Skip to main content

Electromagnetic Superficial Heating Technology

  • Chapter
Thermoradiotherapy and Thermochemotherapy

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

Abstract

The clinical studies done on superficial depth malignancies during the last two decades have highlighted the promise of hyperthermia as an effectively adjuvant treatment modality (Kapp and Kapp 1993), as well as the need to improve the ability of heating devices to treat effectively the anatomically diverse diseased tissue sites encountered in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Audone B, Bolla L, Marone G, Gabriele P (1985) Hyperthermic thermology by waveguide and microstrip applicators. In: Overgaard J (ed) Hyperthermic oncology 1984, vol 1. Taylor and Francis, London, pp 655–658

    Google Scholar 

  • Bahl IJ, Stuchly SS, Lagendijk JJW, Stuchly MA (1982) Microstrip loop radiators for medical applications. IEEE Trans Microwave Theory Tech 30: 1090–1093

    Article  Google Scholar 

  • Bach Andersen J, Baurn A, Harmark K, Heinzl L, Raskmark P, Overgaard J (1984) A hyperthermia system utilizing a new type of inductive applicator. IEEE Trans Biomed Eng 31: 21–27

    Article  PubMed  CAS  Google Scholar 

  • Bolomey JC, Hawley MS (1990) Noninvasive control of hyperthermia. In: Bautherie H (ed) Methods of hyperthermia control. Springer, Berlin Heidelberg New York, pp 35–111

    Chapter  Google Scholar 

  • Chan KW, Chou CK, McDougall JA, Luk KH (1988) Changes in heating patterns due to perturbations by thermometer probes at 915 and 434 MHz. Int J Hyperthermia 4: 447–456

    Article  PubMed  CAS  Google Scholar 

  • Chive M, Plancot M, Giaux G, Prévost B (1984) Microwave hyperthermia controlled by microwave radiometry: technical aspects and first clinical results. J Microw Power 19: 233–241

    PubMed  CAS  Google Scholar 

  • Chou CK (1992) Evaluation of microwave applicators. Bioelectromagnetics 13: 581–597

    Article  PubMed  CAS  Google Scholar 

  • Chou CK, McDougall JA, Chan KW, Luk KH (1990a) Evaluation of captive bolus applicators. Med Phys 17: 705–709

    Article  PubMed  CAS  Google Scholar 

  • Chou CK, McDougall JA, Chan KW, Luk KH (1990b) Effects of fat thickness on heating patterns of the microwave applicator MA-150 at 631 and 915 MHz. Int J Radiat Oncol Biol Phys 19: 1067–1070

    Article  PubMed  CAS  Google Scholar 

  • Chou CK, McDougall JA, Chan KW, Luk KH (1991) Heating patterns of microwave applicators in inhomogeneous arm and thigh phantoms. Med Phys 18: 1164–1170

    Article  PubMed  CAS  Google Scholar 

  • Corry PM, Barlogie B (1982) Clinical application of high frequency methods for local hyperthermia. In: Nussbaum G (ed) Physical aspects of hyperthermia. AAPM Press, New York, pp 307–328

    Google Scholar 

  • Crezee J, Lagendijk JJW (1992) Temperature uniformity during hyperthermia: the impact of large vessels. Phys Med Biol 37: 1321–1337

    Article  PubMed  CAS  Google Scholar 

  • De Leo R, Cerri G, Moglie F (1989) Microstrip patch applicators. IEEE 1989 International Symposium on Antennas and Propagation. IEEE, New York, pp 524–527

    Google Scholar 

  • Diederich CJ, Stauffer PR (1993) Pre-clinical evaluation of a microwave planar array applicator for superficial hyperthermia. Int J Hyperthermia 9: 227–246

    Article  PubMed  CAS  Google Scholar 

  • Durney CH, Massoudi H, Iskandar MF (1986) Radiofre-quency radiation dosimetry handbook 4th edn. US Government publication National Technical Information Service, pp 4.1–4.22

    Google Scholar 

  • Fenn AJ, Diederich CJ, Stauffer PR (1993) Experimental evaluation of an adaptive focusing algorithm for a microwave planar phased-array hyperthermia system at UCSF. Technical report 977, Lincoln Laboratory, Massachusetts Institute of Technology

    Google Scholar 

  • Finger PT, Packer S, Svitra P, Paglione RW, Albert DM, Chess J (1983) A 5.8 GHz optithalmic microwave applicator for treatment of choroidal melanoma 1983 IEEE MTT-S International Microwave Symposium Digest. IEEE, New York, pp 177–179

    Google Scholar 

  • Foster KR, Schepps JL (1981) Dielectric properties of tumor and normal tissues at radio through microwave frequencies. J Microwave Power 16: 107–119

    CAS  Google Scholar 

  • Franconi C, Tiberio CA, Raganella L, Begnozzi L (1986) Low-frequency twin-dipole applicator for intermediate depth hyperthermia. IEEE Trans Microwave Theory Tech 34: 612–619

    Article  Google Scholar 

  • Gee W, Lee SW, Bong NK, Cain CA, Mittra R, Magin RL (1984) Focused array hyperthermia applicator: theory and experiment. IEEE Trans Biomed Eng 31: 38–46

    Article  PubMed  CAS  Google Scholar 

  • Gibbs FA Jr (1983) “Thermal mapping” in experimental cancer treatment with hyperthermia: description and use of a semi-automatic system. Int J Radiat Oncol Biol Phys 9: 1057–1063

    Article  PubMed  Google Scholar 

  • Gibbs FA Jr, Sapozink MD, Stewart JR (1985) Clinical thermal dosimetry: why and how. In: Overgaard J (ed) Hyperthermic oncology 1984, vol 2. Taylor and Francis, London, pp 155–167

    Google Scholar 

  • Gopal MK, Hand JW, Lumori MLD, Alkhairi S, Paulsen KD, Cetas TC (1992) Current sheet applicator arrays for superficial hyperthermia of chest wall lesions. Int J Hyperthermia 8: 227–240

    Article  PubMed  CAS  Google Scholar 

  • Guy AW (1971a) Analysis of electromagnetic fields induced in biological tissues by thermographic studies on equivalent phantom models. IEEE Trans Microwave Theory Tech 19: 205–214

    Article  Google Scholar 

  • Guy AW (1971b) Electromagnetic fields and relative heating patterns due to a rectangular aperture source in direct contact with bilayered biological tissue. IEEE Trans Microwave Theory Tech 19: 214–223

    Article  Google Scholar 

  • Guy AW (1990) Biophysics of high-frequency currents and electromagnetic radiation. In: Lehmann JF (ed) Therapeutic heat and cold, 4th edn. William & Wilkins, Baltimore, pp 179–361

    Google Scholar 

  • Guy AW, Lehmann JF (1966) On the determination of an optimum microwave diathermy frequency for a direct contact applicator. IEEE Trans Biomed Eng 13: 76–87

    Article  PubMed  CAS  Google Scholar 

  • Hand JW (1987) Electromagnetic applicators for non-invasive local hyperthermia. In: Field SB, Franconi C (eds) Physics and technology of hyperthermia. Martinus Nijhoff, Dordrecht, pp 189–210

    Chapter  Google Scholar 

  • Hand JW (1990) Biophysics and technology of electromagnetic hyperthermia. In: Gautherie M (ed) Methods of external hyperthermic heating. Springer Berlin Heidelbery New York, pp 1–59

    Chapter  Google Scholar 

  • Hand JW, ter Haar G (1981) Heating techniques in hyperthermia. Br J Radiol 54: 443–466

    Article  PubMed  CAS  Google Scholar 

  • Hand JW, Hind AJ (1986) A review of microwave and RF applicators for localized hyperthermia. In: Hand JW, James JR (eds) Physical techniques in clinical hyperthermia. Research Studies Press, Letchworth, Herts., England, pp 98–140

    Google Scholar 

  • Hand JW, Ledda JL, Evans NTS (1982) Considerations of radiofrequency induction heating for localized hyperthermia. Phys Med Biol 27: 1–16

    Article  PubMed  CAS  Google Scholar 

  • Hand JW, Cheetham JL, Hind AJ (1986) Absorbed power distributions from coherent microwave arrays for localized hyperthermia. IEEE Trans Microwave Theory Tech 34: 484–489

    Article  Google Scholar 

  • Hand JW, Vernon CC, Prior MV, Forse GR (1992) Current sheet applicator arrays for superficial hyperthermia. In: Gerner EW (ed) Hyperthermic oncology 1992, vol 2. Arizona Board of Regents

    Google Scholar 

  • Henderson A, James JR (1985) Near-field power transfer effects in small electromagnetic applicators for inducing hyperthermia. IEE Proc 132: 189–197

    Article  Google Scholar 

  • Iskandar MF (1982) Physical aspects and methods of hyperthermia production by rf currents and microwaves. In: Nussbaum GH (ed) Physical aspects of hyperthermia. American Institute of Physics, New York, pp 151–191

    Google Scholar 

  • James JR, Henderson A, Johnson RH (1986) Compact electromagnetic applicators. In: Hand JW, James JR (eds) Physical techniques in clinical hyperthermia. Research Studies Press, Letchworth Herts., England, pp 149–207

    Google Scholar 

  • James RD, Williams P, Jones A, Nelis P, Farrow N, Lukka H, Pye DW (1988) Determination of human skin pain threshold using 27 MHz radiofrequency heating (correspondence). Br J Radiol 61: 344–345

    Article  PubMed  CAS  Google Scholar 

  • Johnson CC, Guy AW (1972) Nonionizing electromagnetic wave effects in biological materials and systems. Proc IEEE 60: 692–718

    Article  Google Scholar 

  • Johnson RH, James JR, Hand JW, Hopewell JW, Dunlop PRC, Dickinson RJ (1984) New low-profile applicators for local heating of tissue. IEEE Trans Biomed Eng 31: 28–37

    Article  PubMed  CAS  Google Scholar 

  • Johnson RH, Preece AW, Hand JW, James JR (1987) A new type of lightweight low-frequency electromagnetic hyperthermia applicator. IEEE Trans Microwave Theory Tech 35: 1317–1321

    Article  Google Scholar 

  • Johnson RH, Preece AW, Green JL (1990) Theoretical and experimental comparison of three types of electromagnetic hyperthermia applicator. Phys Med Biol 35: 761–779

    Article  PubMed  CAS  Google Scholar 

  • Kantor G (1981) Evaluation and survey of microwave and radiofrequency applicators. JMicrow Power 16:135–150

    CAS  Google Scholar 

  • Kantor G, Witters DM (1983) The performance of a new 915 MHz direct contact applicator with reduced leakage. J Microw Power 18: 133–142

    PubMed  CAS  Google Scholar 

  • Kapp DS, Fessenden P, Samulski TV et al. (1988) Stanford University institutional report. Phase I evaluation of equipment for hyperthermia treatment of cancer. Int J Hyperthermia 4: 75–115

    Article  PubMed  CAS  Google Scholar 

  • Kapp DS, Lee ER, Tarczy-Hornoch P, Fessenden P (1989) Specially designed applicators for hyperthermia (HT) treatment of facial tumors (Abstract Ad-2). In: Abstracts of the 9th NAHG Meeting, Seattle, Washington, March 1989. Radiation Research Society, Philadelphia, p 8

    Google Scholar 

  • Kapp DS, Cox RS, Fessenden PF, Meyer JL, Prionas SD, Lee ER, Bagshaw MA (1992) Parameters predictive for complications of treatments with combined hyperthermia and radiation therapy. Int J Radiat Oncol Biol Phys 22: 999–1008

    Article  PubMed  CAS  Google Scholar 

  • Kapp KS, Kapp DS (1993) Hyperthermia’s emerging role in cancer therapy. Contemp Oncol 3(6): 19–30

    Google Scholar 

  • Kawabata K, Jo S, Hiroka M, Nohara H, Takahashi M, Abe M (1984) A helical array applicator system of a microwave for the extension of the homogeneous heat area. In: Matsuda T, Kikuchi M (eds) Hyperthermic oncology. Proceedings of the Sixth Annual Meeting of Hyperthermia Group of Japan. Japan Society of Hyperthermic Oncology, Tokyo, pp 96–97

    Google Scholar 

  • Kobayashi H, Nikawa Y, Okada F, Mori S (1989) Flexible microstrip patch antenna for hyperthermia. IEEE 1989 International Symposium on Antennas and Propagation, IEEE, New York, pp 536–539

    Google Scholar 

  • Lagendijk JJW (1982a) Microwave applicator for hyperthermic treatment of retinoblastoma. In: Dethlefsen LA, Dewey WC (eds) Third international symposium: cancer therapy by hyperthermia, drugs, and radiation. National Institute of Health Publication No. 82-2437 Bethesda, Maryland, pp 469–471

    Google Scholar 

  • Lagendijk JJW (1982b) The influence of blood flow in large vessels on the temperature distribution in hyperthermia. Phys Med Biol 27: 17–23

    Article  PubMed  CAS  Google Scholar 

  • Lagendijk JJW, Schellenkens M, Schipper J, van der Linden PM (1984) A three-dimensional description of heating patterns in vascularised tissue during hyperthermia treatment. Phys Med Biol 29: 495–507

    Article  PubMed  CAS  Google Scholar 

  • Lagendijk JJW, Hofman P, Schipper J (1985) A computer-controlled microwave hyperthermia system. In: Overgaard J (ed) Hyperthermic oncology 1984, vol 1. Taylor and Francis, London, pp 699–702

    Google Scholar 

  • Lee ER, Samulski TV, Fessenden P (1986) Controlled scan surface heating (Abstract Ce-6). In: Abstract of Papers for the 34th Annual Meeting of the Radiation Research Society, April 1986. Radiation Research Society, Philadelphia, p 31

    Google Scholar 

  • Lee ER, Tarczy-Hornoch P, Fessenden P, Kapp DS, Prionas S (1988) Scanning dipole antenna array applicator (abstract Bc-6). In: Abstracts of the 8th NAHG meeting, April 1988. Radiation Research Society, Philadelphia, p 15

    Google Scholar 

  • Lee ER, Wilsey TR, Tarczy-Hornoch P, Kapp DS, Fessenden P, Lohrbach A, Prionas SD (1992) Body conformable 915 MHz microstrip array applicators for large surface area hyperthermia. IEEE Trans Biomed Eng 39: 470–483

    Article  PubMed  CAS  Google Scholar 

  • Lee ER, Kapp DS, Lohrbach AW, Sokol J (1994) The influence of water bolus temperature on measured skin surface and intradermal temperatures. Int J Hyperthermia 10(1): 59–72

    Article  PubMed  CAS  Google Scholar 

  • Lerch IA, Kohn S (1983) Radiofrequency hyperthermia: the design of coil transducers for local heating. Int J Radiat Oncol Biol Phys 9: 939–948

    Article  PubMed  CAS  Google Scholar 

  • Leybovich LB, Nussbaum GH, Sträube WL, Emami BN (1991) Theory and design of “shortened” multiantenna microwave applicators with controllable SAR patterns. Med Phys 18: 178–183

    Article  PubMed  CAS  Google Scholar 

  • Loane J, Ling H, Wang BF, Lee SW (1986) Experimental Investigation of a Retro-Focusing Microwave Hyperthermia Applicator. Conjugate-Field Matching Scheme. IEEE Trans Microwave Theory Tech 34(5): 490–494

    Article  Google Scholar 

  • Lovisolo GA, Adami M, Arcangeli G, Borrani A, Calamai G, Cividalli A, Mauro F (1984) A multifrequency waterfilled waveguide applicator: thermal dosimetry in vivo. IEEE Trans Microwave Theory Tech 32: 893–896

    Article  Google Scholar 

  • Lumori MLD, Hand JW, Gopal MK, Cetas TC (1990) Use of Gaussian beam model in predicting SAR distributions from current sheet applicators. Phys Med Biol 35: 387–397

    Article  PubMed  CAS  Google Scholar 

  • Magin RL, Peterson AF (1989) Invited review noninvasive microwave phased arrays for local hyperthermia: a review. Int J Hyperthermia 5: 429–450

    Article  PubMed  CAS  Google Scholar 

  • Matsuda T, Takasuka S, Nikawa Y, Kikuchi M (1990) Heating characteristics of a 430 MHz microwave heating system with a lens applicator in phantoms and miniature pigs. Int J Hyperthermia 6: 685–696

    Article  PubMed  CAS  Google Scholar 

  • Mendecki J, Friedenthal E, Botstein C, Sterzer F, Paglione R (1979) Therapeutic potential of conformai applicators for induction of hyperthermia. J Microw Power 14: 139–144

    PubMed  CAS  Google Scholar 

  • Montecchia F (1992) Microstrip antenna design for hyperthermia treatment of superficial tumors. IEEE Trans Biomed Eng 39: 580–588

    Article  PubMed  CAS  Google Scholar 

  • Nikawa Y, Watanabe H, Kikuchi M, Mori S (1986a) A direct-contact microwave lens applicator with a computer-controlled heating system for local hyperthermia. IEEE Trans Microwave Theory Tech 34: 626–630

    Article  Google Scholar 

  • Nikawa Y, Katsumata T, Kikuchi M, Mori S (1986b) An electric field converging applicator with heating pattern controller for microwave hyperthermia. IEEE Trans Microwave Theory Tech 34: 631–635

    Article  Google Scholar 

  • Nussbaum GH, Leybovich LB (1984) Multiple-antenna applicators for microwave-induced local hyperthermia (Abstract Aa-8). In: Abstracts of Papers for the 32nd Annual Meeting of the Radiation Research Society, March 1984. Radiation Research Society, Philadelphia

    Google Scholar 

  • Oleson JR, Dewhirst MW, Duncan D, Engler M, Thrall D (1985) Temperature gradients: prognostic and dosimetric implications. In: Proceedings of the 7th Annual Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, September 1985, vol 1. IEEE, New York, pp 355–360

    Google Scholar 

  • Paglione RW (1982) Power deposition with microwaves. In: Nussbaum GH (ed) Physical aspects of hyperthermia. American Institute of Physics, New York, pp 192–208

    Google Scholar 

  • Paliwal B, Higgins P, Steeves R, Sandhu T, Severson S (1985) A moving microwave beam hyperthermia induction system. In: Overgaard J (ed) Hyperthermic oncology 1984, vol 1. Taylor and Francis, London, pp 723–726

    Google Scholar 

  • Rappaport CM, Morgenthaler FR (1986) Localized hyperthermia with electromagnetic arrays and the leaky-wave troughguide applicator. IEEE Trans Microwave Theory Tech 34: 636–643

    Article  Google Scholar 

  • Rebollar JM, Encinar JA (1984) Design and optimization of multi-stepped applicators for medical applications. J Microw Power 19: 259–267

    PubMed  CAS  Google Scholar 

  • Rietveld P JM, van Rhoon GC (1992) Coherent and non-coherent 2/4 array applications of the 433 MHz water filled lucite-cone applicator. In: Gerner EW (ed) Hyperthermic oncology 1992, vol 1. Arizona Board of Regents, p 330

    Google Scholar 

  • Roemer RB (1990) Thermal dosimetry. In: Gautherie M (ed) Thermal dosimetry and treatment planning. Springer, Berlin Heidelberg New York, pp 119–216

    Chapter  Google Scholar 

  • Roemer RB (1991) Optimal power deposition in hyperthermia. I. The treatment goal: the ideal temperature distribution: the role of large blood vessels. Int J Hyperthermia 7: 317–341

    Article  PubMed  CAS  Google Scholar 

  • Ryan TP, Coughlin CT (1993) Non-moving microstrip applicators to conform to large superficial treatment areas with 433 MHz microwave hyperthermia (Abstract P-03-12). In: Abstracts of the 13th NAHG meeting, March 1993. Radiation Research Society, Philadelphia, P 13

    Google Scholar 

  • Samulski TV, Fessenden P, Lee ER, Kapp DS, Tanabe E, McEuen A (1990) Spiral microstrip hyperthermia applicators: technical details and clinical performance. Int J Radiat Oncol Biol Phys 18: 233–242

    Article  PubMed  CAS  Google Scholar 

  • Sandhu TJ, Kolozsvary AJ (1985) Conformai hyperthermia applicators. In: Overgaard J (ed) Hyperthermic oncology 1984, vol 1. Taylor and Francis, London, pp 675–678

    Google Scholar 

  • Schipper J, Lagendijk JJW (1986) The treatment of retinoblastoma by fractionated radiotherapy combined with hyperthermia. In: Anghileri LJ, Robert J (eds) Hyperthermia in cancer therapy, vol III. CRC Press, Boca Raton, Florida, pp 79–87

    Google Scholar 

  • Scott RS, Chou CK, McCumber M, McDougall, J, Luk KH (1986) Complications resulting from spurious fields produced by a microwave applicator used for hyperthermia. Int J Radiat Oncol Biol Phys 12: 1883–1886

    Article  PubMed  CAS  Google Scholar 

  • Stauffer PR, Diederich CJ (1992) 915 MHz conformai array microwave applicator (abstract P-03-11). In: Abstracts of the 13th NAHG meeting, March 1993. Radiation Research Society, Philadelphia, p 13

    Google Scholar 

  • Stauffer PR, Swift PS, Sneed PK, Char DH, Phillips TL (1988) Temperature controlled microwave ring radiator for hyperthermia therapy. IEEE Eng Med Biol Soc 10th Annual Int Conference, pp 1273–1274

    Google Scholar 

  • Sterzer F, Paglione RW, Mendecki J, Friedenthal E, Botstein C (1980) RF therapy for malignancy. IEEE Spectrum, December 1980, pp 32–37

    Google Scholar 

  • Sterzer F, Paglione RW, Friedenthal E, Mendecki J (1985) A microwave apparatus for producing uniform hyperthermic temperatures over large surfaces. 1985 IEEE MTT-S International Microwave Symposium Digest, IEEE, New York, pp 90–92

    Google Scholar 

  • Sterzer F, Paglione RW, Wozniak FJ, Friedenthal E, Mendecki J (1986) A robot-operated microwave hyperthermia system for treating large malignant surface lesions. Microw J 29: 7: 147–151

    Google Scholar 

  • Strohbehn JS (1984) Summary of physical and technical studies. In: Overgaard J (ed) Hyperthermic oncology 1984, vol 2. Review Lectures, Symposium Summaries and Workshop Summaries. Taylor and Francis, London, pp 353–369

    Google Scholar 

  • Tanabe E, McEuen AH, Norris CS, Fessenden P, Samulski TV (1983) A multielement microstrip antenna for local hyperthermia. In: IEEE MTT-S 1983 International Microwave Symposium Digest. IEEE New York, pp 183–185

    Google Scholar 

  • Tanabe E, Harris S, McEuen A, Samulski T, Fessenden P (1985) Microstrip antenna applicators — design and clinical experience. In: Abe M, Takahashi M, Sugahara T (eds) Hyperthermia in cancer therapy. Proceedings of the First Annual Meeting of the Japanese Society of Hyperthermic Oncology November 19-20, 1984, Mag Bros, Tokyo, pp 151–153

    Google Scholar 

  • Tennant A, Conway J, Anderson AP (1990) A robotcontrolled microwave antenna system for uniform hyperthermia treatment of superficial tumours with arbitrary shape. Int J Hyperthermia 6: 193–202

    Article  PubMed  CAS  Google Scholar 

  • Tumeh AM, Turner PF, Schaefermeyer TN, Nguyen T (1989) Variable frequency spiral applicator for EM hyperthermia (Abstract Cr-1). In: Abstracts of the 9th NAHG meeting, April 1989. Radiation Research Society, Philadelphia, p 15

    Google Scholar 

  • Turner PF (1983) Electromagnetic hyperthermia devices and methods. MS Thesis, University of Utah, Salt Lake City

    Google Scholar 

  • Turner PF, Tumeh AM, Schaefermeyer TN, Nguyen T (1989) Interstitial antenna arrays with central destructive interference (Abstract Bg-1). In: Abstracts of the 9th NAHG meeting, April 1989. Radiation Research Society, Philadelphia, p 47

    Google Scholar 

  • Underwood HR, Magin RL (1988) Rectangular microstrip radiator for a multielement local hyperthermia applicator. Proc IEEE Engineering in Medicine & Biology Society 10th Annual International Conference, IEEE, New York, pp 864–865

    Chapter  Google Scholar 

  • Underwood HR, Petersen AF, Magin RL (1989) Analysis and measurement of a microstrip array applicator for hyperthermia therapy. Proc IEEE Engineering in Medicine & Biology Society 11th Annual International Conference, IEEE, New York, pp 1145–1146

    Google Scholar 

  • Underwood HR, Petersen AF, Magin RL (1992) Electric field distribution near rectangular microstrip radiators for hyperthermia heating: theory versus experiment in water. IEEE Trans Biomed Eng 39: 146–153

    Article  PubMed  CAS  Google Scholar 

  • Vaguine VA, Tanabe E, Giebeler RH, McEuen AH, Hahn GM (1982) Microwave direct-contact applicator system for hyperthermia therapy research. In: Dethlefsen LA, Dewey WC (eds) Third International Symposium: Cancer therapy by hyperthermia, drugs, and radiation. National Institute of Health Publication No. 82-2437 Bethesda Maryland, pp 461–464

    Google Scholar 

  • van Rhoon GC, Rietveld PJM, Broekmeyer-Reurink MP, Verloop-van’t Hof EM, van den Berg AP, van der Ploeg SK, van der Zee J (1992) A 433 MHz waveguide applicator system with an improved effective field size for hyperthermia treatment of superficial tumors on the chest wall. In: Gerner EW (ed) Hyperthermic oncology 1992, vol 2. Arizona Board of Regents

    Google Scholar 

  • Wilsey TR, McEuen AH, Fessenden P, Lee ER, Tanabe E, Nelson LV, Schütter RC, Kapp DS (1988) Arm cuff microwave microstrip array applicator (abstract bc-5). In: Abstracts of the 8th NAHG meeting, April 1988. Radiation Research Society, Philadelphia, p 15

    Google Scholar 

  • Wyslouzil W, Kashyap S, Daien DM (1987) Heating patterns for an array of 915 MHz Rectangular waveguide applicators. J Microw Power 22: 213–220

    Google Scholar 

  • Zhou L, Fessenden P (1993) Automation of temperature control for large-array microwave surface applicators. Int J Hyperthermia 9: 479–490

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lee, E.R. (1995). Electromagnetic Superficial Heating Technology. In: Seegenschmiedt, M.H., Fessenden, P., Vernon, C.C. (eds) Thermoradiotherapy and Thermochemotherapy. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57858-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57858-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63382-9

  • Online ISBN: 978-3-642-57858-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics