Skip to main content

Feature Weighting by RELIEF Based on Local Hyperplane Approximation

  • Conference paper
Advances in Knowledge Discovery and Data Mining (PAKDD 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7302))

Included in the following conference series:

Abstract

In this paper, we propose a new feature weighting algorithm through the classical RELIEF framework. The key idea is to estimate the feature weights through local approximation rather than global measurement, as used in previous methods. The weights obtained by our method are more robust to degradation of noisy features, even when the number of dimensions is huge. To demonstrate the performance of our method, we conduct experiments on classification by combining hyperplane KNN model (HKNN) and the proposed feature weight scheme. Empirical study on both synthetic and real-world data sets demonstrate the superior performance of the feature selection for supervised learning, and the effectiveness of our algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asuncion, A., Newman, D.: UCI machine learning repository (2007), http://www.ics.uci.edu/~mlearn/MLRepository.html

  2. Bachrach, G.R., Navot, A., Tishby, N.: Margin Based Feature Selection - Theory and Algorithms. In: Proc. 21st International Conference on Machine Learning (ICML), pp. 43–50 (2004)

    Google Scholar 

  3. Brown, G.: An Information Theoretic Perspective on Multiple Classifier Systems. In: Benediktsson, J.A., Kittler, J., Roli, F. (eds.) MCS 2009. LNCS, vol. 5519, pp. 344–353. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  4. Brown, G.: Some Thoughts at the Interface of Ensemble Methods and Feature Selection. In: El Gayar, N., Kittler, J., Roli, F. (eds.) MCS 2010. LNCS, vol. 5997, pp. 314–314. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Cawley, G.C., Talbot, N.L.C., Girolami, M.: Sparse Multinomial Logistic Regression via Bayesian L1 Regularisation. Advances in Neural Information Processing Systems 19 (2007)

    Google Scholar 

  6. Christopher, A., Andrew, M., Stefan, S.: Locally weighted learning. Artificial Intelligence Review 11, 11–73 (1997)

    Article  Google Scholar 

  7. Ding, C., Peng, H.: Minimum redundancy feature selection from microarray gene expression data. Journal of Bioinformatics and Computational Biology 3(2), 185–205 (2005)

    Article  MathSciNet  Google Scholar 

  8. Domeniconi, C., Peng, J., Gunopulos, D.: Locally adaptive metric nearest-neighbor classification. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(9), 1281–1285 (2002)

    Article  Google Scholar 

  9. Duan, K.B.B., Rajapakse, J.C., Wang, H., Azuaje, F.: Multiple SVM-RFE for gene selection in cancer classification with expression data. IEEE Transactions on Nanobioscience 4(3), 228–234 (2005)

    Article  Google Scholar 

  10. Duda, R., Hart, P., Stork, D.: Pattern Classification. Wiley (2001)

    Google Scholar 

  11. Fraley, C., Raftery, A.E.: Model-based clustering, discriminant analysis, and density estimation. Journal of the American Statistical Association 97(458), 611–631 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Furey, T.S., Cristianini, N., Duffy, N., Bednarski, D.W., Schummer, M., Haussler, D.: Support vector machine classification and validation of cancer tissue samples using microarray expression data. BMC bioinformatics 16, 906–914 (2000)

    Google Scholar 

  13. Girolami, M., He, C.: Probability density estimation from optimally condensed data samples. IEEE Transactions on Pattern Analysis and Machine Intelligence 25, 1253–1264 (2003)

    Article  Google Scholar 

  14. Guyon, I.: An introduction to variable and feature selection. Journal of Machine Learning Research 3, 1157–1182 (2003)

    MATH  Google Scholar 

  15. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Machine Learning 46, 389–422 (2002)

    Article  MATH  Google Scholar 

  16. Hastie, T., Tibshirani, R.: Discriminant adaptive nearest neighbor classification. IEEE Transactions on Pattern Analysis and Machine Intelligence 18, 607–616 (1996)

    Article  Google Scholar 

  17. Huang, C.J., Yang, D.X., Chuang, Y.T.: Application of wrapper approach and composite classifier to the stock trend prediction. Expert Systems with Applications 34(4), 2870–2878 (2008)

    Article  Google Scholar 

  18. Koller, D., Sahami, M.: Toward optimal feature selection. In: Saitta, L. (ed.) Proceedings of the Thirteenth International Conference on Machine Learning (ICML), pp. 284–292. Morgan Kaufmann Publishers (1996)

    Google Scholar 

  19. Kononenko, I.: Estimating Attributes: Analysis and Extensions of RELIEF. In: Bergadano, F., De Raedt, L. (eds.) ECML 1994. LNCS, vol. 784, pp. 171–182. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  20. Kwak, N., Choi, C.H.: Input feature selection by mutual information based on parzen window. IEEE Trans. Pattern Anal. Mach. Intell. 24, 1667–1671 (2002)

    Article  Google Scholar 

  21. Liu, H., Setiono, R.: Feature selection via discretization. IEEE Transactions on Knowledge and Data Engineering 9, 642–645 (1997)

    Article  Google Scholar 

  22. Narlikar, L., Hartemink, A.J.: Sequence features of dna binding sites reveal structural class of associated transcription factor. Bioinformatics 22(2), 157–163 (2006)

    Article  Google Scholar 

  23. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer (August 2000)

    Google Scholar 

  24. Peng, Y.H.: A novel ensemble machine learning for robust microarray data classification. Computers in Biology and Medicine 36, 553–573 (2006)

    Article  Google Scholar 

  25. Shakhnarovich, G., Darrell, T., Indyk, P. (eds.): Nearest-Neighbor Methods in Learning and Vision: Theory and Practice. MIT Press (2006)

    Google Scholar 

  26. Statnikov, A., Wang, L., Aliferis, C.F.: A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification. BMC Bioinformatics 9, 319–328 (2008)

    Article  Google Scholar 

  27. Sun, Y.: Iterative relief for feature weighting: Algorithms, theories, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 1035–1051 (2007)

    Article  Google Scholar 

  28. Sun, Y., Todorovic, S., Goodison, S.: Local-learning-based feature selection for high-dimensional data analysis. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1610–1626 (2010)

    Article  Google Scholar 

  29. Tao, Y., Vojislav, K.: Adaptive local hyperplane classification. Neurocomputing 71(13-15), 3001–3004 (2008)

    Article  Google Scholar 

  30. Vincent, P., Bengio, Y.: K-local hyperplane and convex distance nearest neighbor algorithms. In: Advances in Neural Information Processing Systems, pp. 985–992. The MIT Press (2001)

    Google Scholar 

  31. Zhang, T., Oles, F.J.: Text categorization based on regularized linear classification methods. Information Retrieval 4(1), 5–31 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cai, H., Ng, M. (2012). Feature Weighting by RELIEF Based on Local Hyperplane Approximation. In: Tan, PN., Chawla, S., Ho, C.K., Bailey, J. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2012. Lecture Notes in Computer Science(), vol 7302. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30220-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30220-6_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30219-0

  • Online ISBN: 978-3-642-30220-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics