Skip to main content

Parasitic Bat Flies (Diptera: Streblidae and Nycteribiidae): Host Specificity and Potential as Vectors

  • Chapter
  • First Online:
Bats (Chiroptera) as Vectors of Diseases and Parasites

Part of the book series: Parasitology Research Monographs ((Parasitology Res. Monogr.,volume 5))

Abstract

Host specificity gauges the degree to which a parasite occurs in association with host species and is among the most fundamental properties of parasite–host associations. The degree of specificity is indicative of myriad properties of the host and parasite and of their ecological and evolutionary relationships. Bat flies are highly specialized bloodfeeding ectoparasites of bats worldwide and were historically viewed as unspecific. In the bat fly—bat system, numerous properties actually or potentially interrupt the linkage of parasite to host and should thus decrease specificity. Such properties of bat flies include a life history strategy requiring females to leave the host, an off-host pupal stage, and high dispersal capability of many species. For hosts, properties include high diversity, mobility, sociality, and multispecies roosting environments. These and other biological and ecological characteristics of bats and flies should together facilitate interspecific host transfers and over time lead to nonspecific host–parasite associations. Despite these properties, large and carefully executed biodiversity surveys of mammals and parasites unequivocally demonstrate the high host specificity of many bat flies, and molecular sequence data promise to demonstrate that many cases of lowered specificity are misunderstood due to unresolved parasite species boundaries. On the other hand, experimental approaches have suggested that host specificity is context dependent and may be lessened in cases of ecological disturbance and in particular when novel host–parasite associations are created. Evolution and maintenance of specificity in bat flies depends in part on the encounter and compatibility properties of bats and on the reproductive potential of the flies on available host species. Moreover, the degree to which parasites have coevolved immunological compatibility with their hosts, thereby diminishing immunological surveillance and response, may also serve to maintain high host specificity. Although worldwide bat species on average harbor higher diversity of parasites and pathogens than any other mammalian group, the likelihood of bat flies vectoring disease agents across host species of bats, and particularly to distantly related mammals such as humans, may be relatively small.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Autino AG, Claps GL, Barquez RM (1999) Insectos ectoparasitos de murciélagos de las Yungas de la Argentina. Acta Zool Mex 78:119–169

    Google Scholar 

  • Billeter SA, Hayman DTS, Peel AJ, Baker K, Wood JLN, Cunningham A, Suu-Ire R, Dittmar K, Kosoy MY (2012) Bartonella species in bat flies (Diptera: Nycteribiidae) from western Africa. Parasitology 139:324–329

    Article  PubMed  CAS  Google Scholar 

  • Brooks DR, McLennan DA (1993) Parascript: parasites and the language of evolution. Smithsonian Institution, Washington, DC, 429 pp

    Google Scholar 

  • Bush SE, Clayton DH (2006) The role of body size in host specificity: reciprocal transfer experiments with feather lice. Evolution 60:2158–2167

    PubMed  Google Scholar 

  • Caire W, Hornuff L (1986) Overwintering population dynamics of the bat fly Trichobius major (Diptera: Streblidae). Southwest Nat 31:126–129

    Article  Google Scholar 

  • Calisher CH, Childs JE, Field HE, Holmes KV, Shountz T (2006) Bats: important reservoir hosts of emerging viruses. Clin Microbiol Rev 19:531–545

    Article  PubMed  Google Scholar 

  • Ching LM, Marshall AG (1968) The breeding biology of the bat-fly Eucampsipoda sundaicum Theodor, 1955 (Diptera: Nycteribiidae). Malayan Nat J 21:171–180

    Google Scholar 

  • Clayton DH, Bush SE, Johnson KP (2004) Ecology of congruence: past meets present. Syst Biol 53:165–173

    Article  PubMed  Google Scholar 

  • Combes C (1991) Evolution of parasite life cycles. In: Toft CA, Aeschlimann A, Bolis L (eds) Parasite-host associations: coexistence or conflict? Oxford University Press, Oxford, pp 62–82

    Google Scholar 

  • Dick CW (2007) High host specificity of obligate ectoparasites. Ecol Entomol 32:446–450

    Article  Google Scholar 

  • Dick CW, Dick SC (2006) Effects of prior infestation on host choice of bat flies (Diptera: Streblidae). J Med Entomol 43:433–436

    Article  PubMed  Google Scholar 

  • Dick CW, Gettinger D (2005) A faunal survey of streblid bat flies (Diptera: Streblidae) associated with bats in Paraguay. J Parasitol 91:1015–1024

    Article  PubMed  Google Scholar 

  • Dick CW, Miller JA (2010) Streblidae. In: Brown BV, Borkent A, Cumming JM, Wood DM, Woodley NE, Zumbado M (eds) Manual of central American diptera, vol II. National Research Council, Ottawa, pp 1249–1260

    Google Scholar 

  • Dick CW, Patterson BD (2006) Bat flies: obligate ectoparasites of bats. In: Morand S, Krasnov B, Poulin R (eds) Micromammals and macroparasites: from evolutionary ecology to management. Springer, Berlin, pp 179–194

    Chapter  Google Scholar 

  • Dick CW, Patterson BD (2007) Against all odds: explaining high host specificity in dispersal-prone parasites. Int J Parasitol 37:871–876

    Article  PubMed  Google Scholar 

  • Dittmar K, Porter ML, Murray S, Whiting MF (2006) Molecular phylogenetic analysis of nycteribiid and streblid bat flies (Diptera: Brachycera, Calyptratae): implications for host associations and phylogeographic origins. Mol Phylogenet Evol 38:155–170

    Article  PubMed  CAS  Google Scholar 

  • Dittmar K, Dick CW, Patterson BD, Whiting MF, Gruwell ME (2009) Pupal deposition and ecology of bat flies (Diptera: Streblidae): Trichobius sp. (caecus group) in a Mexican cave habitat. J Parasitol 95:308–314

    Article  PubMed  Google Scholar 

  • Dittmar K, Morse S, Gruwell M, Mayberry J, DiBlasi E (2011) Spatial and temporal complexities of reproductive behavior and sex ratios: a case from parasitic insects. PLoS One 6(5):e19438. doi:10.1371/journal.pone.0019438

    Article  PubMed  CAS  Google Scholar 

  • Eichler WD (1963) Arthropoda. Insecta. Phpthiraptera. I. Mallophaga. In: Bronns HG (Ed) Klassen und Ordnungen des Tierreichs. III. Insecta. 7b. Pthiraptera. Akademische Verlagsanstalt Geest und Portig, Leipzig, pp 158–179

    Google Scholar 

  • Fritz GN (1983) Biology and ecology of the bat flies (Diptera: Streblidae) on bats of the genus Carollia. J Med Entomol 20:1–10

    PubMed  CAS  Google Scholar 

  • Gardner RA, Molyneux DH (1988) Polychromophilus murinus – a malarial parasite of bats – life history and ultrastructural studies. Parasitology 96:591–605

    Article  PubMed  Google Scholar 

  • Graciolli G, de Carvalho CJB (2001) Moscas ectoparásitas (Diptera, Hippoboscoidea) de morcegos (Mammalia, Chiroptera) do Estado do Paraná. II. Streblidae. Chave pictórica para gêneros e espécies. Rev Bras Zool 18:907–960

    Article  Google Scholar 

  • Guerrero R (1997) Catálogo de los Streblidae (Diptera: Pupipara) parásitos de murciélagos (Mammalia: Chiroptera) del Nuevo Mundo. VII. Lista de especies, hospedadores y paises. Acta Biol Venez 19:9–24

    Google Scholar 

  • Hafner MS, Page RDM (1995) Molecular phylogenies and host parasite coevolution: gophers and lice as a model system. Philos Trans R Soc Lond B Biol Sci 349:77–83

    Article  PubMed  CAS  Google Scholar 

  • Hafner MS, Demastes JW, Hafner DJ, Spradling TA, Sudman PD, Nadler SA (1998) Age and movement of a hybrid zone: implications for dispersal distance in pocket gophers and their chewing lice. Evolution 52:278–282

    Article  Google Scholar 

  • Hafner MS, Demastes JW, Spradling TA, Reed DL (2003) Cophylogeny between pocket gophers and chewing lice. In: Page RDM (ed) Tangled trees: phylogeny, cospeciation and coevolution. University of Chicago Press, Chicago, pp 195–220

    Google Scholar 

  • Hagan HR (1951) Embryology of the viviparous insects. Ronald, New York

    Google Scholar 

  • Harms A, Dehio C (2012) Intruders below the radar: molecular pathogenesis of Bartonella spp. Clin Microbiol Rev 25:42–78

    Article  PubMed  CAS  Google Scholar 

  • Heeb P, Kölliker M, Richner H (2000) Bird-ectoparasite interactions, nest humidity, and ectoparasite community structure. Ecology 81:958–968

    Google Scholar 

  • Hosokawa T, Nikoh N, Koga R, Satô M, Tanahashi M, Meng X-Y, Fukatsu T (2012) Reductive genome evolution, host–symbiont co-speciation and uterine transmission of endosymbiotic bacteria in bat flies. ISME J 6:577–587

    Article  PubMed  CAS  Google Scholar 

  • Hutson AM (1984) Keds, flat-flies and bat-flies (diptera, hippoboscidae and nycteribiidae). Handbook for the identification of British insects. Royal Entomological Society of London, London, 40 pp

    Google Scholar 

  • Jobling B (1949) Host-parasite relationship between the American Streblidae and the bats, with a new key to the American genera and a record of the Streblidae from Trinidad, British West Indies (Diptera). Parasitology 39:315–329

    Article  PubMed  CAS  Google Scholar 

  • Klompen JSH, Black WC, Keirans JE, Oliver JH (1996) Evolution of ticks. Annu Rev Entomol 41:141–161

    Article  PubMed  CAS  Google Scholar 

  • Komeno CA, Linhares AX (1999) Batflies parasitic on some phyllostomid bats in southeastern Brazil: parasitism rates and host-parasite relationships. Mem Inst Oswaldo Cruz 94:151–156

    Article  PubMed  CAS  Google Scholar 

  • Krasnov BR, Shenbrot GI, Medvedev SG, Vatschenok VS, Khokhlova IS (1997) Host–habitat relations as an important determinant of spatial distribution of flea assemblages (Siphonaptera) on rodents in the Negev Desert. Parasitology 114:159–173

    Article  PubMed  Google Scholar 

  • Krasnov BR, Shenbrot GI, Khokhlova IS, Medvedev SG, Vatschenok VS (1998) Habitat dependence of a parasite-host relationship: flea (Siphonaptera) assemblages in two gerbil species of the Negev Desert. J Med Entomol 35:303–313

    PubMed  CAS  Google Scholar 

  • Krasnov BR, Stanka M, Miklisova D, Morand S (2006) Habitat variation in species composition of flea assemblages on small mammals in central Europe. Ecol Res 21:460–469

    Article  Google Scholar 

  • Kunz TH (1982) Roosting ecology. In: Kunz TH (ed) Ecology of bats. Plenum, New York, pp 1–55

    Chapter  Google Scholar 

  • Kunz TH, Kurta A (1988) Capture methods and holding devices. In: Kunz TH (ed) Ecological and behavioral methods for the study of bats. Smithsonian Institution, Washington, DC, pp 1–29

    Google Scholar 

  • Kunz TH, Lumsden LF (2003) Ecology of cavity and foliage roosting bats. In: Kunz TH, Fenton MB (eds) Bat ecology. University of Chicago Press, Chicago, pp 3–89

    Google Scholar 

  • Kunz TH, Hodgkison R, Weise CD (2009) Methods of capturing and handling bats. In: Kunz TH, Parsons S (eds) Ecological and behavioral methods for the study of bats. Johns Hopkins University Press, Baltimore, pp 3–35

    Google Scholar 

  • Leroy EM, Kumulungui B, Pourrut X, Rouquet P, Hassanin A, Yaba P, Delicat A, Paweska JT, Gonzalez JP, Swanepoel R (2005) Fruit bats as reservoirs of Ebola virus. Nature 438:575–576

    Article  PubMed  CAS  Google Scholar 

  • Lewis SE (1995) Roost fidelity of bats: a review. J Mammal 76:481–496

    Article  Google Scholar 

  • Light JE, Reed DL (2009) Multigene analysis of phylogenetic relationships and divergence times of primate sucking lice (Phthiraptera: Anoplura). Mol Phylogenet Evol 50:376–390

    Article  PubMed  CAS  Google Scholar 

  • Loftis AD, Gill JS, Schriefer ME, Levin ML, Eremeeva MW, Gilchrist MJR, Dasch GA (2005) Detection of Rickettsia, Borrelia, and Bartonella in Carios kelleyi (Acari: Argasidae). J Med Entomol 42:473–480

    Article  PubMed  CAS  Google Scholar 

  • Luis AD, Hayman DT, O’Shea TJ, Cryan PM, Gilbert AT, Pulliam JR, Mills JN, Timonin ME, Willis CK, Cunningham AA, Fooks AR, Rupprecht CE, Wood JL, Webb CT (2013) A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special? Proc R Soc B 280:20122753. doi:10.1098/rspb.2012.2753

    Article  PubMed  Google Scholar 

  • Marshall AG (1970) The life cycle of Basilia hispida Theodor 1957 (Diptera: Nycteribiidae) in Malaysia. Parasitology 61:1–18

    Article  Google Scholar 

  • Marshall AG (1976) Host-specificity amongst arthropods ectoparasitic upon mammals and birds in the New Hebrides. Ecol Entomol 1:189–199

    Article  Google Scholar 

  • Marshall AG (1980) The comparative ecology of insects ectoparasitic upon bats in west Malaysia. In: Wilson DE, Gardner AL (eds) Proceedings of the 5th international bat research conference. Texas Tech, Lubbock, TX, pp 135–142

    Google Scholar 

  • Marshall AG (1981) The ecology of ectoparasitic insects. Academic, London, p 459

    Google Scholar 

  • Medvedev SG, Krasnov BR (2006) Fleas: permanent satellites of small mammals. In: Morand S, Krasnov BR, Poulin R (eds) Micromammals and macroparasites: from evolutionary ecology to management. Springer, Tokyo, pp 161–177

    Chapter  Google Scholar 

  • Miles VIA, Kinney R, Stark HE (1957) Flea-host relationships of associated Rattus and native wild rodents in the San Francisco Bay area of California, with special reference to plague. Am J Trop Med Hyg 6:752–760

    PubMed  CAS  Google Scholar 

  • Møller AP, Marti M, Vivaldi N, Soler JJ (2004) Parasitism, host immune defence and dispersal. J Evol Biol 17:603–612

    Article  PubMed  Google Scholar 

  • Morse S, Dick CW, Patterson BD, Dittmar K (2012a) Some like it hot: evolution and ecology of novel endosymbionts in bat flies of cave-roosting bats (Hippoboscoidea, Nycterophiliinae, Nycterophilia). Appl Environ Microbiol 78:8639–8649

    Article  PubMed  CAS  Google Scholar 

  • Morse S, Olival K, Kosoy M, Billeter S, Patterson BD, Dick CW, Dittmar K (2012b) Global distribution and genetic diversity of Bartonella in bat flies (Hippoboscoidea, Streblidae, Nycteribiidae). Infect Genet Evol 12:1717–1723

    Article  PubMed  Google Scholar 

  • Morse SF, Bush S, Patterson BD, Dick CW, Gruwell M, Dittmar K (2013) Evolution, multiple acquisition, and localization of endosymbionts in bat flies (Hippoboscoidea, Streblidae, Nycteribiidae). Appl Environ Microbiol 79:2952–2961. doi:10.1128/AEM.03814-12

    Article  PubMed  CAS  Google Scholar 

  • Nováková E, Hypsa V, Moran NA (2009) Arsenophonus, an emerging clade of intracellular symbionts with a broad host distribution. BMC Microbiol 9:143. doi:10.1186/1471-2180-9-143

    Article  PubMed  Google Scholar 

  • Overal WL (1980) Host-relations of the batfly Megistopoda aranea (Diptera: Streblidae) in Panama. Univ Kansas Sci Bull 52:1–20

    Google Scholar 

  • Paterson WB, Woo PTK (1984) The development of the culture and blood-stream forms of 3 Trypanosoma (Schizotrypanum) spp. (Protista, Zoomastigophorea) from bats in Cimex lectularius (Hemiptera, Cimicidae). Can J Zool 62:1581–1587

    Article  Google Scholar 

  • Patterson BD, Ballard JWO, Wenzel RL (1998) Distributional evidence for cospeciation between Neotropical bats and their bat fly ectoparasites. Stud Neotrop Fauna Environ 33:76–84

    Article  Google Scholar 

  • Patterson BD, Dick CW, Dittmar K (2007) Roosting habits of bats affect their parasitism by bat flies (Diptera: Streblidae). J Trop Ecol 23:177–189

    Article  Google Scholar 

  • Patterson BD, Dick CW, Dittmar K (2008a) Parasitism by bat flies (Diptera: Streblidae) on Neotropical bats: effects of host body size, distribution and abundance. Parasitol Res 103:1091–1100

    Article  PubMed  Google Scholar 

  • Patterson BD, Dick CW, Dittmar K (2008b) Sex biases in parasitism of neotropical bats by bat flies (Diptera: Streblidae). J Trop Ecol 24:387–396

    Article  Google Scholar 

  • Perlman SJ, Jaenike J (2003) Infection success in novel hosts: an experimental and phylogenetic study of Drosophila-parasitic nematodes. Evolution 57:544–557

    PubMed  Google Scholar 

  • Petersen FT, Meier R, Kutty SN, Wiegmann BM (2007) The phylogeny and evolution of host choice in the Hippoboscoidea (Diptera) as reconstructed using four molecular markers. Mol Phylogenet Evol 45:111–122

    Article  PubMed  CAS  Google Scholar 

  • Peterson BV, Wenzel RL (1987) Nycteribiidae. In: McAlpine JF, Peterson BV, Shewell GE, Teskey HJ, Vockeroth JR, Wood DM (eds) Manual of nearctic Diptera. Research Branch, Agriculture Canada, Ottawa, pp 1283–1291

    Google Scholar 

  • Pilosof S, Dick CW, Corine C, Patterson BD, Krasnov B (2012) Effects of anthropogenic disturbance and climate on patterns of bat fly parasitism on bats. PLoS One 7:1–7. doi:10.1371/journal.pone.0041487

    Google Scholar 

  • Poulin R (1998a) Evolutionary ecology of parasites: from individuals to communities. Chapman and Hall, London, 212 pp

    Google Scholar 

  • Poulin R (1998b) Host and environmental correlates of body size in ticks (Acari: Argasidae and Ixodidae). Can J Zool 76:925–930

    Article  Google Scholar 

  • Poulin R, Keeney DB (2007) Host specificity under molecular and experimental scrutiny. Trends Parasitol 24:24–28

    Article  PubMed  Google Scholar 

  • Poulin R, Morand S (2005) Parasite Biodiversity. Smithsonian Institution, Washington, 224 pp

    Google Scholar 

  • Poulin R, Mouillot D (2003) Parasite specialization from a phylogenetic perspective: a new index of host specificity. Parasitology 126:473–480

    Article  PubMed  CAS  Google Scholar 

  • Presley SJ (2004) Ectoparasitic assemblages of Paraguayan bats: ecological and evolutionary perspectives. Ph.D. Dissertation, Texas Tech University, Lubbock, TX, 326 pp

    Google Scholar 

  • Price PW (1980) Evolutionary biology of parasites. Monogr Popul Biol 15:1–237

    PubMed  CAS  Google Scholar 

  • Reckardt K, Kerth G (2006) The reproductive success of the parasitic bat fly Basilia nana (Diptera: Nycteribiidae) is affected by the low roost fidelity of its host, the Bechstein’s bat (Myotis bechsteinii). Parasitol Res 98:237–243

    Article  PubMed  Google Scholar 

  • Reed DL, Light JE, Allen JM, Kirchman JJ (2007) Pair of lice lost or parasites regained: the evolutionary history of anthropoid primate lice. BMC Biol 5:1–11

    Article  Google Scholar 

  • Reisen WK, Kennedy ML, Reisen NT (1976) Winter ecology of ectoparasites collected from hibernating Myotis velifer (Allen) in southwestern Oklahoma (Chiroptera: Vespertilionidae). J Parasitol 62:628–635

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Durán A (1998) Nonrandom aggregations and distribution of cave-dwelling bats in Puerto Rico. J Mammal 79:141–146

    Article  Google Scholar 

  • Rohde K (1980) Host specificity indices of parasites and their application. Experientia 36:1369–1371

    Article  Google Scholar 

  • Ross A (1960) Notes on Trichobius corynorhini on hibernating bats (Diptera: Streblidae). Wasmann J Biol 18:271–272

    Google Scholar 

  • Seneviratne SS, Fernando HC, Udagama-Randeniya PV (2009) Host specificity in bat ectoparasites: a natural experiment. Int J Parasitol 39:995–1002

    Article  PubMed  Google Scholar 

  • Smith MA, Woodley NE, Janzen DH, Hallwachs W, Hebert PDN (2006) DNA barcodes reveal cryptic host-specificity within the presumed polyphagous members of a genus of parasitoid flies (Diptera: Tachinidae). Proc Natl Acad Sci USA 103:3657–3662

    Article  PubMed  CAS  Google Scholar 

  • Stark HE, Kinney AR (1969) Abundance of rodents and fleas as related to plague in Lava Beds National Monument, California. Pan-Pac Entomol 38:249–251

    Google Scholar 

  • Tello JS, Stevens RD, Dick CW (2008) Patterns of species co-occurrence and density compensation: a test for interspecific competition in bat ectoparasite infracommunities. Oikos 117:693–702

    Article  Google Scholar 

  • ter Hofstede HM, Fenton MB (2005) Relationships between roost preferences, ectoparasite density, and grooming behaviour of Neotropical bats. J Zool 266:333–340

    Article  Google Scholar 

  • ter Hofstede HM, Fenton MB, Whitaker JO Jr (2004) Host and host-site specificity of bat flies (Diptera: Streblidae and Nycteribiidae) on Neotropical bats (Chiroptera). Can J Zool 82:616–626

    Article  Google Scholar 

  • Theodor O (1957) Parasitic adaptation and host-parasite specificity in the pupiparous Diptera. In: Mayr E (ed) First symposium on host specificity among parasites of vertebrates. Institut de Zoologie, Université de Neuchâtel, Switzerland, pp 50–63

    Google Scholar 

  • Timm RM (1987) Tent construction by bats of the genera Artibeus and Uroderma. In: Patterson BD, Timm RM (eds) Studies in neotropical mammalogy: essays in honor of Philip Hershkovitz, vol 39, Fieldiana: zoology, new series . Field Museum of Natural History, Chicago, pp 187–212

    Google Scholar 

  • Timms R, Read AF (1999) What makes a specialist special? Trends Ecol Evol 14:333–334

    Article  PubMed  Google Scholar 

  • Tompkins DM, Clayton DH (1999) Host resources govern the specificity of swiftlet lice: size matters. J Anim Ecol 68:489–500

    Article  Google Scholar 

  • Trowbridge RE, Dittmar K, Whiting MF (2006) Identification and phylogenetic analysis of Arsenophonus- and Photorhabdus-type bacteria from adult Hippoboscidae and Streblidae (Hippoboscoidea). J Invertebr Pathol 91:64–68

    Article  PubMed  Google Scholar 

  • Wenzel RL (1976) The streblid batflies of Venezuela (Diptera: Streblidae). Brigham Young Univ Sci Bull 20:1–177

    Google Scholar 

  • Wenzel RL, Tipton VJ (1966) Some relationships between mammal hosts and their ectoparasites. In: Wenzel RL, Tipton VJ (eds) Ectoparasites of Panama. Field Museum of Natural History, Chicago, pp 677–723

    Google Scholar 

  • Wenzel RL, Tipton VJ, Kiewlicz A (1966) The streblid batflies of Panama (Diptera: Calypterae: Streblidae). In: Wenzel RL, Tipton VJ (eds) Ectoparasites of Panama. Field Museum of Natural History, Chicago, pp 405–675

    Google Scholar 

  • Whitaker JO Jr, Ritzi CM, Dick CW (2009) Collecting and preserving ectoparasites for ecological study. In: Kunz TH, Parsons S (eds) Ecological and behavioral methods for the study of bats. Johns Hopkins University Press, Baltimore, pp 806–827

    Google Scholar 

  • Whiteman NK, Sánchez P, Merkel J, Klompen H, Parker PG (2006) Cryptic host specificity of an avian skin mite (Epidermoptidae) vectored by louseflies (Hippoboscidae) associated with two endemic Galapagos bird species. J Parasitol 92:1218–1228

    Article  PubMed  CAS  Google Scholar 

  • Whiting MF, Whiting AS, Hastriter MW, Dittmar K (2008) A molecular phylogeny of fleas (Insecta: Siphonaptera): origins and host associations. Cladistics 24:677–707

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl W. Dick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dick, C.W., Dittmar, K. (2014). Parasitic Bat Flies (Diptera: Streblidae and Nycteribiidae): Host Specificity and Potential as Vectors. In: Klimpel, S., Mehlhorn, H. (eds) Bats (Chiroptera) as Vectors of Diseases and Parasites. Parasitology Research Monographs, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39333-4_6

Download citation

Publish with us

Policies and ethics