Skip to main content

Bacterial Translocation During Traumatic Shock in Baboons

  • Chapter
Pathophysiology of Shock, Sepsis, and Organ Failure
  • 564 Accesses

Abstract

Bacterial translocation secondary to gut damage caused by traumatic shock is a source of posttraumatic sepsis. Enteral bacterial translocation has been implicated as a possible cause of the subsequent development of organ failure. In several series, only one third of multiorgan failure patients with clinical manifestations of sepsis had an identifiable focus of infection (Goris et al. 1985). The majority of intensive care patients show the picture of clinical sepsis without a focus. In these patients, the gut frequently plays an important part as a shock organ involved in the development of sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abel FL, Waldhausen JA, Scikurt EE (1965) Splanchnic blood flow in the monkey during hemorrhagic shock. Am J Physiol 208:265.

    PubMed  CAS  Google Scholar 

  • Alexander JW, Gianotti L, Pyles T, Carey MA, Babcock GF (1990) Distribution and survival of Escherichia coli, translocation from the intestine after thermal injury. Ann Surg 213:558–567.

    Article  Google Scholar 

  • Bahrami S, Leichtfried G, Redl H, Schlag G (1991) A kinetic-chromogenic method to determine endotoxin on microplates. Eur Clin Lab News, Oct. 8–9.

    Google Scholar 

  • Barton RW, Reynolds DG, Swan KG (1972) Mesenteric circulatory response to hemorrhagic shock in the baboon. Ann Surg 175:204–209.

    Article  PubMed  CAS  Google Scholar 

  • Berg RD, Wommack E, Deitch EA (1988) Immunosuppression and intestinal bacterial overgrowth synergis-tically promote bacterial translocation. Arch Surg 123:1359–1364.

    Article  PubMed  CAS  Google Scholar 

  • Berk JL, Hagen JF, Beyer WH, Dochat GR, La Pointe R (1967) The treatment of hemorrhagic shock by beta adrenergic receptor blockade. Surg Gynecol Obstet 125:311–318.

    Google Scholar 

  • Bond RF, Green HD (1983) Peripheral circulation. In: Altura BM, Lefer AM, Schumer W (eds) Handbook of shock and trauma, vol 1. Raven, New York, pp 29–49.

    Google Scholar 

  • Deitch EA, Berg BD (1987) Endotoxin but not malnutrition promotes bacterial translocation of the gut flora in burned mice. J Trauma 27:161–166.

    Article  PubMed  CAS  Google Scholar 

  • Deitch EA, Berg R, Specian R (1987a) Endotoxin promotes the translocation of bacteria from the gut. Arch Surg 122:185–190.

    Article  PubMed  CAS  Google Scholar 

  • Deitch EA, McIntyre Bridges R (1987b) Effect of stress and trauma on bacterial translocation from the gut. J Surg Res 42:536–542.

    Article  PubMed  CAS  Google Scholar 

  • Deitch EA, Ma JW, Li M, Berg R, Specian R (1989a) Endotoxin-induced bacterial translocation: a study of mechanisms. Surgery 106:292–300.

    PubMed  CAS  Google Scholar 

  • Deitch EA, Ma L, Ma JW, Grisham MB, Granger DN, Specian RD, Berg D (1989b) Inhibition of endotoxin induced bacterial translocation in mice. J Clin Invest 84:36–42.

    Article  PubMed  CAS  Google Scholar 

  • Deitch EA, Taylor M, Grisham M, Ma L, Bridges W, Berg R (1989c) Endotoxin induces bacterial translocation and increases xanthine oxidase activity. J Trauma 29:1679–1683.

    Article  PubMed  CAS  Google Scholar 

  • Deitch EA, Specian RD, Berg RD (1991) Endotoxin-induced bacterial translocation and mucosal permeability: role of xanthine oxidase, complement activation, and macrophage products. Crit Care Med 19:785–791.

    Article  PubMed  CAS  Google Scholar 

  • Einheber A, Cerilli GJ (1962) Hemorrhagic shock in the monkey. Am J Physiol 202:1182.

    Google Scholar 

  • Fiddian-Green RG (1984) A sensitive and specific diagnostic test for intestinal ischemia using Silastic R tonometers. Eur Surg Res 16:32.

    Google Scholar 

  • Fiddian-Green RG (1988) Splanchnic ischaemia and multiple organ failure in the critically ill. Ann R Coll Surg Engl 70:128–134.

    PubMed  CAS  Google Scholar 

  • Fiddian-Green R (1989) Studies in splanchnic ischemia and multiple organ failure. In: Marston A, Bulkley GB, Fiddian-Green RG, Haglund UH (eds) Splanchnic ischemia and multiple organ failure. Arnold, London, pp 349–363.

    Google Scholar 

  • Fine J, Ruteburg SH, Schweinburg FB (1959) The role of the RES in hemorrhagic shock. J Exp Med 110:547–551.

    Article  PubMed  CAS  Google Scholar 

  • Fine J, Palmerio C, Ruteburg S (1968) New developments in therapy of refractory traumatic shock. Arch Surg 96:163–167.

    Article  PubMed  CAS  Google Scholar 

  • Fine J, Caridis DT, Cuevas P, Ishiyama M, Reinhold R (1972) Therapeutic implications of new developments in the study of refractory nonseptic shock. In: Forscher BK, Lillehei RC, Stubbs SS (eds) Shock in low-and high-flow states. Excerpta Medica, Amsterdam, pp 1–7.

    Google Scholar 

  • Fink MP, Antonsson JB, Wang H, Rothschild HR (1991) Increased intestinal permeability in endotoxic pigs. Mesenteric hypoperfusion as an etiologic factor. Arch Surg 126:211–218.

    Article  PubMed  CAS  Google Scholar 

  • George BC, Ryan NT, Ullrick WC, Egdahl RH (1978) Persisting structural abnormalities in liver, kidney, and muscle tissues following hemorrhagic shock. Arch Surg 113:289–293.

    Article  PubMed  CAS  Google Scholar 

  • Goris RJ, Boekhorst PA, Nuytinck KS, Gimbrere JSF (1985) Multiple organ failure: generalized autodestructive inflammation. Arch Surg 120:1109–1115.

    Article  PubMed  CAS  Google Scholar 

  • Granger DN, Hollwarth ME, Parks DA (1986) Ischemia-reperfusion injury: role of oxygen-derived free radicals. Acta Physiol Scand [Suppl] 548:47–64.

    CAS  Google Scholar 

  • Green HD, Bond RF, Repela CE, Schmid HE, Manley E, Farrar DJ (1980) Competition between intrinsic and extrinsic controls of resistance vessels of major vascular beds during hemorrhagic hypotension and shock. In: Lefer AM, Saba TM, Mela LM (eds) Advances in shock research. Liss, New York, pp 77–104.

    Google Scholar 

  • Grum CM, Fiddian-Green RG, Pittenger GL, Grant BJB, Rothman ED, Dantzker DR (1984) Adequacy of tissue oxygenation in intact dog intestine. J Appl Physiol 56:1065–1069.

    PubMed  CAS  Google Scholar 

  • Landreneau RJ, Horton JW, Cochran RP (1991) Splanchnic blood flow response to intraaortic balloon pump assist of hemorrhagic shock. J Surg Res 51:281–287.

    Article  PubMed  CAS  Google Scholar 

  • Marshall J, Sweeney D (1990) Microbial infection and the septic response in critical surgical illness. Arch Surg 125:17–23.

    Article  PubMed  CAS  Google Scholar 

  • Marston A, Pegington J (1989) Splanchnic vascular anatomy and physiology — macroscopic anatomy. In: Marston A, Bulkley GB, Fiddian-Green RG, Haglund UH (eds) Splanchnic ischemia and multiple organ failure. Arnold, London, pp 349–363.

    Google Scholar 

  • McArdle AH, Chiu CJ, Hinchey EJ (1975) Cyclic AMP response to epinephrine and shock. Arch Surg 110:316–320.

    Article  PubMed  CAS  Google Scholar 

  • McNamara JJ, Suehiro GT, Suehiro A, Jewett B (1983) Resuscitation from hemorrhagic shock. J Trauma 23:552–558.

    Article  PubMed  CAS  Google Scholar 

  • Meakins JL, Marshall JC (1986) Multi-organ-failure syndrome. The gastrointestinal tract: the “motor” of MOE Arch Surg 121:196–208.

    Google Scholar 

  • Moore FA, Moore EE, Poggetti R, McNena OJ, Peterson VM, Abernathy CP, Parsons PE (1991) Gut bacterial translocation via the portal vein: a clinical perspective with major torso trauma. J Trauma 31:629–638.

    Article  PubMed  CAS  Google Scholar 

  • O’Dwyer ST, Michie HR, Ziegler TR, Revhaug A, Smith RJ, Wilmore DW (1988) A single dose of endotoxin increases intestinal permeability in healthy humans. Arch Surg 123:1459–1464.

    Article  PubMed  Google Scholar 

  • Parks DA, Bulkley GB, Granger DN, Hamilton SR, McCord JM (1982) Ischemic injury in the cat small intestine: role of superoxide radicals. Gastroenterology 82:9–15.

    PubMed  CAS  Google Scholar 

  • Pretorius JP, Schlag G, Redl H, Botha WS, Goosen DJ, Bosman H, van Eeden AF (1987) The “lung in shock” as a result of hypovolemic-traumatic shock in baboons. J Trauma 27:1344–1353.

    Article  PubMed  CAS  Google Scholar 

  • Redl H, Schlag G, Gasser H, Dinges HP, Radmore K, Davies J (1990) hrSOD does not prevent bacterial translocation (BT) in a baboon polytrauma model. Free Rad Biol Med 9:156.

    Article  Google Scholar 

  • Rush BRjr, Sori AJ, Murphy TF, Smith S, Flanagan JJ, Machiedo GW (1987) Endotoxemia and bacteremia during hemorrhagic shock. Ann Surg 207:549–554.

    Article  Google Scholar 

  • Saydjari R, Beerthuizen GIJM, Townsend CM, Herndon DN, Thompson JC (1991) Bacterial translocation and its relationship to visceral blood flow, gut mucosal ornithine decarboxylase activity, and DNA in pigs. J Trauma 31:639–644.

    Article  PubMed  CAS  Google Scholar 

  • Schlag G, Redl H (1985) Morphology of the microvascular system in shock: lung, liver and skeletal muscles. Crit Care Med 13:1045–1049.

    PubMed  CAS  Google Scholar 

  • Schlag G, Redl H (1989) Wandel im Sepsisverständnis der klinischen Medizin. Dtsch Med Wochenschr 114:475–478.

    PubMed  CAS  Google Scholar 

  • Schlag G, Redl H, Davies J, Dinges HP, Radmore K (1991a) Aspects of the mechanisms of bacterial translocation in a hypovolemic-traumatic shock model in baboons. Circ Shock 34:26–27.

    Google Scholar 

  • Schlag G, Redl H, Dinges HP, Davies J (1991b) Sources of endotoxin in the posttraumatic setting. In: Levin J, Sturk A, ten Cate J (eds) Bacterial endotoxins: cytokine mediators and new therapies for sepsis. Wiley/Liss, New York, pp 121–134.

    Google Scholar 

  • Schlag G, Redl H, Dinges HP, Davies J, Radmore K (1991c) Bacterial translocation in a baboon model of hypovolemic-traumatic shock. In: Schlag G, Redl H, Siegel JH, Traber DL (eds) Shock, sepsis and organ failure, 2nd Wiggers Bernard conference, 27–30 May, 1990, Schloß Dürnstein, Austria. Springer, Berlin Heidelberg New York, pp 53–83.

    Google Scholar 

  • Schoenberg MH, Muhl E, Sellin D, Younes M, Schildberg FW, Haglund U (1984) Posthypotensive generation of superoxide free radicals — possible role in the pathogenesis of the intestinal mucosal damage. Acta Chir Scand 150:301–309.

    PubMed  CAS  Google Scholar 

  • Schoenberg MH, Fredholm BB, Haglund U, Jung H, Selling D, Younes M, Schildberg FW (1985). Studies on the oxygen radical mechanism involved in small intestinal reperfusion damage. Acta Physiol Scand 124:581–589.

    Article  PubMed  CAS  Google Scholar 

  • Schottmüller H (1914) Wesen und Behandlung der Sepsis. Verh Dtsch Ges Inn Med 31:257–261.

    Google Scholar 

  • Scikurt EE, Rothe CF (1962) Pressure gradients in the splanchnic bed of the monkey during hemorrhagic shock. Proc Soc Exp Biol Med 111:57.

    Google Scholar 

  • Siegel JH, Vary TC (1987) Sepsis, abdominal metabolic control and the multiple organ failure syndrome. In: Siegel JH, Vary TC (eds) Trauma emergency, surgery and critical care. Churchill Livingstone, New York, pp 441–501.

    Google Scholar 

  • Steinberg S, Flynn W, Kelly K, Bitzer L, Sharma P, Gutierrez C, Baxter J, Lalka D, Sands A, van Liew J, Hassett J, Price R, Beam T, Flint L (1989) Development of a bacteria-independent model of the multiple organ failure syndrome. Arch Surg 124:1390–1395.

    Article  PubMed  CAS  Google Scholar 

  • Traber DL, Redl H, Schlag G, Herndon DN, Kimura R, Prien T, Traber LD (1988) Cardiopulmonary responses to continuous administration of endotoxin. Am J Physiol 245:H833–H839.

    Google Scholar 

  • Wells CL, Maddaus MA, Simmons RL (1988) Proposed mechanisms for the translocation of intestinal bacteria. Rev Infect Dis 10:958–979.

    Article  PubMed  CAS  Google Scholar 

  • Wiggers CJ, Opdyke OF, Johnson SR (1946) Portal pressure gradients under experimental conditions including hemorrhagic shock. Am J Physiol 146:192.

    PubMed  CAS  Google Scholar 

  • Younes M, Mohr A, Schoenberg MH, Schildberg FW (1987) Inhibition of lipid peroxidation by superoxide dismutase following regional intestinal ischemia and reperfusion. Res Exp Med 187:9–17.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schlag, G., Redl, H., Davies, J., van Vuuren, C.J.J., Smuts, P. (1993). Bacterial Translocation During Traumatic Shock in Baboons. In: Schlag, G., Redl, H. (eds) Pathophysiology of Shock, Sepsis, and Organ Failure. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76736-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76736-4_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76738-8

  • Online ISBN: 978-3-642-76736-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics