Skip to main content

Memory and Learning

  • Chapter
Comprehensive Human Physiology

Abstract

Not everything that an animal needs to know in order to survive can be stored in its genetic code. Instead, animals have evolved the ability to adapt their behavior in response to previous experience and to store these changes as memories. This ability to learn is one of the most remarkable capabilities evolved by nervous systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bachevalier J, Mishkin M (1986) Visual recognition impairment follows ventromedial but not dorsolateral prefrontal lesions in monkeys. Behav Brain Res 20:249–261

    Article  PubMed  CAS  Google Scholar 

  2. Bailey CH, Chen M (1983) Morphological basis of long-term habituation and sensitization in Aplysia. Science 220:91–93

    Article  PubMed  CAS  Google Scholar 

  3. Bashir ZI, Bortolotto ZA, Davies CH et al (1993) Induction of LTP in the hippocampus needs synaptic activation of glutamate metabotropic receptors. Nature 363:347–350

    Article  PubMed  CAS  Google Scholar 

  4. Baudry M, Lynch G (1994) Long-term potentiation: Biochemical mechanisms. In: Baudry M, Davis JL, Thompson RF (eds) Synaptic plasticity: molecular and functional aspects. MIT Press, Cambridge, MA

    Google Scholar 

  5. Baudry M, Massicotte G (1992) Physiological and pharmacological relationships between long-term potentiation and mammalian memory. Concepts Neurosci 3:79–98

    Google Scholar 

  6. Bekkers JM, Stevens CF (1990) Presynaptic mechanisms for long-term potentiation in the hippocampus. Nature 346:724–729

    Article  PubMed  CAS  Google Scholar 

  7. Bennett EL, Diamond MC, Krech D, Rosenzweig MR (1964) Chemical and anatomical plasticity of brain. Science 146:610–619

    Article  PubMed  CAS  Google Scholar 

  8. Berger TW, Orr WB (1983) Hippocampectomy selectively disrupts discrimination reversal conditioning of the rabbit nictitating membrane response. Behav Brain Res 8:49–68

    Article  PubMed  CAS  Google Scholar 

  9. Bliss TVP, Clements MP, Errington ML, Lynch MA, Williams J (1990) Presynaptic changes associated with long-term potentiation. Semin Neurosci 2:345–354

    Google Scholar 

  10. Bliss TVP, Lomo T (1970) Plasticity in a monosynaptic cortical pathway. J Physiol (Lond) 207:61P

    Google Scholar 

  11. Bliss TVP, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol (Lond) 232:331–356

    PubMed  CAS  Google Scholar 

  12. Brooks DN, Baddeley AD (1976) What can amnesic patients learn? Neuropsychologia 14:111–122

    Article  PubMed  CAS  Google Scholar 

  13. Campeau S, Miserendino MJ, Davis M (1992) Intra-amygdala infusion of the N-methyl-D-aspartate receptor antagonist AP5 blocks acquisition but not expression of fear-potentiated startle to an auditory conditioned stimulus. Behav Neurosci 106:569–574

    Article  PubMed  CAS  Google Scholar 

  14. Castellucci VF, Kandel ER (1974) A quantal analysis of the synaptic depression underlying habituation of the gill-withdrawal reflex in Aplysia. Proc Natl Acad Sci U S A 71:5004–5008

    Article  PubMed  CAS  Google Scholar 

  15. Clark RE, Lavond DG (1993) Reversible lesions of the red nucleus during acquisition and retention of a classically conditioned behavior in rabbits. Behav Neurosci 107: 264–270

    Article  PubMed  CAS  Google Scholar 

  16. Clark RE, Zhang AA, Lavond DG (1992) Reversible lesions of the cerebellar interpositus nucleus during acquisition and retention of a classically conditioned behavior. Behav Neurosci 106:879–888

    Article  PubMed  CAS  Google Scholar 

  17. Cohen NJ, Squire LR (1980) Preserved learning and retention of pattern-analyzing skill in amnesia: dissociation of knowing how and knowing that. Science 210:207–210

    Article  PubMed  CAS  Google Scholar 

  18. Collingridge GL, Bliss TVP (1987) NMDA receptors — their role in long-term potentiation. Trends Neurosci 10:288–293

    Article  CAS  Google Scholar 

  19. Corkin S (1984) Lasting consequences of bilateral medial temporal lobectomy: Clinical course and experimental findings in H.M. Semin Neurol 4:249–259

    Article  Google Scholar 

  20. Daum I, Channon S, Canavan AG (1989) Classical conditioning in patients with severe memory problems. J Neurol Neurosurg Psychiatry 52:47–51

    Article  PubMed  CAS  Google Scholar 

  21. Daum I, Channon S, Gray JA (1992) Classical conditioning after temporal lobe lesions in man: sparing of simple discrimination and extinction. Behav Brain Res 52:159–165

    Article  PubMed  CAS  Google Scholar 

  22. Daum I, Channon S, Polkey CE, Gray JA (1991) Classical conditioning after temporal lobe lesions in man: impairment in conditional discrimination. Behav Neurosci 105:396–408

    Article  PubMed  CAS  Google Scholar 

  23. Daum I, Schugens MM, Ackermann H, Lutzenberger W, Dichgans J, Birbaumer N (1993) Classical conditioning after cerebellar lesions in humans. Behav Neurosci 107:748–756

    Article  PubMed  CAS  Google Scholar 

  24. Davis M (1992) The role of the amygdala in fear and anxiety. Annu Rev Neurosci 15:353–375

    Article  PubMed  CAS  Google Scholar 

  25. Davis M, Hitchcock JM, Rosen JB (1992) A neural analysis of fear conditioning. In: Gormezano I, Wasserman EA (eds) Learning and memory: the behavioral and biological substrates. Lawrence Erlbaum Associates, Hillsdale, NJ, pp 153–181

    Google Scholar 

  26. Dudai Y (1989) The neurobiology of memory: concepts, findings, trends. Oxford University Press, Oxford

    Google Scholar 

  27. Duncan CP (1949) The retroactive effect of electroshock on learning. J Comp Physiol Psychol 42:34–44

    Article  Google Scholar 

  28. Foster TC, McNaughton BL (1991) Long-term synaptic enhancement in CA1 is due to increased quantal size, not quantal content. Hippocampus 1:79–91

    Article  PubMed  CAS  Google Scholar 

  29. Globus A, Rosenzweig MR, Bennett EL, Diamond MC (1973) Effects of differential experience on dendritic spine counts in rat cerebral cortex. J Comp Physiol Psychol 82:175–181

    Article  PubMed  CAS  Google Scholar 

  30. Goelet P, Castellucci VF, Schacher S, Kandel ER (1986) The long and the short of long-term memory — a molecular framework. Nature 322:419–422

    Article  PubMed  CAS  Google Scholar 

  31. Gold PE, Vogt J, Hall JL (1986) Glucose effects on memory: behavioral and pharmacological characteristics. Behav Neural Biol 46:145–155

    Article  PubMed  CAS  Google Scholar 

  32. Goldman-Rakic PS (1987) Circuitry of primate prefrontal cortex and regulation of behavior by representational memory. In: Plum F (ed) Handbook of physiology, section 1: the nervous system, vol V: higher cortical function, part 1. American Physiological Society, Bethesda, MD, pp 373–417

    Google Scholar 

  33. Gonder Frederick L, Hall JL, Vogt J, Cox DJ, Green J, Gold PE (1987) Memory enhancement in elderly humans: effects of glucose ingestion. Physiol Behav 41:503–504

    Article  PubMed  CAS  Google Scholar 

  34. Graf P, Shimamura AP, Squire LR (1985) Priming across modalities and priming across category levels: extending the domain of preserved function in amnesia. J Exp Psychol [Learn Mem Cogn] 11:386–396

    Article  CAS  Google Scholar 

  35. Hawkins RD, Abrams TW, Carew TJ, Kandel ER (1983) A cellular mechanism of classical conditioning in Aplysia: activity-dependent amplification of presynaptic facilitation. Science 219:400–405

    Article  PubMed  CAS  Google Scholar 

  36. Hilgard ER, Atkinson RL, Atkinson RC (1979) Introduction to psychology, 7th edn. Harcourt Brace Jovanovich, New York

    Google Scholar 

  37. Hirano T (1991) Differential pre- and postsynaptic mechanisms for synaptic potentiation and depression between a granule cell and a Purkinje cell in rat cerebellar culture. Synapse 7:321–323

    Article  PubMed  CAS  Google Scholar 

  38. Ito M (1994) Cerebellar mechanisms of long-term depression. In: Baudry M, Davis JL, Thompson RF (eds) Synaptic plasticity: molecular and functional aspects. MIT Press, Cambridge, MA

    Google Scholar 

  39. Ito M, Sakurai M, Tongroach P (1982) Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells. J Physiol (Lond) 324:113–134

    PubMed  CAS  Google Scholar 

  40. Janowsky JS, Shimamura AP, Kritchevsky M, Squire LR (1989) Cognitive impairment following frontal lobe damage and its relevance to human amnesia. Behav Neurosci 103:548–560

    Article  PubMed  CAS  Google Scholar 

  41. Kandel ER (1976) Cellular basis of behavior. Freeman, San Francisco

    Google Scholar 

  42. Kandel ER (1991) Cellular mechanisms of learning and the biological basis of individuality. In: Kandel ER, Schwartz JH, Jessell TM (eds) Principles of neural science, 3rd edn. Elsevier, New York, pp 1009–1031

    Google Scholar 

  43. Kandel ER, Schwartz JH (1982) Molecular biology of learning: Modulation of transmitter release. Science 218:433–443

    Article  PubMed  CAS  Google Scholar 

  44. Kauer JA, Malenka RC, Nicoll RA (1988) A persistent postsynaptic modification mediates long-term potentiation in the hippocampus. Neuron 1:911–917

    Article  PubMed  CAS  Google Scholar 

  45. Kim JJ, Fanselow MS (1992) Modality-specific retrograde amnesia of fear. Science 256:675–677

    Article  PubMed  CAS  Google Scholar 

  46. Konnerth A, Dreessen J, Augustine G (1992) Brief dendritic calcium signals initiate long-lasting synaptic depression in cerebellar Purkinje cells. Proc Natl Acad Sci U S A 89:7051–7055

    Article  PubMed  CAS  Google Scholar 

  47. Krupa DJ, Thompson JK, Thompson RF (1993) Localization of a memory trace in the mammalian brain. Science 260:989–991

    Article  PubMed  CAS  Google Scholar 

  48. Lavond DG, Kim JJ, Thompson RF (1993) Mammalian brain substrates of aversive classical conditioning. Annu Rev Psychol 44:317–342

    Article  PubMed  CAS  Google Scholar 

  49. LeDoux JE, Iwata J, Cicchetti P, Reis DJ (1988) Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. J Neurosci 8:2517–2529

    PubMed  CAS  Google Scholar 

  50. LeDoux JE, Iwata J, Pearl D, Reis DJ (1986) Disruption of auditory but not visual learning by destruction of intrinsic neurons in the rat medial geniculate body. Brain Res 371: 395–399

    Article  PubMed  CAS  Google Scholar 

  51. Liang KC, McGaugh JL, Martinez J Jr, Jensen RA, Vasquez BJ, Messing RB (1982) Post-training amygdaloid lesions impair retention of an inhibitory avoidance response. Behav Brain Res 4:237–249

    Article  PubMed  CAS  Google Scholar 

  52. Lye RH, O’Boyle DJ, Ramsden RT, Schady W (1988) Effects of a unilateral cerebellar lesion on the acquisition of eye-blink conditioning in man. J Physiol (Lond) 403:58P

    Google Scholar 

  53. Malinow R, Tsien RW (1990) Presynaptic enhancement shown by whole-cell recordings of long-term potentiation in hippocampal slices. Nature 346:177–180

    Article  PubMed  CAS  Google Scholar 

  54. McCormick DA, Thompson RF (1984) Cerebellum: essential involvement in the classically conditioned eyelid response. Science 223:296–299

    Article  PubMed  CAS  Google Scholar 

  55. McGaugh JL (1989) Involvement of hormonal and neuro-modulatory systems in the regulation of memory storage. Annu Rev Neurosci 12:255–287

    Article  PubMed  CAS  Google Scholar 

  56. McGaugh JM (1992) Affect, neuromodulatory systems and memory storage. In: Christonson SA (ed) Handbook of emotion and memory: current research and theory. Lawrence Erlbaum Associates, Hillsdale, NJ, pp 245–268

    Google Scholar 

  57. Milner B (1962) Les troubles de la mémoire accompagnant des lésions hippocampiques bilatérales. In: Physiologie de l’hippocampe. Centre National de la Recherche Scientifique, Paris, pp 257–272

    Google Scholar 

  58. Miserendino MJ, Sananes CB, Melia KR, Davis M (1990) Blocking of acquisition but not expression of conditioned fear-potentiated startle by NMDA antagonists in the amygdala. Nature 345:716–718

    Article  PubMed  CAS  Google Scholar 

  59. Mishkin M (1978) Memory in monkeys severely impaired by combined but not by separate removal of amygdala and hippocampus. Nature 273:297–298

    Article  PubMed  CAS  Google Scholar 

  60. Morris RG, Garrud P, Rawlins JN, O Keefe J (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297:681–683

    Article  PubMed  CAS  Google Scholar 

  61. Morris RG, Halliwell RF, Bowery N (1989) Synaptic plasticity and learning. II: do different kinds of plasticity underlie different kinds of learning? Neuropsychologia 27:41–59

    Article  PubMed  CAS  Google Scholar 

  62. Muller D, Joly M, Lynch G (1988) Contributions of quisqualate and NMDA receptors to the induction and expression of LTP. Science 242:1694–1697

    Article  PubMed  CAS  Google Scholar 

  63. Olton DS, Becker JT, Handelman GE (1979) Hippocampus, space, and memory. Behav Brain Sci 2:313–365

    Article  Google Scholar 

  64. Parent MB, Tomaz C, McGaugh JL (1992) Increased training in an aversively motivated task attenuates the memory-impairing effects of posttraining N-methyl-D-aspartate-induced amygdala lesions. Behav Neurosci 106:789–797

    Article  PubMed  CAS  Google Scholar 

  65. Pavlov IP (1927) Conditioned reflexes. An investigation of the physiological activity of the cerebral cortex. Oxford University Press, London

    Google Scholar 

  66. Rescorla RA (1988) Behavioral studies of Pavlovian conditioning. Annu Rev Neurosci 11:329–352

    Article  PubMed  CAS  Google Scholar 

  67. Romanski LM, LeDoux JE (1992) Equipotentiality of thalamo-amygdala and thalamo-cortico-amygdala circuits in auditory fear conditioning. J Neurosci 12: 4501–4509

    PubMed  CAS  Google Scholar 

  68. Ross RT, Orr WB, Holland PC, Berger TW (1984) Hippocampectomy disrupts acquisition and retention of learned conditional responding. Behav Neurosci 98:211–225

    Article  PubMed  CAS  Google Scholar 

  69. Ross WN, Lasse-Ross N, Werman R (1990) Spatial and temporal analysis of calcium-dependent electrical activity in guinea pig Purkinje cell dendtites. Proc R Soc Lond Biol 240:173–185

    Article  PubMed  CAS  Google Scholar 

  70. Schacher S, Glanzman D, Barzilai A et al (1990) Long-term facilitation in Aplysia: persistent phosphorylation and structural changes. Cold Spring Harb Symp Quant Biol 55:187–202

    Article  PubMed  CAS  Google Scholar 

  71. Schacter DL (1987) Implicit memory: history and current status. J Exp Psychol [Learn Mem Cogn] 13:501–518

    Article  Google Scholar 

  72. Schuman E, Madison DV (1991) A requirement for the intercellular messenger nitric oxide in long-term potentiation. Science 254:1503–1506

    Article  PubMed  CAS  Google Scholar 

  73. Scoville WB, Milner B (1957) Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry 20:11–21

    Article  PubMed  CAS  Google Scholar 

  74. Siegelbaum SA, Camardo JS, Kandel ER (1982) Serotonin and cyclic AMP close single K+ channels in Aplysia sensory neurons. Nature 299:413–417

    Article  PubMed  CAS  Google Scholar 

  75. Solomon PR, Stowe GT, Pendlebury WW (1989) Disrupted eyelid conditioning in a patient with damage to cerebellar afferents. Behav Neurosci 103:898–902

    Article  PubMed  CAS  Google Scholar 

  76. Squire LR (1987) Memory and brain. Oxford University Press, New York

    Google Scholar 

  77. Squire LR, Ojemann JG, Miezin FM, Petersen SE, Videen TO, Raichle ME (1992) Activation of the hippocampus in normal humans: a functional anatomical study of memory. Proc Natl Acad Sci U S A 89:1837–1841

    Article  PubMed  CAS  Google Scholar 

  78. Squire LR, Zola Morgan S (1991) The medial temporal lobe memory system. Science 253:1380–1386

    Article  PubMed  CAS  Google Scholar 

  79. Thompson RF (1993) The brain: a neuroscience primer. Freeman, New York

    Google Scholar 

  80. Thompson RF, Glanzman DL (1976) Neural and behavioral mechanisms of habituation and sensitization. In: Tighe TJ, Leaton RN (eds) Habituation: perspectives from child development, animal behavior, and neurophysiology. Lawrence Erlbaum Associates, Hillsdale, NJ

    Google Scholar 

  81. Tocco G, Maren S, Shors TJ, Baudry M, Thompson RF (1992) Long-term potentiation is associated with increased [3H]AMPA binding in rat hippocampus. Brain Res 573:228–234

    Article  PubMed  CAS  Google Scholar 

  82. Tulving E (1983) Elements of episodic memory. The Clarendon Press, Oxford

    Google Scholar 

  83. Tulving E, Schacter DL (1990) Priming and human memory systems. Science 247:301–306

    Article  PubMed  CAS  Google Scholar 

  84. Volkmar FR, Greenough WT (1972) Rearing complexity affects branching of dendrites in the visual cortex of the rat. Science 176:1445–1447

    Article  PubMed  CAS  Google Scholar 

  85. Walker AE (1940) A cytoarchitectural study of the prefrontal area of the macaque monkey. J Comp Neurol 73:59–86

    Article  Google Scholar 

  86. Warrington EK, Weiskrantz L (1973) An analysis of short-term and long-term memory defects in man. In: Deutsch JA (ed) The physiological basis of memory. Academic, New York

    Google Scholar 

  87. Weiskrantz L, Warrington EK (1979) Conditioning in amnesic patients. Neuropsychologia 17:187–194

    Article  PubMed  CAS  Google Scholar 

  88. Zola Morgan S, Squire LR (1990) The neuropsychology of memory. Parallel findings in humans and nonhuman primates. Ann N Y Acad Sci 608:434–450

    Article  PubMed  CAS  Google Scholar 

  89. Zola Morgan S, Squire LR, Amaral DG (1986) Human amnesia and the medial temporal region: enduring memory impairment following a bilateral lesion limited to field CA1 of the hippocampus. J Neurosci 6:2950–2967

    PubMed  CAS  Google Scholar 

  90. Zola Morgan S, Squire LR, Amaral DG, Suzuki WA (1989) Lesions of perirhinal and parahippocampal cortex that spare the amygdala and hippocampal formation produce severe memory impairment. J Neurosci 9:4355–4370

    PubMed  CAS  Google Scholar 

  91. Zola Morgan SM, Squire LR (1990) The primate hippocampal formation: evidence for a time-limited role in memory storage. Science 250:288–290

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thompson, R.F., Logan, C.G. (1996). Memory and Learning. In: Greger, R., Windhorst, U. (eds) Comprehensive Human Physiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60946-6_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60946-6_57

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64619-5

  • Online ISBN: 978-3-642-60946-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics