mariottini GL, Pane L (2010) Mediterranean jellyfish venoms: a review on scyphomedusae. Marine Drugs 8(4):1122–1152

    Article  PubMed  CAS  Google Scholar 

  • Marques JGW (1997) Fauna medicinal: Recurso do ambiente ou ameaça à biodiversidade? Mutum 1(1):1–4

    Google Scholar 

  • McClatchey W (2005) Medicinal bioprospecting and ethnobotany research. Ethnobot Res Appl 3:189–190

    Google Scholar 

  • McNeely JA (2006) Risks to people of losing medicinal species. In: Miththapala S (ed) Conserving medicinal species: securing a healthy future. IUCN: Ecosystems and Livelihoods Group, Asia, pp 17–31

    Google Scholar 

  • Mebs D, Omori-Satoh T, Yamakawa Y, Nagaoka Y (1996) Erinacin, an antihaemorrhagic factor from the European hedgehog, Erinaceus europaeus. Toxicon 34(11–12):1313–1316

    Article  PubMed  CAS  Google Scholar 

  • Melo JG, Amorim ELC, Albuquerque UP (2009) Native medicinal plants commercialized in Brazil––priorities for conservation. Environ Monit Assess 156(1):567–580

    Article  PubMed  Google Scholar 

  • Meylaers K, Clynen E, Daloze D, DeLoof A, Schoofs L (2004) Identification of 1-lysophosphatidylethanolamine (C16: 1) as an antimicrobial compound in the housefly, Musca domestica. Insect Biochem Mol Biol 34(1):43–49

    Article  PubMed  CAS  Google Scholar 

  • Mgbeoji I (2006) Global biopiracy: patents, plants and indigenous knowledge. Cornell University Press, Ithaca

    Google Scholar 

  • Molan PC (1999) The role of honey in the management of wounds. J Wound Care 8(8):423–426

    Google Scholar 

  • Moore RE, Scheuer PJ (1971) Palytoxin: a new marine toxin from a coelenterate. Science 172(3982):495–498

    Article  PubMed  CAS  Google Scholar 

  • Moran K, King SR, Carlson TJ (2001) Biodiversity prospecting: lessons and prospects. Annu Rev Anthropol 30:505–526

    Article  Google Scholar 

  • Morgan D (2010) Biosynthesis in insects. Royal Society of Chemistry, The

    Google Scholar 

  • Mukherjee PK, Ponnusankar S, Venkatesh M (2010) Ethno medicine in complementary therapeutics. In: Chattopadhyay D (ed) Ethnomedicine: a source of complementary therapeutics, Research Signpost, pp 29–52

    Google Scholar 

  • Müller WEG, Brümmer F, Batel R, Müller IM, Schröder HC (2003) Molecular biodiversity. Case study: Porifera (sponges). Naturwissenschaften 90(3):103–120

    PubMed  Google Scholar 

  • Myers N (1979) The sinking ark: a new look at the problem of disappearing species. Pergamon Press, New York

    Google Scholar 

  • Nakanishi K (1999a) An historical perspective of natural products chemistry. In: Sankawa U (ed) Comprehensive natural products chemistry: isoprenoids including carotenoids and steroids. Pergamon, Oxford

    Google Scholar 

  • Nakanishi K (1999b) An historical perspective of natural products chemistry. In: Ushio S (ed) Comprehensive natural products chemistry. Elsevier Science B.V, Amsterdam, pp 23–40

    Google Scholar 

  • Oldfield ML (1989) The value of conserving genetic resources. Sinauer Associates, Washington

    Google Scholar 

  • Orduña-Novoa K, Segura-Puertas L, Sánchez-Rodríguez J, Meléndez A, Nava-Ruíz C, Rembao D, Santamaría A, Galván-Arzate S (2003) Possible antitumoral effect of the crude venom of Cassiopea xamachana (Cnidaria: Scyphozoa) on tumors of the central nervous system induced by N-Ethyl-N-Nitrosourea (ENU) in rats. Proc West Pharmacol Soc 46:85–87

    PubMed  Google Scholar 

  • Paavilainen HM (2009) Medieval pharmacotherapy, continuity and change: case studies from Ibn Sina and some of his late Medieval commentators. Brill Academic Publishers, Boston

    Book  Google Scholar 

  • Padmanabhan P, Sujana KA (2008) Animal products in traditional medicine from Attappady hills of Western Ghats. Indian J Tradit Knowl 7(2):326–329

    Google Scholar 

  • Pan PG (2006) Bioprospecting: issues and policy considerations. Legislative Reference Bureau, Germplasm resources. Honolulu

    Google Scholar 

  • Park YK, Inegaki M, Alencar SM, Wang HK, Bastow K, Cosentino M, Lee KH (2000) Determinação das atividades citotóxica e anti-HIV dos extratos etanólicos de própolis coletadas em diferentes regiões do Brasil. Mensagem Doce 56:2–5

    Google Scholar 

  • Parveen, Upadhyay B, Roy S, Kumar A (2007) Traditional uses of medicinal plants among the rural communities of Churu district in the Thar Desert, India. J Ethnopharmacol 113:387–399. doi:10.1016/j.jep.2007.06.010

  • Phillips O, Gentry AH (1993) The useful plants of Tambopata, Peru: I. Statistical hypotheses tests with a new quantitative technique. Econ Bot 47(1):15–32

    Article  Google Scholar 

  • Pieroni A, Giusti ME, Grazzini A (2002) Animal remedies in the folk medicinal practices of the Lucca and Pistoia Provinces, Central Italy. In: Fleurentin J, Pelt JM, Mazars G (eds) Des sources du savoir aux médicaments du futur/from the sources of knowledge to the medicines of the future, 1st edn. IRD Editions, Paris, pp 371–375

    Google Scholar 

  • Pinheiro CU (1997) Jaborandi (Pilocarpus sp., rutaceae): a wild species. Econ Bot 51(1):49–58

    Article  Google Scholar 

  • Proksch P, Edrada-Ebel RA, Ebel R (2003) Drugs from the sea-opportunities and obstacles. Marine Drugs 1:5–17

    Article  CAS  Google Scholar 

  • Quinn RJ, Leone PA, Guymer G, Hooper JNA (2002) Australian biodiversity via its plants and marine organisms. A high-throughput screening approach to drug discovery. Pure Appl Chem 74(4):519–526

    Article  CAS  Google Scholar 

  • Rausser GC, Small AA (2000) Valuing research leads: bioprospecting and the conservation of genetic resources. J Political Econ 108(1):173–206

    Article  Google Scholar 

  • Reid WV, Laird SA, Meyer CA, Gamez R, Gollin MA, Sittenfeld A, Janzen DH, Gollin MA, Juma C (1993) Biodiversity prospecting: using genetic resources for sustainable development. World Resources Institute, Washington

    Google Scholar 

  • Ridley CP, Faulkner JD, Haygood MG (2005) Investigation of oscillatoria spongeliae-dominated bacterial communities in four dictyoceratid sponges. Appl Environ Microbiol 71(11):7366–7375

    Article  PubMed  CAS  Google Scholar 

  • Rouzaire-Dubois B, Dubois JM (1990) Characterization of palytoxin-induced channels in mouse neuroblastoma cells. Toxicon 28(10):1147–1158

    Article  PubMed  CAS  Google Scholar 

  • Sampaio Alves DF, Cabra Júnior FC, Cabral PPAC, Oliveira Junior RM, Rego ACM, Medeiros AC (2008) Efeitos da aplicação tópica do mel de Melipona subnitida em feridas infectadas de ratos. Rev Col Bras Cir 35(3):188–193

    Article  Google Scholar 

  • Santos IJM, Coutinho HDM, Matias EFF, Costa JGM, Alves RRN, Almeida WO (2012) Antimicrobial activity of natural products from the skins of the semiarid living lizards Ameiva ameiva (Linnaeus, 1758) and Tropidurus hispidus (Spix, 1825). J Arid Environ 76:138–141

    Google Scholar 

  • Sawyer WH, Munsick RA, Van Dyke HB (1961) Pharmacological characteristics of the active principles in neurohypophysial extracts from several species of fishes. Endocrinology 68(2):215–225

    Google Scholar 

  • Scarpa GF (2004) Medicinal plants used by the Criollos of Northwestern Argentine Chaco. J Ethnopharmacol 91(1):115–135

    Article  PubMed  Google Scholar 

  • Seedhouse E (2010) Ocean outpost: the future of humans living underwater. Springer, Berlin

    Google Scholar 

  • Silva CCA (2002) Aspectos do sistema imunológico dos insetos. Revista Biotecnologia Ciência & Desenvolvimento 24:68–72

    Google Scholar 

  • Silva RJ, Fecchio D, Barraviera B (1996) Antitumor effect of snake venoms. J Venom Animals and Toxins 2:79–90

    Article  Google Scholar 

  • Simpson RD (1997) Biodiversity prospecting: shopping the wilds is not the key to conservation. Resources 126:12–15

    Google Scholar 

  • Sittenfeld A (1996) Special article on issues and strategies for bioprospecting. Genet Eng Biotechnol 4:1–12

    Google Scholar 

  • Sittenfeld A, Cabrera JM, Mora M (2004) Bioprospecting and biotechnology: some policy issue. Gene Conserve 3(12):198–211

    Google Scholar 

  • Sittenfeld A, Lovejoy A (1998) Biodiversity prospecting frameworks: The INBio experience in Costa Rica. In: Guruswamy LD, McNeely JA (eds) Protection of global biodiversity, covering strategies. Duke University Press, Durham and London, pp 223–244

    Google Scholar 

  • Slocinska M, Marciniak P, Rosinski G (2008) Insects antiviral and anticancer peptides: new leads for the future? Protein Pept Lett 15(6):578–585

    Article  PubMed  CAS  Google Scholar 

  • Sodeinde OA, Soewu DA (1999) Pilot study of the traditional medicine trade in Nigeria. Traffic Bulletin 18(1):35–40

    Google Scholar 

  • Soejarto DD (1996) Biodiversity prospecting and benefit-sharing: perspectives from the field. J Ethnopharmacol 51(1–3):1–15

    Article  PubMed  CAS  Google Scholar 

  • Spainhour CB (2005) Drug discovery handbook. Wiley-Interscience, New Jersey

    Google Scholar 

  • Stocker K (1989) Snake venom proteins affecting hemostasis and fibrinolysis. Sorbate food preservatives. CRC Press, Basel

    Google Scholar 

  • Sukarmi S, Sabdono A (2011) Ethical perspectives of sustainable use of reef’s invertebrates as a source of marine natural products. J Coast Dev 11(3):97–103

    Google Scholar 

  • Svarstad H (2000) Local Interests and foreign interventions: shaman pharmaceuticals in tanzania. In: Dhillion SS (ed) Svarstad H. Responding to bioprospecting: from biodiversity in the south to medicines in the north, Spartacus Forlag As Oslo, pp 145–153

    Google Scholar 

  • Székely T, Gaillard A (2007) Conserving biodiversity using patent law. Nat Biotechnol 25(10):1087–1088

    Article  PubMed  CAS  Google Scholar 

  • Tabrah FL, Kashiwagi M, Norton TR (1972) Antitumor activity in mice of four coelenterate extracts. Int J Clin Pharmacol Ther Toxicol 5(4):420–422

    CAS  Google Scholar 

  • Thakur AN, Thakur NL, Indap MM, Pandit RA, Datar VV, Müller WEG (2005) Antiangiogenic, antimicrobial, and cytotoxic potential of sponge-associated bacteria. Mar Biotechnol 7(3):245–252

    Article  PubMed  CAS  Google Scholar 

  • Thakur NL, Müller WEG (2004) Biotechnological potential of marine sponges. Curr Sci 86(11):1506–1512

    CAS  Google Scholar 

  • Thammasirirak S, Phonkham P, Preecharram S, Khanchanuan R, Phonyothee P, Daduang S, Srisomsap C, Araki T, Svasti J (2006) Purification, characterization and comparison of reptile lysozymes. Comparative Biochem Physiol Part C 143:209–217

    Google Scholar 

  • Thomas TRA, Kavlekar DP, LokaBharathi PA (2010) Marine Drugs from sponge-microbe association—a review. Marine Drugs 8(4):1417

    Article  PubMed  CAS  Google Scholar 

  • Tamayo G, Nader W, Sittenfeld A (1997) Biodiversity for the bioindustries. In: Ford-Lloy BV, New bury HJ, Callow JA (eds) Biotechnology and plant genetic resources: conservation and use. CAB International, Wallingford, pp 255–279

    Google Scholar 

  • Trowell S (2003) Drugs from bugs: the promise of pharmaceutical entomology. Futurist 37(1):17–19

    Google Scholar 

  • Uniyal SK, Singh KN, Jamwal P, Lal B (2006) Traditional use of medicinal plants among the tribal communities of Chhota Bhangal, Western Himalaya. J Ethnobiol Ethnomed 2(14):1–8

    Google Scholar 

  • Van NDN, Tap N (2008) An overview of the use of plants and animals in traditional medicine systems in Viet Nam. 1st edn. TRAFFIC Southeast Asia, Greater Mekong Programme, Ha Noi

    Google Scholar 

  • Wade D, Andreu D, Mitchell SA, Silveira AMV, Boman A, Boman HG, Merrifield RB (1992) Antibacterial peptides designed as analogs or hybrids of cecropins and melittin. Int J Pept Protein Res 40(5):429–436

    Article  PubMed  CAS  Google Scholar 

  • Wang G (2006) Diversity and biotechnological potential of the sponge-associated microbial consortia. J Ind Microbiol Biotechnol 33(7):545–551

    Article  PubMed  CAS  Google Scholar 

  • Weinheimer AJ, Spraggins RL (1969) The occurrence of two new prostaglandin derivatives (15-epi-PGA2 and its acetate, methyl ester) in the gorgonian Plexaura homomalla chemistry of coelenterates XV. Tetrahedron Lett 10:5185–5188

    Article  Google Scholar 

  • WHO (2002) Traditional medicine strategy 2002–2005, Geneva

    Google Scholar 

  • Willix DJ, Molan PC, Harfoot CG (1992) A comparison of the sensitivity of wound infecting species of bacteria to the antibacterial activity of manuka honey and other honey. J Appl Microbiol 73(5):388–394

    Article  CAS  Google Scholar 

  • Yamakawa M (1998) Insect antibacterial proteins: regulatory mechanisms of their synthesis and a possibility as new antibiotics. J Seric Sci Jpn 67(3):163–182

    CAS  Google Scholar 

  • Yinfeng G, Xueying Z, Yan C, Di W, Sung W (1997) Sustainability of wildlife use in traditional chinese medicine. Conserving China’Biodiversity: reports of the biodiversity working group (BWG), China Council for International Cooperation on Environment and Development

    Google Scholar 

  • Zhang D, Cheng Z (2000) Medicine is a humane art: the basic principles of professional ethics in chinese medicine. Hastings Cent Rep 30(4):S8–S12

    Article  CAS  Google Scholar 

  • Zilinskas RA, Lundin CG (1993) Marine biotechnology and developing countries. The International Bank for Reconstruction and Development, Washington

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rômulo Romeu Nóbrega Alves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Alves, R.R.N., Albuquerque, U.P. (2013). Animals as a Source of Drugs: Bioprospecting and Biodiversity Conservation. In: Alves, R., Rosa, I. (eds) Animals in Traditional Folk Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29026-8_5

Download citation

Publish with us

Policies and ethics