Skip to main content

Synchronized Chaperone Function of Botulinum Neurotoxin Domains Mediates Light Chain Translocation into Neurons

  • Chapter
  • First Online:
Botulinum Neurotoxins

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 364))

Abstract

Clostridium botulinum neurotoxin (BoNT) is a multidomain protein in which the individual modules work in synchronized cooperative action in order to enter into neurons and inhibit synaptic transmission. The di-chain protein is made up of the ~50 kD light chain and the ~100 kD heavy chain. The HC can be further subdivided into the N-terminal translocation domain (HN) and the C-terminal Receptor Binding Domain (HC). BoNT entry into neurons requires the toxin to utilize the host cell’s endocytosis pathway where it exploits the acidic environment of the endosome. Within the endosome the HC triggers the HN to change conformation from a soluble protein to a membrane inserted protein-conducting channel in precise timing with LC refolding. The LC must partially unfold to a translocation competent conformation in order to be translocated by the HN channel in an N to C terminal direction. Upon completion of translocation, the LC is released from the HC and allowed to interact with its substrate SNARE protein. This article discusses the individual functions of each module as well as the mechanisms by which each domain serves as a chaperone for the others, working in concert to achieve productive intoxication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

γ:

Single channel conductance

BoNT:

Botulinum neurotoxin

CD:

Circular dichroism

EPR:

Electron paramagnetic resonance

HC:

Heavy chain

HC :

Receptor binding domain

HCC :

25 kDa C-terminal subdomain of the HC

HCN :

25 kDa N-terminal subdomain of the HC

HN :

Translocation domain

HN-belt :

Beltless translocation domain

LC:

Light chain

LHN :

LC + HN

PA:

Protective antigen

P o :

Probability of the channel to remain in the open state

SNAP-25:

Synaptosomal-associated protein of 25 kDa

SNARE:

Soluble NSF attachment protein receptor

T1/2 :

Half-time for a single growing conductance event

TeNT:

Tetanus neurotoxin

TSDN:

Toosendanin

References

  • Agarwal R, Eswaramoorthy S, Kumaran D, Binz T, Swaminathan S (2004) Structural analysis of botulinum neurotoxin type E catalytic domain and its mutant Glu212—Gln reveals the pivotal role of the Glu212 carboxylate in the catalytic pathway. Biochemistry 43:6637–6644

    Article  PubMed  CAS  Google Scholar 

  • Agarwal R, Binz T, Swaminathan S (2005) Structural analysis of botulinum neurotoxin serotype F light chain: implications on substrate binding and inhibitor design. Biochemistry 44:11758–11765

    Article  PubMed  CAS  Google Scholar 

  • Arndt JW, Yu W, Bi F, Stevens RC (2005) Crystal structure of botulinum neurotoxin type G light chain: serotype divergence in substrate recognition. Biochemistry 44:9574–9580

    Article  PubMed  CAS  Google Scholar 

  • Arndt JW, Chai Q, Christian T, Stevens RC (2006) Structure of botulinum neurotoxin type D light chain at 1.65 A resolution: repercussions for VAMP-2 substrate specificity. Biochemistry 45:3255–3262

    Article  PubMed  CAS  Google Scholar 

  • Bade S, Rummel A, Reisinger C, Karnath T, Ahnert-Hilger G, Bigalke H, Binz T (2004) Botulinum neurotoxin type D enables cytosolic delivery of enzymatically active cargo proteins to neurones via unfolded translocation intermediates. J Neurochem 91:1461–1472

    Article  PubMed  CAS  Google Scholar 

  • Barth H, Pfeifer G, Hofmann F, Maier E, Benz R, Aktories K (2001) Low pH-induced formation of ion channels by clostridium difficile toxin B in target cells. J Biol Chem 276:10670–10676

    Article  PubMed  CAS  Google Scholar 

  • Basilio D, Kienker PK, Briggs SW, Finkelstein A (2011) A kinetic analysis of protein transport through the anthrax toxin channel. J Gen Physiol 137:521–531

    Article  PubMed  CAS  Google Scholar 

  • Black JD, Dolly JO (1986) Interaction of 125I-labeled botulinum neurotoxins with nerve terminals. I. Ultrastructural autoradiographic localization and quantitation of distinct membrane acceptors for types A and B on motor nerves. J Cell Biol 103:521–534

    Article  PubMed  CAS  Google Scholar 

  • Blasi J, Chapman ER, Link E, Binz T, Yamasaki S, De Camilli P, Sudhof TC, Niemann H, Jahn R (1993) Botulinum neurotoxin a selectively cleaves the synaptic protein SNAP-25. Nature 365:160–163

    Article  PubMed  CAS  Google Scholar 

  • Blaustein RO, Germann WJ, Finkelstein A, DasGupta BR (1987) The N-terminal half of the heavy chain of botulinum type A neurotoxin forms channels in planar phospholipid bilayers. FEBS Lett 226:115–120

    Article  PubMed  CAS  Google Scholar 

  • Breidenbach MA, Brunger AT (2004) Substrate recognition strategy for botulinum neurotoxin serotype A. Nature 432:925–929

    Article  PubMed  CAS  Google Scholar 

  • Brunger AT, Breidenbach MA, Jin R, Fischer A, Santos JS, Montal M (2007) Botulinum neurotoxin heavy chain belt as an intramolecular chaperone for the light chain. PLoS Pathog 3:1191–1194

    Article  PubMed  CAS  Google Scholar 

  • Chaddock JA, Herbert MH, Ling RJ, Alexander FC, Fooks SJ, Revell DF, Quinn CP, Shone CC, Foster KA (2002) Expression and purification of catalytically active, non-toxic endopeptidase derivatives of Clostridium botulinum toxin type A. Protein Expr Purif 25:219–228

    Article  PubMed  CAS  Google Scholar 

  • Chai Q, Arndt JW, Dong M, Tepp WH, Johnson EA, Chapman ER, Stevens RC (2006) Structural basis of cell surface receptor recognition by botulinum neurotoxin B. Nature 444:1096–1100

    Article  PubMed  CAS  Google Scholar 

  • Couesnon A, Shimizu T, Popoff MR (2009) Differential entry of botulinum neurotoxin A into neuronal and intestinal cells. Cell Microbiol 11:289–308

    Article  PubMed  CAS  Google Scholar 

  • Dolly JO, Black J, Williams RS, Melling J (1984) Acceptors for botulinum neurotoxin reside on motor nerve terminals and mediate its internalization. Nature 307:457–460

    Article  PubMed  CAS  Google Scholar 

  • Dong M, Richards DA, Goodnough MC, Tepp WH, Johnson EA, Chapman ER (2003) Synaptotagmins I and II mediate entry of botulinum neurotoxin B into cells. J Cell Biol 162:1293–1303

    Article  PubMed  CAS  Google Scholar 

  • Dong M, Yeh F, Tepp WH, Dean C, Johnson EA, Janz R, Chapman ER (2006) SV2 is the protein receptor for botulinum neurotoxin A. Science 312:592–596

    Article  PubMed  CAS  Google Scholar 

  • Donovan JJ, Middlebrook JL (1986) Ion-conducting channels produced by botulinum toxin in planar lipid membranes. Biochemistry 25:2872–2876

    Article  PubMed  CAS  Google Scholar 

  • Draper RK, Simon MI (1980) The entry of diphtheria toxin into the mammalian cell cytoplasm: evidence for lysosomal involvement. J Cell Biol 87:849–854

    Article  PubMed  CAS  Google Scholar 

  • Falnes PO, Madshus IH, Sandvig K, Olsnes S (1992) Replacement of negative by positive charges in the presumed membrane-inserted part of diphtheria toxin B fragment. Effect on membrane translocation and on formation of cation channels. J Biol Chem 267:12284–12290

    PubMed  CAS  Google Scholar 

  • Finkelstein A (1990) Channels formed in phospholipid bilayer membranes by diphtheria, tetanus, botulinum and anthrax toxin. J de physiol 84:188–190

    CAS  Google Scholar 

  • Fischer A, Montal M (2006) Characterization of Clostridial botulinum neurotoxin channels in neuroblastoma cells. Neurotox Res 9:93–100

    Article  CAS  Google Scholar 

  • Fischer A, Montal M (2007a) Single molecule detection of intermediates during botulinum neurotoxin translocation across membranes. Proc Nat Acad Sci U S A 104:10447–10452

    Article  CAS  Google Scholar 

  • Fischer A, Montal M (2007b) Crucial role of the disulfide bridge between botulinum neurotoxin light and heavy chains in protease translocation across membranes. J Biol Chem 282:29604–29611

    Article  PubMed  CAS  Google Scholar 

  • Fischer A, Mushrush DJ, Lacy DB, Montal M (2008a) Botulinum neurotoxin devoid of receptor binding domain translocates active protease. PLoS Pathog 4:e1000245

    Article  PubMed  Google Scholar 

  • Fischer A, Koriazova LK, Oblatt-Montal M, Montal M (2008b) Botulinum toxin: Therapeutic clinical practices and science, chapter 3, (United States of America: Elsevier Inc.)

    Google Scholar 

  • Fischer A, Nakai Y, Eubanks LM, Clancy CM, Tepp WH, Pellett S, Dickerson TJ, Johnson EA, Janda KD, Montal M (2009) Bimodal modulation of the botulinum neurotoxin protein-conducting channel. Proc Nat Acad Sci U S A 106:1330–1335

    Article  CAS  Google Scholar 

  • Fischer A, Sambashivan S, Brunger AT, Montal M (2012) Beltless translocation domain of botulinum neurotoxin A embodies a minimum ion-conductive channel. J Biol Chem 287:1657–1661

    Article  PubMed  CAS  Google Scholar 

  • Fu FN, Busath DD, Singh BR (2002) Spectroscopic analysis of low pH and lipid-induced structural changes in type A botulinum neurotoxin relevant to membrane channel formation and translocation. Biophys Chem 99:17–29

    Article  PubMed  CAS  Google Scholar 

  • Fu Z, Chen C, Barbieri JT, Kim JJ, Baldwin MR (2009) Glycosylated SV2 and gangliosides as dual receptors for botulinum neurotoxin serotype F. Biochemistry 48:5631–5641

    Article  PubMed  CAS  Google Scholar 

  • Fujinaga Y, Sugawara Y, Matsumura T (2012) Uptake of botulinum neurotoxin in the intestine. doi: 10.1007/978-3-642-33570-9_3

  • Galloux M, Vitrac H, Montagner C, Raffestin S, Popoff MR, Chenal A, Forge V, Gillet D (2008) Membrane interaction of botulinum neurotoxin A translocation (T) domain. The belt region is a regulatory loop for membrane interaction. J Biol Chem 283:27668–27676

    Article  PubMed  CAS  Google Scholar 

  • Gambale F, Montal M (1988) Characterization of the channel properties of tetanus toxin in planar lipid bilayers. Biophys J 53:771–783

    Article  PubMed  CAS  Google Scholar 

  • Ginalski K, Venclovas C, Lesyng B, Fidelis K (2000) Structure-based sequence alignment for the beta-trefoil subdomain of the clostridial neurotoxin family provides residue level information about the putative ganglioside binding site. FEBS Lett 482:119–124

    Article  PubMed  CAS  Google Scholar 

  • Gu S, Rumpel S, Zhou J, Strotmeier J, Bigalke H, Perry K, Shoemaker CB, Rummel A, Jin R (2012) Botulinum neurotoxin is shielded by NTNHA in an interlocked complex. Science 335:977–981

    Article  PubMed  CAS  Google Scholar 

  • Habermann E, Dreyer F, Bigalke H (1980) Tetanus toxin blocks the neuromuscular transmission in vitro like botulinum A toxin. Naunyn-Schmiedeberg’s Arch Pharmacol 311:33–40

    Article  CAS  Google Scholar 

  • Hanson MA, Stevens RC (2000) Cocrystal structure of synaptobrevin-II bound to botulinum neurotoxin type B at 2.0 A resolution. Nat Struct Biol 7:687–692

    Article  PubMed  CAS  Google Scholar 

  • Harper CB, Martin S, Nguyen TH, Daniels SJ, Lavidis NA, Popoff MR, Hadzic G, Mariana A, Chau N, McCluskey A et al (2011) Dynamin inhibition blocks botulinum neurotoxin type A endocytosis in neurons and delays botulism. J Biol Chem 286:35966–35976

    Article  PubMed  CAS  Google Scholar 

  • Hill KK, Smith TJ (2012) Genetic diversity within Clostridium botulinum serotypes, botulinum neurotoxin gene clusters and toxin subtypes. doi:10.1007/978-3-642-33570-9_1

  • Hille B (2001) Ion channels of excitable cells. Sinauer, Sunderland, MA

    Google Scholar 

  • Hoch DH, Romero-Mira M, Ehrlich BE, Finkelstein A, DasGupta BR, Simpson LL (1985) Channels formed by botulinum, tetanus, and diphtheria toxins in planar lipid bilayers: relevance to translocation of proteins across membranes. Proc Nat Acad Sci U S A 82:1692–1696

    Article  CAS  Google Scholar 

  • Hughes R, Whaler BC (1962) Influence of nerve-ending activity and of drugs on the rate of paralysis of rat diaphragm preparations by C. botulinum type A toxin. J Physiol 160:221–233

    PubMed  CAS  Google Scholar 

  • Jackson MB, Chapman ER (2006) Fusion pores and fusion machines in Ca2 + -triggered exocytosis. Annu Rev Biophys Biomol Struct 35:135–160

    Article  PubMed  CAS  Google Scholar 

  • Jahn R, Lang T, Sudhof TC (2003) Membrane fusion. Cell 112:519–533

    Article  PubMed  CAS  Google Scholar 

  • Jin R, Sikorra S, Stegmann CM, Pich A, Binz T, Brunger AT (2007) Structural and biochemical studies of botulinum neurotoxin serotype C1 light chain protease: implications for dual substrate specificity. Biochemistry 46:10685–10693

    Article  PubMed  CAS  Google Scholar 

  • Koivusalo M, Steinberg BE, Mason D, Grinstein S (2011) In situ measurement of the electrical potential across the lysosomal membrane using FRET. Traffic 12:972–982

    Article  PubMed  CAS  Google Scholar 

  • Koriazova LK, Montal M (2003) Translocation of botulinum neurotoxin light chain protease through the heavy chain channel. Nat Struct Biol 10:13–18

    Article  PubMed  CAS  Google Scholar 

  • Kumaran D, Eswaramoorthy S, Furey W, Navaza J, Sax M, Swaminathan S (2009) Domain organization in Clostridium botulinum neurotoxin type E is unique: its implication in faster translocation. J Mol Biol 386:233–245

    Article  PubMed  CAS  Google Scholar 

  • Lacy DB, Stevens RC (1999) Sequence homology and structural analysis of the clostridial neurotoxins. J Mol Biol 291:1091–1104

    Article  PubMed  CAS  Google Scholar 

  • Lacy DB, Tepp W, Cohen AC, DasGupta BR, Stevens RC (1998) Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat Struct Biol 5:898–902

    Article  PubMed  CAS  Google Scholar 

  • Lawrence G, Wang J, Chion CK, Aoki KR, Dolly JO (2007) Two protein trafficking processes at motor nerve endings unveiled by botulinum neurotoxin E. J Pharmacol Exp Therap 320:410–418

    Article  CAS  Google Scholar 

  • Ledoux DN, Be XH, Singh BR (1994) Quaternary structure of botulinum and tetanus neurotoxins as probed by chemical cross-linking and native gel electrophoresis. Toxicon: Official J Int Soc Toxinol 32:1095–1104

    Article  CAS  Google Scholar 

  • Levy R, Forsyth CM, LaPorte SL, Geren IN, Smith LA, Marks JD (2007) Fine and domain-level epitope mapping of botulinum neurotoxin type A neutralizing antibodies by yeast surface display. J Mol Biol 365:196–210

    Article  PubMed  CAS  Google Scholar 

  • Li L, Singh BR (2000) Spectroscopic analysis of pH-induced changes in the molecular features of type A botulinum neurotoxin light chain. Biochemistry 39:6466–6474

    Article  PubMed  CAS  Google Scholar 

  • Mahrhold S, Rummel A, Bigalke H, Davletov B, Binz T (2006) The synaptic vesicle protein 2C mediates the uptake of botulinum neurotoxin A into phrenic nerves. FEBS Lett 580:2011–2014

    Article  PubMed  CAS  Google Scholar 

  • Maksymowych AB, Simpson LL (1998) Binding and transcytosis of botulinum neurotoxin by polarized human colon carcinoma cells. J Biol Chem 273:21950–21957

    Article  PubMed  CAS  Google Scholar 

  • Maksymowych AB, Simpson LL (2004) Structural features of the botulinum neurotoxin molecule that govern binding and transcytosis across polarized human intestinal epithelial cells. J Pharmacol Exp Ther 310:633–641

    Article  PubMed  CAS  Google Scholar 

  • Maksymowych AB, Reinhard M, Malizio CJ, Goodnough MC, Johnson EA, Simpson LL (1999) Pure botulinum neurotoxin is absorbed from the stomach and small intestine and produces peripheral neuromuscular blockade. Infect Immun 67:4708–4712

    PubMed  CAS  Google Scholar 

  • Menestrina G, Forti S, Gambale F (1989) Interaction of tetanus toxin with lipid vesicles. Effects of pH, surface charge, and transmembrane potential on the kinetics of channel formation. Biophys J 55:393–405

    Article  PubMed  CAS  Google Scholar 

  • Milne JC, Collier RJ (1993) pH-dependent permeabilization of the plasma membrane of mammalian cells by anthrax protective antigen. Mol Microbiol 10:647–653

    Article  PubMed  CAS  Google Scholar 

  • Montal MS, Blewitt R, Tomich JM, Montal M (1992) Identification of an ion channel-forming motif in the primary structure of tetanus and botulinum neurotoxins. FEBS Lett 313:12–18

    Article  PubMed  CAS  Google Scholar 

  • Mushrush DJ, Koteiche HA, Sammons MA, Link AJ, McHaourab HS, Lacy DB (2011) Studies of the mechanistic details of the pH-dependent association of botulinum neurotoxin with membranes. J Biol Chem 286:27011–27018

    Article  PubMed  CAS  Google Scholar 

  • Nishiki T, Tokuyama Y, Kamata Y, Nemoto Y, Yoshida A, Sato K, Sekiguchi M, Takahashi M, Kozaki S (1996) The high-affinity binding of Clostridium botulinum type B neurotoxin to synaptotagmin II associated with gangliosides GT1b/GD1a. FEBS Lett 378:253–257

    Article  PubMed  CAS  Google Scholar 

  • Oblatt-Montal M, Yamazaki M, Nelson R, Montal M (1995) Formation of ion channels in lipid bilayers by a peptide with the predicted transmembrane sequence of botulinum neurotoxin A. Protein Sci: Publ Protein Soc 4:1490–1497

    Article  CAS  Google Scholar 

  • Peng L, Tepp WH, Johnson EA, Dong M (2011) Botulinum neurotoxin D uses synaptic vesicle protein SV2 and gangliosides as receptors. PLoS Pathog 7:e1002008

    Article  PubMed  CAS  Google Scholar 

  • Petro KA, Dyer MA, Yowler BC, Schengrund CL (2006) Disruption of lipid rafts enhances activity of botulinum neurotoxin serotype A. Toxicon: Official J Int Soc Toxinol 48:1035–1045

    Article  CAS  Google Scholar 

  • Pilpa RM, Bayrhuber M, Marlett JM, Riek R, Young JA (2011) A receptor-based switch that regulates anthrax toxin pore formation. PLoS Pathog 7:e1002354

    Article  PubMed  CAS  Google Scholar 

  • Pirazzini M, Rossetto O, Bolognese P, Shone CC, Montecucco C (2011) Double anchorage to the membrane and intact inter-chain disulfide bond are required for the low pH induced entry of tetanus and botulinum neurotoxins into neurons. Cell Microbiol 13:1731–1743

    Article  PubMed  CAS  Google Scholar 

  • Rainey GJ, Wigelsworth DJ, Ryan PL, Scobie HM, Collier RJ, Young JA (2005) Receptor-specific requirements for anthrax toxin delivery into cells. Proc Nat Acad Sci U S A 102:13278–13283

    Article  CAS  Google Scholar 

  • Rauch G, Gambale F, Montal M (1990) Tetanus toxin channel in phosphatidylserine planar bilayers: conductance states and pH dependence. Eur Biophys J 18:79–83

    Article  PubMed  CAS  Google Scholar 

  • Rummel A, Karnath T, Henke T, Bigalke H, Binz T (2004) Synaptotagmins I and II act as nerve cell receptors for botulinum neurotoxin G. J Biol Chem 279:30865–30870

    Article  PubMed  CAS  Google Scholar 

  • Rummel A, Hafner K, Mahrhold S, Darashchonak N, Holt M, Jahn R, Beermann S, Karnath T, Bigalke H, Binz T (2009) Botulinum neurotoxins C, E and F bind gangliosides via a conserved binding site prior to stimulation-dependent uptake with botulinum neurotoxin F utilising the three isoforms of SV2 as second receptor. J Neurochem 110:1942–1954

    Article  PubMed  CAS  Google Scholar 

  • Rummel A (2012) Double receptor anchorage of botulinum neurotoxins accounts for their exquisite neurospecificity. doi:10.1007/978-3-642-33570-9_4

  • Ruthel G, Burnett JC, Nuss JE, Wanner LM, Tressler LE, Torres-Melendez E, Sandwick SJ, Retterer CJ, Bavari S (2011) Post-intoxication inhibition of Botulinum neurotoxin serotype A within neurons by small-molecule, non-peptidic inhibitors. Toxins 3:207–217

    Article  PubMed  CAS  Google Scholar 

  • Sandvig K, Olsnes S (1980) Diphtheria toxin entry into cells is facilitated by low pH. J Cell Biol 87:828–832

    Article  PubMed  CAS  Google Scholar 

  • Sathyamoorthy V, DasGupta BR (1985) Separation, purification, partial characterization and comparison of the heavy and light chains of botulinum neurotoxin types A, B, and E. J Biol Chem 260:10461–10466

    PubMed  CAS  Google Scholar 

  • Schiavo G, Benfenati F, Poulain B, Rossetto O, Polverino de Laureto P, DasGupta BR, Montecucco C (1992) Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 359:832–835

    Article  PubMed  CAS  Google Scholar 

  • Schiavo G, Matteoli M, Montecucco C (2000) Neurotoxins affecting neuroexocytosis. Physiol Rev 80:717–766

    Google Scholar 

  • Segelke B, Knapp M, Kadkhodayan S, Balhorn R, Rupp B (2004) Crystal structure of Clostridium botulinum neurotoxin protease in a product-bound state: Evidence for noncanonical zinc protease activity. Proc Natl Acad Sci U S A 101:6888–6893

    Article  PubMed  CAS  Google Scholar 

  • Shi YL, Li MF (2007) Biological effects of toosendanin, a triterpenoid extracted from Chinese traditional medicine. Prog Neurobiol 82:1–10

    Article  PubMed  CAS  Google Scholar 

  • Simpson LL (1980) Kinetic studies on the interaction between botulinum toxin type A and the cholinergic neuromuscular junction. J Pharmacol Exp Ther 212:16–21

    PubMed  CAS  Google Scholar 

  • Simpson LL, Lautenslager GT, Kaiser II, Middlebrook JL (1993) Identification of the site at which phospholipase A2 neurotoxins localize to produce their neuromuscular blocking effects. Toxicon: Official J Int Soc Toxinol 31:13–26

    Article  CAS  Google Scholar 

  • Singh BR, DasGupta BR (1989) Structure of heavy and light chain subunits of type A botulinum neurotoxin analyzed by circular dichroism and fluorescence measurements. Mol Cell Biochem 85:67–73

    Article  PubMed  CAS  Google Scholar 

  • Singh BR, Wasacz FM, Strand S, Jakobsen RJ, DasGupta BR (1990) Structural analysis of botulinum neurotoxin types A and E in aqueous and nonpolar solvents by fourier transform infrared, second derivative UV absorption, and circular dichroic spectroscopies. J Protein Chem 9:705–713

    Article  PubMed  CAS  Google Scholar 

  • Stenmark P, Dupuy J, Imamura A, Kiso M, Stevens RC (2008) Crystal structure of botulinum neurotoxin type A in complex with the cell surface co-receptor GT1b-insight into the toxin-neuron interaction. PLoS Pathog 4:e1000129

    Article  PubMed  Google Scholar 

  • Sudhof TC (2004) The synaptic vesicle cycle. Annu Rev Neurosci 27:509–547

    Article  PubMed  Google Scholar 

  • Sun S, Suresh S, Liu H, Tepp WH, Johnson EA, Edwardson JM, Chapman ER (2011) Receptor binding enables botulinum neurotoxin B to sense low pH for translocation channel assembly. Cell Host Microbe 10:237–247

    Article  PubMed  CAS  Google Scholar 

  • Swaminathan S, Eswaramoorthy S (2000a) Structural analysis of the catalytic and binding sites of Clostridium botulinum neurotoxin B. Nat Struct Biol 7:693–699

    Article  PubMed  CAS  Google Scholar 

  • Swaminathan S, Eswaramoorthy S (2000b) Structural analysis of the catalytic and binding sites of Clostridium botulinum neurotoxin B. Nat Struct Biol 7:693–699

    Article  PubMed  CAS  Google Scholar 

  • Tsukamoto K, Kohda T, Mukamoto M, Takeuchi K, Ihara H, Saito M, Kozaki S (2005) Binding of Clostridium botulinum type C and D neurotoxins to ganglioside and phospholipid. Novel insights into the receptor for clostridial neurotoxins. J Biol Chem 280:35164–35171

    Article  PubMed  CAS  Google Scholar 

  • Weber T, Zemelman BV, McNew JA, Westermann B, Gmachl M, Parlati F, Sollner TH, Rothman JE (1998) SNAREpins: minimal machinery for membrane fusion. Cell 92:759–772

    Article  PubMed  CAS  Google Scholar 

  • Yowler BC, Kensinger RD, Schengrund CL (2002) Botulinum neurotoxin A activity is dependent upon the presence of specific gangliosides in neuroblastoma cells expressing synaptotagmin I. J Biol Chem 277:32815–32819

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Johns Hopkins University Applied Physics Laboratory post-doctoral grant.

Conflict of Interest

The author declares that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Audrey Fischer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fischer, A. (2012). Synchronized Chaperone Function of Botulinum Neurotoxin Domains Mediates Light Chain Translocation into Neurons. In: Rummel, A., Binz, T. (eds) Botulinum Neurotoxins. Current Topics in Microbiology and Immunology, vol 364. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33570-9_6

Download citation

Publish with us

Policies and ethics