Skip to main content

Imaging Algorithm in the Diagnosis, Therapy Control and Follow-up of Musculo-Skeletal Tumours and Metastases

  • Reference work entry
  • First Online:
European Surgical Orthopaedics and Traumatology

Abstract

State of the art imaging of musculoskeletal (MSK) tumours includes conventional radiography (or CT in complex regions) and MRI of the local tumour and “whole body” modalities for staging. Whole body hybrid techniques with functional and anatomical information such as PET/CT are becoming increasingly available and can be expected to replace static staging modalities in certain indications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parsons III TW, Filzen TW. Evaluation and staging of musculoskeletal neoplasia. Hand Clin. 2004;20:137–45.

    Article  Google Scholar 

  2. “Der unerwartete Tumor aus interdisziplinärer Sicht” (The unexpected tumour from an interdisciplinary point of view). AMSOS – Austrian Musculoskeletal Oncology Society. Annual Meeting, Vienna, Nov 21–22; 2008

    Google Scholar 

  3. Lodwick GS. Solitary malignant tumours of bone: the application of predictor variables in gnosis. Semin Roentgenol. 1966;1:293–313.

    Article  Google Scholar 

  4. Greenspan A, Jundt G, Remagen W. Differential diagnosis in orthopaedic oncology. 2nd ed. Philadelphia: Lippincott Williams & Wilkins; 2007.

    Google Scholar 

  5. Lee T. Predicting failure load of the femur with simulated osteolytic defects using noninvasive imaging technique in a simplified load case. Ann Biomed Eng. 2007;35:642–50.

    Article  PubMed  Google Scholar 

  6. Edelstyn GA, Gillespie PJ, Grebbell FS. The radiological demonstration of osseous metastases: experimental observations. Clin Radiol. 1967;18:158–62.

    Article  CAS  PubMed  Google Scholar 

  7. Even-Sapir E. Imaging of malignant bone involvement by morphologic, scintigraphic, and hybrid modalities. J Nucl Med. 2005;46:1356–67.

    PubMed  Google Scholar 

  8. de Kerviler E, Cuenod CA, Clement O, et al. What is bright on T1 MRI scans? J Radiol. 1998;79:117–26.

    PubMed  Google Scholar 

  9. Van Rijswijk CS, Geirnaerdt MJ, Hogendoorn PC, et al. Soft-tissue tumours: value of static and dynamic gadopentetate dimeglumine-enhanced MR imaging in prediction of malignancy. Radiology. 2004;233:493–502.

    Article  PubMed  Google Scholar 

  10. Herneth AM, Guccione S, Bednarski M. Apparent diffusion coefficient: a quantitative parameter for in vivo tumour characterization. Eur J Radiol. 2003;45:208–13.

    Article  PubMed  Google Scholar 

  11. Fayad LM, Barker PB, Bluemke DA. Molecular characterization of musculoskeletal tumors by Proton MR Spectroscopy. Semin Musculoskelet Radiol. 2007;11:240–5.

    Article  PubMed  Google Scholar 

  12. Buhmann A, Baur-Melnyk S, Becker C, et al. Whole-body MRI versus whole-body MDCT for staging of multiple myeloma. Am J Roentgenol. 2008;190:1097–104.

    Article  Google Scholar 

  13. Wong KC, Kumta SM, Antonio GE, et al. Image fusion for computer-assisted bone tumor surgery. Clin Orthop Relat Res. 2008;466:2533–41.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Lassau N, Lamuraglia M, Vanel D, et al. Doppler us with perfusion software and contrast medium injection in the early evaluation of isolated limb perfusion of limb sarcomas: prospective study of 49 cases. Ann Oncol. 2005;16:1054.

    Article  CAS  PubMed  Google Scholar 

  15. De Schepper AM, Vanhoenacker F, Gielen J, et al., editors. Imaging of soft tissue tumours. 3rd ed. Berlin: Springer; 2005.

    Google Scholar 

  16. Blake GM, Park-Holohan SJ, Cook GJ, Fogelman I. Quantitative studies of bone with the use of 18F-fluoride and 99mTc-methylene diphosphonate. Semin Nucl Med. 2001;31:28–49.

    Article  CAS  PubMed  Google Scholar 

  17. Eustace S, Tello R, DeCarvaiho V, et al. A comparison of whole-body TurboSTIR MR imaging and planar 99mTc-methylene diphosphonate scintigraphy in the examination of patients with suspected skeletal metastases. Am J Roentgenol AJR. 1997;169:1655–61.

    Article  CAS  Google Scholar 

  18. Gilday DL, Ash JM. Benign bone tumours. Semin Nucl Med. 1976;6:33–46.

    Article  CAS  PubMed  Google Scholar 

  19. Mankin HJ. Chondrosarcoma of bone. In: Mendez LR, editor. Orthopedic knowledge update. Rosemont: American Academy of Orthopaedic Surgeons; 2002. p. 187–94.

    Google Scholar 

  20. Gates GF. SPECT bone scanning of the spine. Semin Nucl Med. 1998;28:78–94.

    Article  CAS  PubMed  Google Scholar 

  21. Savelli G, Maffioli L, Maccauro M, et al. Bonescintigraphy and the added value of SPECT (single photon emission tomography) in detecting skeletal lesions. Q J Nucl Med. 2001;45:27–37.

    CAS  PubMed  Google Scholar 

  22. Homepage of Austin Hospital, Australia: http://www.petnm.unimelb.edu.au/pet/detail/clinical.html

  23. Aoki J, Watanabe H, Shinozaki T, et al. FDG-PET of primary benign and malignant bone tumours: standardized uptake value in 52 lesions. Radiology. 2001;219:774–7.

    Article  CAS  PubMed  Google Scholar 

  24. Shin D-S, Shon O-J, Han D-S. The clinical efficacy of 18F-FDG-PET/CT in benign and malignant musculoskeletal tumours. Ann Nucl Med. 2008;22:603–9.

    Article  PubMed  Google Scholar 

  25. Bastiaannet E, Groen H, Jager PL. The value of FDG-PET in the detection, grading and response to therapy of soft tissue and bone sarcomas; a systematic review and meta-analysis. Cancer Treat Rev. 2004;30:83–101.

    Article  CAS  PubMed  Google Scholar 

  26. Aoki J, Endo K, Watanabe H, et al. FDG-PET for evaluating musculoskeletal tumours: a review. J Orthop Sci. 2003;8:435–41.

    Article  PubMed  Google Scholar 

  27. Dimitrakopoulou-Strauss A, Strauss LG, Heichel T, et al. The role of quantitative 18F-FDG PET studies for the differentiation of malignant and benign bone lesions. J Nucl Med. 2002;43:510–8.

    PubMed  Google Scholar 

  28. Townsend DW, Beyer T, Blodgett TM, et al. PET/CT scanners: a hardware approach to image fusion. Semin Nucl Med. 2003;33:193–204.

    Article  PubMed  Google Scholar 

  29. Blodgett TM, Meltzer CC, Townsend DW. PET/CT: form and function. Radiology. 2007;242(2):360–85.

    Article  PubMed  Google Scholar 

  30. Schmidt GP, Schoenberg SO, Schmid R, et al. Screening for bone metastases: whole-body MRI using a 32-channel system versus dual-modality PET-CT. Eur Radiol. 2007;17:939–49.

    Article  PubMed  Google Scholar 

  31. Metser U, Lerman H, Blank A, et al. Malignant involvement of the spine: assessment by 18F-Fluorodeoxyglucose PET/CT. J Nucl Med. 2004;45:279–84.

    PubMed  Google Scholar 

  32. Strobel K, Exner UE, Stumpe KDM, et al. The additional value of CT images interpretation in the differential diagnosis of benign vs. malignant primary bone lesions with 18F-FDG-PET/CT. Eur J Nucl Med Mol Imaging. 2008;35:2000–8.

    Article  CAS  PubMed  Google Scholar 

  33. Algra PR, Bloem L, Tissing H, et al. Detection of vertebral metastases: comparison between MR imaging and bone scintigraphy. Radiographics. 1991;11:219–32.

    Article  CAS  PubMed  Google Scholar 

  34. Avrahami E, Tadmor R, Dally O, et al. Early MR demonstration of spinal metastases in patients with normal radiographs and CT and radionuclide bone scans. J Comput Assist Tomogr. 1989;13:598–602.

    Article  CAS  PubMed  Google Scholar 

  35. Steinborn MM, Heuck AF, Tiling R, et al. Whole-body bone marrow MRI in patients with metastatic disease to the skeletal system. J Comput Assist Tomogr. 1999;23:123–9.

    Article  CAS  PubMed  Google Scholar 

  36. Antoch G, Saoudi N, Kuehl H, et al. Accuracy of whole-body dual-modality fluorine-18–2-fluoro-2-deoxy-d-glucose positron emission tomography and computed tomography (FDG-PET/CT) for tumour staging in solid tumours: comparison with CT and PET. J Clin Oncol. 2004;22:4357–68.

    Article  PubMed  Google Scholar 

  37. Antoch G, Vogt FM, Bockisch A, et al. Whole-body tumour staging: MRI or FDG-PET/CT? [Article in German]. Radiologe. 2004;44:882–8.

    Article  CAS  PubMed  Google Scholar 

  38. Ito S, Kato K, Ikeda M, et al. Comparison of 18F-FDG PET and bone scintigraphy in detection of bone metastases of thyroid cancer. J Nucl Med. 2007;48:889–95.

    Article  CAS  PubMed  Google Scholar 

  39. Antoch G, Bockisch A. Combined PET/MRI: a new dimension in whole-body oncology imaging? Eur J Nucl Med Mol Imaging. 2009;36(Suppl 1):S113–20.

    Google Scholar 

  40. Salzer-Kuntschik M, Delling G, Beron G, Sigmund R. Morphological grades of regression in osteosarcoma after polychemotherapy – study COSS 80. J Cancer Res Clin Oncol. 1983;106(Suppl):21–4.

    Article  PubMed  Google Scholar 

  41. Peterson JJ. F-18 FDG-PET for detection of osseous metastatic disease and staging, restaging, and monitoring response to therapy of musculoskeletal tumours. Semin Musculoskelet Radiol. 2007;11(3):246–60.

    Article  PubMed  Google Scholar 

  42. McCarville MB. New frontiers in pediatric oncologic imaging. Cancer Imaging. 2008;8:87–92.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Kajihara M, Sugawara Y, Sakayama K, et al. Evaluation of tumour blood flow in musculoskeletal lesions: dynamic contrast-enhanced MR imaging and its possibility when monitoring the response to preoperative chemotherapy – work in progress. Radiat Med. 2007;25:94–105.

    Article  PubMed  Google Scholar 

  44. Even-Sapir E. PET/CT in malignant bone disease. Semin Musculoskelet Radiol. 2007;11:312–21.

    Article  PubMed  Google Scholar 

  45. Israel O, Goldberg A, Nachtigal A, et al. FDG-PET and CT patterns of bone metastases and their relationship to previously administered anti-cancer therapy. Eur J Nucl Med Mol Imaging. 2006;33:1280–4.

    Article  PubMed  Google Scholar 

  46. Clamp A, Danson S, Nguyen H, et al. Assessment of therapeutic response in patients with metastatic bone disease. Lancet Oncol. 2004;5:607–16.

    Article  PubMed  Google Scholar 

  47. Kazama T, Swanston N, Podoloff DA, et al. Effect of colony-stimulating factor and conventional- or high-dose chemotherapy on FDG uptake in bone marrow. Eur J Nucl Med Mol Imaging. 2005;32:1406–11.

    Article  CAS  PubMed  Google Scholar 

  48. Menendez LR, Fideler BM, Mirra J. Thallium-201 scanning for the evaluation of osteosarcoma and soft-tissue sarcoma. A study of the evaluation and predictability of the histological response to chemotherapy. J Bone Joint Surg Am. 1993;75(4):526–31.

    CAS  PubMed  Google Scholar 

  49. Omlor G, Merle C, Lehner B, et al. CT-guided percutaneous radiofrequency ablation in osteoid osteoma: re-assessments of results with optimized technique and possible pain patterns in mid-term follow-up. Rofo. 2012;184(4):333–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Teresa Zettl for the thorough administrative help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer I. Kotz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 EFORT

About this entry

Cite this entry

Noebauer-Huhmann, I.M., Panotopoulos, J., Kotz, R.I. (2014). Imaging Algorithm in the Diagnosis, Therapy Control and Follow-up of Musculo-Skeletal Tumours and Metastases. In: Bentley, G. (eds) European Surgical Orthopaedics and Traumatology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34746-7_188

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34746-7_188

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34745-0

  • Online ISBN: 978-3-642-34746-7

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics