Skip to main content

Abstract

Even four centuries ago, Galileo Galile realized that the rigidity of the skeleton of terrestrial animals is related to its load bearing function, and is associated with the size and mass of the animal (Galilei 1974). This phenomenon of differences in mechanical properties also applies to the relatively small variations in the skeleton which occur between individuals of the same species, as well as to variations in bone properties within the same subject. Ward (1836) observed that the trabecular arrangement within the femoral head, the area now known as Ward’s triangle, showed patterns comparable to those found in the crossbeam structures of nineteenth century street lights. This very clearly illustrated natural mechanical engineering of the weight bearing properties of bone. Some 50 years later, Wolff postulated his law; ‘Das Gezetz der Transformation der Knochen’ (Wolff 1892). In this essay he discussed in more detail how the structure of bone reflects its mechanical usage history. The process of bone formation and bone remodeling according to its mechanical history is now generally known as functional adaptation, a term proposed by Roux (1895).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aloia JF, Cohn SH, Babu T, Abesamis C, Kalici N& Ellis K. Skeletal mass and body composistion in marathon runners. Metabolism 27, 1793–6, 1978

    PubMed  CAS  Google Scholar 

  • Arnaud SB, Fung P, Popova IA, Morey-Holton ER, Grindeland RE. Circulating parathyroid hormone and calcitonin in rats after spaceflight. J. Appl. Physiol. 73, 169S–73S, 1992.

    PubMed  CAS  Google Scholar 

  • Bakulin AV, Ilyan EA, Organov VS & Lebedev VI. The state of bones of pregnant rats during an acute stage of adaptation to weightlessness. In: Proceedings, 2nd International Conference on Space Physiology (Toulouse, France, 20-22 Nov. 1985 Ed. Hunt JJ, ESASP-237. ESA, Paris, pp. 225–9, 1985.

    Google Scholar 

  • Backup P, Westerlind K, Harris S, Spelberg T, Kline B & Turner R. Space flight results in reduced mRNA levels for tissue-specific proteins in musculoskeletal system. Amer. J. Physiol. 226: E567–73, 1994.

    Google Scholar 

  • Ballard RW & Connolly JP. U.S./U.S.S.R. joint research in space biology and medicine on Cosmos satellites. FASEB J. 4: 5–9, 1990.

    Google Scholar 

  • Ballard RW & Mains RC. Animal experiments in space; a brief overview. In: Fundamentals of Space Biology. Ed. by Asashima M & Malacinski GM. Japan Scientific Press, Tokyo/Springer-Verlag, Berlin, pp. 21–41, 1990.

    Google Scholar 

  • Bikle DD, Harris J, Halloran BP & Morey-Holton E. Altered skeletal pattern of gene expression in response to space flight and hindlimb elevation. Amer. J. Physiol. 267: E822–7, 1994.

    PubMed  CAS  Google Scholar 

  • Briegleb W. Physiologische Langzeiteffekte in rotierenden Systemen. Naturwisenschaftliche Rundschau 21(12), 507–12, 1968.

    Google Scholar 

  • Cann CE & Adachi RR. Bone resorption and mineral excretion in rats during space flight.Amer. J. Physiol. 22: R327–31, 1983.

    Google Scholar 

  • Cowin SC, Moss-Salentijn L, Moss ML. Candidates for the mechanosensory system in bone. Adv. Bioengin. 20: 313–16, 1991.

    Google Scholar 

  • Dalsky GP, Stocke KS, Ishani AA, Lee WC Birge SJ. Weight bearing exercise training and lumbar bone mineral content in postmenopausal women. Ann. Intern. Med. 108: 824–8, 1988.

    PubMed  CAS  Google Scholar 

  • Donaldson CL, Hulley SB, Vogel JM, Hattner RS, Bayers JH & McMillan DE. Effect of prolonged bed rest on bone mineral. Metabolism 19: 1071–84, 1970.

    PubMed  CAS  Google Scholar 

  • Doty SB. Morphologic and histochemical studies of bone cells from SL-3 rats. Physiologist 28: S225–6, 1985.

    PubMed  CAS  Google Scholar 

  • Doty SB, Morey-Holton ER, Durnova GN, Kaplansky AS. Cosmos 1887: morphology, histochemistry, and vasculature of the growing rat tibia. FASEB J. 4: 16–23, 1990.

    PubMed  CAS  Google Scholar 

  • Doty SB, Morey-Holton ER, Durnova GN & Kaplansky AS. Morphological studies of bone and tendon. J. Appl. Physiol. 73: 10S–13S, 1992.

    PubMed  CAS  Google Scholar 

  • Duke J, Janer L, Campbell M & Morrow J. Microprobe analyses of epiphyseal plates from Spacelab 3 rats. Physiologist 28: S217–8, 1985.

    PubMed  CAS  Google Scholar 

  • Duke PJ, Durnova G, Montufar-Solis D. Histomorphometric and electron microscopic analyses of tibial epiphyseal plates from Cosmos 1887 rats. FASEB J. 4: 41–6, 1990.

    PubMed  CAS  Google Scholar 

  • Duke PJ, Daane EL, Montufar-Solis D. Studies of chondrogenesis in rotating systems. J. Cell Biochem. 51: 274–282, 1993.

    PubMed  CAS  Google Scholar 

  • Eurell JA & Kazarian LE. Quantitative histochemistry of rat lumbar vertebrae following space flight. Amer. J. Physiol. 244: R315–8, 1983.

    PubMed  CAS  Google Scholar 

  • Földes I, Rapcsk M, Szilgyi T & Organov VS. Effects of space flight on bone formation and resorption. Acta Physiol. Hung. 75: 271–85, 1990.

    PubMed  Google Scholar 

  • France EP & Oloff CM. Kazarian Bone mineral analysis of rat vertebra following spaceflight COSMOS 1129. Physiologist 25: S147–8, 1982.

    Google Scholar 

  • Frost HM. Vital biomechanics: proposed general concepts for skeletal adaptations to mechanical usage. Calcif. Tissue Int. 42: 145–56, 1988.

    PubMed  CAS  Google Scholar 

  • Galilei G. Two new sciences. In: The Second Day, translated by Drake S. The University of Wisconsin Press, pp. 109-46, 1974.

    Google Scholar 

  • Garetto LP, Gonsalves MR, Morey ER, Durnova G & Roberts WE. Preosteoblast production 55 hours after a 12.5-day space flight on Cosmos 1887. FASEB J. 4: 24–38, 1990.

    PubMed  CAS  Google Scholar 

  • Garetto LP, Morey ER, Durnova GN, Kaplansky AS & Roberts WE. Preosteoblast production in COSMOS 2044 rats: short-term recovery of osteogenic potential. J. Appl. Physiol. 73: 14S–18S, 1992.

    PubMed  CAS  Google Scholar 

  • Garshnek V. Soviet space flight: the human element. ASGSB Bulletin 1: 67–80, May 1988.

    PubMed  CAS  Google Scholar 

  • Globus RK, Bikle D, Halloran B & Morey-Holton E. Skeletal response to dietary calcium in a rat model simulating weightlessness. J. Bone Min. Res. 1: 191–7, 1986.

    CAS  Google Scholar 

  • Greenleaf JE, Bulbulian R, Bernauer EM, Haskell WL & Moore T. Exercise-training protocols for astronauts in microgravity. J. Appl. Physiol. 67: 2191–204, 1989.

    PubMed  CAS  Google Scholar 

  • Grindeland RE, Popova IA, Vasquez M & Arnaud SB. Cosmos 1887 mission overview: effects of microgravity on rat body and adrenal weights and plasma constituents. FASEB J. 4: 105–9, 1990.

    PubMed  CAS  Google Scholar 

  • Grindelind RE, Ballard RW; Conolly JP & Vasquez MF. Cosmos 2044 mission: overview. J. Appl. Physiol. 73, 1S–3S, 1992.

    Google Scholar 

  • Harell A, Deckel S, Binderman I. Biochemical effects of mechanical stress on cultured bone cells. Calcif. Tissue Int. 22S: 202–9, 1977.

    Google Scholar 

  • Jee WSS, Wronski TJ, Morey ER & Kimmel DB. Effects of spaceflight on trabecular bone in rats. Amer. J. Physiol. 244: R310–14, 1983.

    PubMed  CAS  Google Scholar 

  • Johnson PC, Leach CS & Rambaut PC. Estimates of fluid and energy balances of Apollo 17. Aerospace Med. 44: 1227–30, 1973.

    PubMed  CAS  Google Scholar 

  • Kaplansky AS, Durnova GN & Ilyina-Kakueva EI. Histomorphometric analysis of bones of Cosmos-1887 rats. Physiologist 33: S20–2, 1990.

    PubMed  CAS  Google Scholar 

  • Kaplansky AS, Durnova GN, Burkovskaya TE & Vorotnikova EV. The effect of microgravity on bone fracture healing in rats flown on Cosmos 2044. Physiologist 34: S196–9, 1991.

    PubMed  CAS  Google Scholar 

  • Klein Nulend J, Veldhuijzen JP, Burger EH. Increased calcification of growth plate cartilage as a result of compressive force in vitro. Arthritis Rheum. 29: 1002–9, 1986.

    PubMed  CAS  Google Scholar 

  • Klein Nulend J, Veldhuijzen JP, deJong M, Burger EH. In creased bone formation and decreased bone resorption in fetal mouse calvaria as a result of intermittent compressive force in vitro. Bone Mineral 2: 441–8, 1987.

    CAS  Google Scholar 

  • Klein Nulend J, vd Plas A, Semeins CM, Ajubi NE, Frangos JA, Nijweide PJ, Burger EH. Sensitivity of osteocytes to biomechanical stress in vitro. FASEB J 9: 441–5, 1995.

    PubMed  CAS  Google Scholar 

  • Klement BJ & Spooner BS. Pre-metatarsal skeletal development in tissue culture at unit- and microgravity. J. Exp. Zool. 269: 230–41, 1994.

    PubMed  CAS  Google Scholar 

  • Lanyon LE. Functional strain as a determinant for bone remodeling. Calcif. Tissue Int. 36: S56–61, 1984.

    PubMed  Google Scholar 

  • LeBlanc AD, Schneider VS, Evans HJ, Engelbretson DA & Krebs JM. Bone mineral loss and recovery after 17 weeks of bed rest. J. Bone Min. Res. 5: 843–50, 1990.

    CAS  Google Scholar 

  • Lutwak L, Whedon GD, Lachance PA, Reid JM & Lipscomb HS. Mineral, electrolyte and nitrogen balance studies of the Gemini-VII fourteen-day orbital space flight. J. Clin. Endocrinol. 29: 1140–56, 1969.

    CAS  Google Scholar 

  • Mack PB. Bone density changes in a Macaca nemestrina monkey during the Biosatellite III project. Aerospace Med. 42: 828–33, 1971.

    PubMed  CAS  Google Scholar 

  • Mack PB, LaChance PA, Vose GP & Vogt FB. Bone demineralization of foot and hand of Gemini-Titan IV, V and VII astronauts during orbital flight. Amer. J. Roentgenol., Rad. Therapy & Nuclear Med. 100: 503–11, 1967.

    CAS  Google Scholar 

  • Malouvier A, Holy X, Zerath E, Marie PJ, Caissard JC, Schmitt DA. Receptor mediated endocytosis in osteoblastic cells under ‘gravitational stress’. Physiologist 35(1): S37–38, 1992.

    PubMed  CAS  Google Scholar 

  • Marotti G, Delrio N, Marotti F & Fadda M. Quantitative analysis of the bone destroying activity of osteocytes and osteoclasts in experimental disuse osteoporosis. Ital. J. Orthop. Traumatol. 5: 225–40, 1979.

    PubMed  CAS  Google Scholar 

  • Mechanic GL, Arnaud SB, Boyde A, Bromage TG, Buckendahl P, Elliott JC, Katz EP & Durnova GN. Regional distribution of mineral and matrix in the femurs of rats flown on Cosmos 1887 biosatellite. FASEB J. 4: 34–40, 1990.

    PubMed  CAS  Google Scholar 

  • Mesland DAM. Gravity effects on cells. In: Proceedings of the 4th European Symposium on Life Sciences Research in Space. ESA SP-307. Ed. by David V.Paris, France, European Space Agency, pp. 221–5, 1990.

    Google Scholar 

  • Morey ER. Spaceflight and bone turnover: Correlation with a new rat model of weightlessness. Bioscience 29:168–72, 1979.

    Google Scholar 

  • Morey ER & Baylink DJ. Inhibition of bone formation during space flight. Science 201: 1138–41, 1978.

    PubMed  CAS  Google Scholar 

  • Morey-Holton ER, Schnoes HK, DeLuca HF, Phelps ME, Klein RF, Nissenson H & Arnaud CD. Vitamin D metabolites and bioactive parathyroid hormone levels during Spacelab 2. Aviat. Space Environ. Med. 59: 1038–41, 1988.

    PubMed  CAS  Google Scholar 

  • Nicogossian AE. Overall physiological response to space flight. In: Space Physiology and Medicine, 2nd edn. Ed. by Nicogossian AE, Huntoon CS & Pool SL, Lea & Febiger, Philadelphia, p. 148, 1989.

    Google Scholar 

  • Organov VS, Rakhmanov AS, Novikov VE, Zatsepin ST, Rodionova SS & Cann C. The state of human bone tissue during space flight. Acta Astronautica 23: 129–33, 1991.

    Google Scholar 

  • Patterson-Buckendahl PE, Arnaud SB, Mechanic GL, Martin RB, Grindeland RE & Cann CE. Fragility and composition of growing rat bone after one week in space flight. Amer. J. Physiol. 252: R240–6, 1987.

    PubMed  CAS  Google Scholar 

  • Pavy-Le Traon A, Guell A, Saivin S, Houin G, Soulez-Lariviere C & Pujos M. The use of medicaments in space. Therapeutic measures and potential impact of pharmacokinetics due to weightlessness. ESA Journal 18: 33–50, 1994.

    PubMed  CAS  Google Scholar 

  • Pedrini-Mille A, Maynard JA, Durnova GN, Kaplansky AS, Pedrini VA, Chung CB & Fedler-Troester J. Effects of microgravity on the composition of the intervertebral disk. J. Appl. Physiol. 73: 26S–32S, 1992.

    PubMed  CAS  Google Scholar 

  • Pitts GC, Ushakov AS, Pace N, Smith AH, Rahlmann DF & Smirnova TA.Effects of weightlessness on body composition in the rat. Amer. J. Physiol. 244: R332–7, 1983.

    PubMed  CAS  Google Scholar 

  • Popova IA, Afonin BV, Davydova NA & Grigoriev AL Hormonal regulation in space flights of varying duration . Physiologist 30: S42–4, 1987.

    PubMed  CAS  Google Scholar 

  • Pospisilova J, Serova LV & Pospisil M. The effects of spaceflight on the distribution of collagen types in bones of pregnant rats. Scr. Med. (Brno) 59: 277–82, 1986.

    Google Scholar 

  • Pospisilova J, Pospisil M & Serova LV. Deviation in the developmental dynamics of the protein composition of the connective tissue of rats gestated during the flight in the biological satellite Cosmos 1524. Scr. Med. (Brno) 60: 277–88, 1987.

    CAS  Google Scholar 

  • Pruitt LS, Jackson RD, Bartels RL & Lehnhard HJ. Weight-training effects on bonemineral density in early post-menopausal women. J. Bone Min. Res. 7: 179–85, 1992.

    CAS  Google Scholar 

  • Raab DM, Crenchaw TD, Kimmel DB & Smith EL. A histomorphometric study of the cortical bone activity during increased weight-bearing exercise. J. Bone Min. Res. 6: 741–9, 1991.

    CAS  Google Scholar 

  • Rambaut PC, Leach CS & Johnson PC. Calcium and phosphorus change of the Apollo 17 crew members. Nutr. Metabol. 18: 62–9, 1975.

    CAS  Google Scholar 

  • Reich KM, CV Gay & JA Frangos. Fluid shear stress as a mediator of osteoblast cyclic adenosine monophosphate production . J. Cell. Physiol. 143, 100–4, 1990.

    PubMed  CAS  Google Scholar 

  • Reich KM & JA Frangos. Effect of flow on prostaglandin E2 and inositol triphosphate levels in osteoblasts. Amer. J. Physiol. 261: C428–C432, 1991.

    PubMed  CAS  Google Scholar 

  • Roux W. Gesammelte Abhandlung tiber Entwicklungsmechanic der Organismen. Vols I and II. Engelmann W, Leipzig, 1895.

    Google Scholar 

  • Rubin CT. Skeletal strain and the functional significance of bone architecture. Calcif. Tissue Int. 36: S11–8, 1984.

    PubMed  Google Scholar 

  • Rubin CT & Lanyon LE. Regulation of bone formation by applied dynamic loads. J. Bone Joint Surg. 66: 397–402, 1984.

    PubMed  CAS  Google Scholar 

  • Rubin CT & Lanyon LE. Regulation of bone mass by mechanical strain magnitude. Calcif. Tissue Int. 37: 411–17, 1985.

    PubMed  CAS  Google Scholar 

  • Schmitt DA, Malouvier A, Holy X, Marie PJ, Caissard JC, Zerath E. Receptor ligand binding on osteoblasts in microgravity obtained by parabolic flight. Physiologist 34(1) S65–66, 1991.

    Google Scholar 

  • Schneider V, Organov V, LeBlanc A, Rakhmanov A, Bakulin A, Grigoriev A & Varonin L Space flight bone loss and change n fat and lean body mass. J. Bone Min. Res. 117: S122 (abstract), 1992.

    Google Scholar 

  • Shaw SR, Vailas AC, Grindeland RE & Zernicke RF. Effects of a l-week space flight on morphological and mechanical properties of growing bone. Amer. J. Physiol. 254: R78–R83, 1988.

    PubMed  CAS  Google Scholar 

  • Simmons DJ, Grynpas MD & Rosenberg GD. Maturation of bone and dentine matrices in rats flown on the Soviet biosatellite Cosmos 1887. FASEB J. 4: 29–33, 1990.

    PubMed  CAS  Google Scholar 

  • Simmons DJ, Russell JE & Grynpas MD. Bone maturation and quality of bone material in rats flown on the space shuttle ‘Spacelab 3 mission’. Bone Min. 1: 485–93, 1986.

    CAS  Google Scholar 

  • Simmons DJ, Russell JE, Winter F, Tran Van P, Vignery A, Baron R, Rosenberg GD &. Walker WV. Effect of spaceflight on the non-weight-bearing bones of the rat skeleton. Amer. J. Physiol. 244: R319–R326, 1983.

    PubMed  CAS  Google Scholar 

  • Simske SJ, Guerra KM, Greenberg AR & Luttges MW. The physical and mechanical effects of suspension-induced osteopenia on mouse long bones. J. Biomechanics 25: 489–99, 1992.

    CAS  Google Scholar 

  • Spector M, Turner RT, Morey-Holton E, Baylink DJ & Bell NH. Arrested bone formation during spaceflight results in a hypomineralized skeletal defect. Physiologist 26: S110–11, 1983

    Google Scholar 

  • Spengler DM, Morey ER, Carter DR, Turner RT & Baylink DJ. Effects of spaceflight on structural and material strength of growing bone. Proc. Soc. Exp. Biol. Med. 174: 224–8, 1983

    PubMed  CAS  Google Scholar 

  • Stepaniak PC, Furst JJ & Woodard D. Anabolic steroids as a countermeasure against bone demineralization during space flight. Aviat. Space Environ. Med. 57: 174–8, 1986.

    PubMed  CAS  Google Scholar 

  • Stupakov GP, Kazeikin VS & Morukov BV. Microgravity-induced changes in human bone strength. Physiologist 32: S41–4, 1989

    PubMed  CAS  Google Scholar 

  • Taylor GR. Overview of spaceflight immunology studies. J. Leukocyte Biol. 54: 179–88, 1993.

    PubMed  CAS  Google Scholar 

  • Tilton FE, Degioanni JJC & Schneider VS. Long-term follow-up of Skylab bone demineralization. Aviat. Space Environ. Med. 11: 1209–13, 1980.

    Google Scholar 

  • Turner RT, Bell NH, Duvall P, Bobyn JD, Spector M, Morey-Holton E & Baylink DJ. Spaceflight results in formation of defective bone (42215). Proc. Soc. Exp. Biol. Med. 180: 544–9, 1985.

    PubMed  CAS  Google Scholar 

  • Vailas AC, Vanderby R, Martinez DA, Ashman RB, Ulm MJ, Grindeland RE, Durnova GN & Kaplansky AS. Adaptations of young adult rat cortical bone to 14 days of space flight. J. Appl. Physiol. 73: 4S–9S, 1992.

    PubMed  CAS  Google Scholar 

  • vanKampen GPJ & Veldhuijzen JP. Aggregated chondrocytes as a model system to study cartilage metabolism. Exp. Cell Res. 140: 440–3, 1982.

    PubMed  Google Scholar 

  • van Loon JJWA, van den Bergh LC, Schelling R, Veldhuijzen JP & Huijser RH. Development of a centrifuge for acceleration research in cell and developmental biology. 44th Intern. Astron. Congr., IAF/IAA-93-G.4-166, 39, Graz, Austria, 16-22 October 1993-

    Google Scholar 

  • vanLoon JJWA, Bervoets DJ, Burger EH, Dieudonne SC, Hagen JW, Semeins CM. Decreased mineralization and increased calcium release in isolated fetal mouse long bones under near weightlessness. J. Bone Min. Res. 10: 550–7, 1995.

    Google Scholar 

  • Veldhuijzen JP, Bourret LA & Rodan GA. In vitro studies of the effect of intermittent compressive forces on cartilage cell proliferation. J. Cell Physiol. 98: 299–306, 1979.

    PubMed  CAS  Google Scholar 

  • Vico L, Bourrin S, Genty C, Palle S & Alexandre C. Histomorphometric analyses of cancellous bone from Cosmos 2044 rats. J. Appl. Physiol. 75: 2203–8, 1993.

    PubMed  CAS  Google Scholar 

  • Vico L, Bourrin JM, Very D, Chappard D & Alexandre C. Bone adaptation to real and simulated microgravity. In: Proceedings of the 4th European Symposium on Life Sciences Research in Space. Ed. by David V. Paris, France, European Space Agency, PP-359-61, May 1990.

    Google Scholar 

  • Vico L, Chappard D, Alexandre C, Palle S, Minaire P, Riffat G, Novikov VE & Bakulin AV. Effects of weightlessness on bone mass and osteoclast number in pregnant (Cosmos 1514). Bone 8: 95–103, 1987.

    PubMed  CAS  Google Scholar 

  • Vico L, Chappard D, Palle S, Bakulin AV & Alexandre C. Trabecular bone remodeling after seven days of weightlessness exposure (Biocosmos 1667). Amer. J. Physiol. 255: R243–7, 1988.

    PubMed  CAS  Google Scholar 

  • Vico L, Novikov VE, Very JM & Alexandre C. Bone histomorphometric comparison of rat tibial metaphysis after 7 day tail suspension vs. 7 day spaceflight. Aviat. Space Environ. Med. 62: 26–31, 1991.

    PubMed  CAS  Google Scholar 

  • Vogel JM & Whittle MW. Bone mineral changes: The second manned Skylab mission. Aviat. Space Environ. Med. 47: 396–400, 1976.

    PubMed  CAS  Google Scholar 

  • Vogel JM & Whittle MW. Bone mineral content changes in the Skylab astronauts. Amer. J. Roentgenol., Rad. Therapy & Nuclear Med. 126: 1296–7, 1976.

    CAS  Google Scholar 

  • Vose GP. Review of roentgenograph bone demineralization studies of the Gemini space flights. Amer. J. Roentgenol., Rad. Therapy & Nuclear Med. 121: 1–4, 1974.

    CAS  Google Scholar 

  • Ward FO. Outlines of Human Osteology, 3rd edn. Henry Renshaw, London, 1836.

    Google Scholar 

  • Weingart H, Kleber M, Geissler H, Wachtel E, Hecht K, Denissova L, Sergejev I & Serova, L. The influence of a one-week space flight on teeth and jaw bones of Wistarrats - Cosmos 1514 and Cosmos 1667. Physiologist 31: S34–5, 1988.

    Google Scholar 

  • Weinreb M, Rodan GA & Thompson DD. Osteopenia in the immobilized rat hind limb is associated with increased bone resorption and decreased bone formation. Bone 10: 187–94, 1989.

    PubMed  CAS  Google Scholar 

  • Whedon GD & Heaney RP. Effects of physical inactivity, paralysis and weightlessness on bone growth. In: Bone, vol. 7. Ed. by Hall B & Keith BK. CRC Press, Inc., Boca Raton, FL, U.S.A., pp. 57–77, 1993.

    Google Scholar 

  • Whedon GD, Lutwak L, Reid J, Rambaut P, Whittle M, Smith M & Leach C. Mineral and nitrogen balance study, results of metabolic observations on Skylab II 28-day orbital mission. Acta Astronautica 2: 297–309, 1975.

    PubMed  CAS  Google Scholar 

  • Wolff JD. Das Gezetz der Transformation der Knochen. Berlin, A. Hirschwald, 1892.

    Google Scholar 

  • Wong M & Carter DR. Theoretical stress analysis of organ culture osteogenesis. Bone 11: 127–131, 1990.

    PubMed  CAS  Google Scholar 

  • Wronski TJ & Morey ER. Alterations in calcium homeostasis and bone during actual and simulated space flight. Med. Sci. Sports Exerc. 15: 410–14, 1983.

    PubMed  CAS  Google Scholar 

  • Wronski TJ & Morey ER. Effects of space flight on periosteal bone formation in rats. Amer. J. Physiol. 244: R305–9, 1983.

    PubMed  CAS  Google Scholar 

  • Wronski TJ, Morey-Holton ER, Doty SB, Maese AC & Walsh CC. Histomorphometric analysis of rat skeleton following space flight. Amer. J. Physiol. 252: R252–5, 1987.

    PubMed  CAS  Google Scholar 

  • Yagodovsky VS, Triftanidi LA & Gorokhova GP. Space flight effects on skeletal bones of rats (light and electron microscopic examination). Aviat. Space Environ. Med. 47: 734–8, 1976.

    PubMed  CAS  Google Scholar 

  • Yeh C & Rodan GA. Tensile forces enhance PgE synthesis in osteoblasts grown on collagen ribbon. Calcif. Tissue Int. 36S: 67–71, 1984.

    Google Scholar 

  • Yeh JK, Liu CC & Aloia JF. Effects of exercise and immobilization on bone formation and resorption in young rats. Amer. J. Physiol. 264: E182–9, 1993.

    Google Scholar 

  • Zerath E, Nogues C, Borne M & Soudraine P. Bone effects of 13 days of weightlessness on rat and monkey: some results of Biocosmos 1887 and ground simulation. Physiologist 33: S94–5, 1990.

    PubMed  CAS  Google Scholar 

  • Zerath E, Holy X, Malouvier A, Caissard J-C & Nogues C. Rat and monkey bone study in the Biocosmos 2044 space experiment. Physiologist 34: S194–5, 1991.

    PubMed  CAS  Google Scholar 

  • Zernicke RF, Vailas AC, Grindeland RE, Kaplansky AS, Salem GJ & Martinez DA. Space flight effects on biomechanical and biochemical properties of rat vertebrae. Amer. J. Physiol. 258: R1327–32, 1990.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van Loon, J.J.W.A., Veldhuijzen, J.P., Burger, E.H. (1996). Bone and space flight: an overview. In: Moore, D., Bie, P., Oser, H. (eds) Biological and Medical Research in Space. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61099-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61099-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64694-2

  • Online ISBN: 978-3-642-61099-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics