Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 103))

Abstract

Turnover of interstitial fluid (ISF) in most tissues depends on net fluid exchanges with plasma and lymph. ISF is produced by the process of filtration across the semipermeable capillary endothelium. It is then cleared from the interstitium either by filtration back into the capillary or by drainage with escaped colloids into the lymphatics. The situation in the central nervous system can be expected to differ. The highly impermeable cerebral capillary endothelium, or blood-brain barrier, restricts filtration between plasma and cerebral ISF, there are no lymphatics, and the brain and spinal cord are surrounded by another extracellular fluid, the cerebrospinal fluid (CSF).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alcolado R, Weller RO, Parrish EP, Garrod D (1988) The cranial arachnoid and pia mater in man: anatomical and ultrastructural observations. Neuropathol Appl Neurobiol 14:1–17

    Article  CAS  PubMed  Google Scholar 

  • Bradbury MWB (1979) The concept of a blood-brain barrier. Wiley, New York

    Google Scholar 

  • Bradbury MWB, Cserr HF (1985) Drainage of cerebral interstitial fluid and of cerebrospinal fluid into lymphatics. In: Johnston MG (ed) Experimental biology of the lymphatic circulation. Elsevier, Amsterdam, pp 355–394

    Google Scholar 

  • Bradbury MWB, Westrop RJ (1983) Factors influencing exit of substances from cerebrospinal fluid into deep cervical lymph of the rabbit. J Physiol (Lond) 339:519–534

    CAS  Google Scholar 

  • Bradbury MWB, Cserr HF, Westrop RJ (1981) Drainage of cerebral interstitial fluid into deep cervical lymph of the rabbit. Am J Physiol 240:F329–F336

    CAS  PubMed  Google Scholar 

  • Brent L (1990) Immunologically privileged sites. In: Johansson BB, Owman C, Widner H (eds) Pathophysiology of the blood-brain barrier. Elsevier, Amsterdam, pp 383–402

    Google Scholar 

  • Brierley JB, Field EJ (1948) The connexions of the spinal subarachnoid space with the lymphoid system. J Anat 82:153–166

    Google Scholar 

  • Brightman MW, Reese TS (1969) Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol 40:648–677

    Article  CAS  PubMed  Google Scholar 

  • Cotran RZ, Karnovsky MJ (1967) Vascular leakage induced by horseradish peroxidase in the rat. Proc Soc Exp Biol Med 126:557–561

    CAS  PubMed  Google Scholar 

  • Crone C (1986) The blood-brain barrier as a tight epithelium: where is information lacking? Ann NY Acad Sci 481:174–185

    Article  CAS  PubMed  Google Scholar 

  • Crone C, Olesen SP (1982) Electrical resistance of brain capillary endothelium. Brain Res 241:49–55

    Article  CAS  PubMed  Google Scholar 

  • Cserr HF (1971) Physiology of the choroid plexus. Physiol Rev 51;273–311

    CAS  PubMed  Google Scholar 

  • Cserr HF (1981) Convection of brain interstitial fluid. In: Kovach AGB, Hamar J, Szabo L (eds) Advances in physiological science, vol 7. Pergamon, Budapest, pp 337–341

    Google Scholar 

  • Cserr HF (1984) Convection of brain interstitial fluid. In: Shapiro K, Marmarou A, Portnoy H (eds) Hydrocephalus. Raven, New York, pp 59–68

    Google Scholar 

  • Cserr HF, Berman BJ (1978) Iodide and thiocyanate efflux from brain following injection into rat caudate nucleus. Am J Physiol 235:F331–F337

    CAS  PubMed  Google Scholar 

  • Cserr HF, Bundgaard M (1984) Blood-brain interfaces in vertebrates: a comparative approach. Am J Physiol 246:R277–R288

    CAS  PubMed  Google Scholar 

  • Cserr HF, Ostrach LH (1974) Bulk flow of interstitial fluid after intracranial injection of Blue Dextran 2000. Exp Neurol 45:50–60

    Article  CAS  PubMed  Google Scholar 

  • Cserr HF, Patlak CS (1991) Regulation of brain volume under isosmotic and anisosmotic conditions. In: Gilles R, Hoffmann EK, Bolis L (eds) Advances in comparative and environmental physiology, vol 9. Springer, Berlin Heidelberg New York, pp 61–80

    Google Scholar 

  • Cserr HF, Cooper DN, Milhorat TH (1977) Flow of cerebral interstitial fluid as indicated by the removal of extracellular markers from rat caudate nucleus. Exp Eye Res [Suppl] 25:461–473

    Article  Google Scholar 

  • Cserr HF, Bundgaard M, Ashby JK, Murray M (1980) On the anatomic relation ofchoroid plexus to brain: a comparative study. Am J Physiol 238:R76–R81

    CAS  PubMed  Google Scholar 

  • Cserr HF, Cooper DN, Suri PK, Patlak CS (1981) Efflux of radiolabeled polyethylene glycols and albumin from rat brain. Am J Physiol 240:F319–F328

    CAS  PubMed  Google Scholar 

  • Cserr HF, DePasquale M, Patlak CS (1987a) Regulation of brain water and electrolytes during acute hyperosmolality in rats. Am J Physiol 253:F522–F529

    CAS  PubMed  Google Scholar 

  • Cserr HF, DePasquale M, Patlak CS (1987b) Volume regulatory influx of electrolytes from plasma to brain during acute hperosmolality. Am J Physiol 253:F530–F537

    CAS  PubMed  Google Scholar 

  • Cserr HF, DePasquale M, Nicholson C, Patlak CS, Pettigrew, KD, Rice ME (1991) Extracellular volume decreases while cell volume is maintained by uptake of ions in rat cerebral cortex during acute hypernatraemia. J Physiol (Lond) (in press)

    Google Scholar 

  • Davson H (1956) Physiology of the ocular and cerebrospinal fluids. Churchill, London,p 50

    Google Scholar 

  • Davson H, Kleeman CR, Levin E (1963) The blood-brain barrier. In: Hogben AM, Lindgren P (eds) Drugs and membranes. Pergamon, Oxford, vol 4, pp 71–94

    Google Scholar 

  • Doherty PC, Allan JE, Lynch F, Ceredig R (1990) Dissection of an inflammatory process induced by CD8+ T cells. Immunol Today 11:55–59

    Article  CAS  PubMed  Google Scholar 

  • Fenstermacher JD (1984) Volume regulation of the central nervous system. In: Staub NC, Taylor AE (eds) Edema. Raven, New York, pp 383–404

    Google Scholar 

  • Fenstermacher JD, Patlak CS (1976) The movements of water and solutes in the brains of mammals. In: Pappius HM, Feindel W (eds) Dynamics of brain edema. Springer, Berlin Heidelberg New York, pp 87–94

    Chapter  Google Scholar 

  • Firth JA (1977) Cytochemical localization of the K regulation interface between blood and brain. Experientia 33:1093–1094

    Article  CAS  PubMed  Google Scholar 

  • Harling-Berg C (1989) The humoral immune response to human serum albumin infused into the cerebrospinal fluid of the rat. PhD thesis, Brown University, Providence

    Google Scholar 

  • Harling-Berg C, Knopf PM, Merriam J, Cserr HF (1989) Role of cervical lymph nodes in the systemic humoral immune response to human serum albumin microinfused into rat CSF. J Neuroimmunol 25:185–193

    Article  CAS  PubMed  Google Scholar 

  • Hickey WF, Kimura H (1988) Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science 239:290–292

    Article  CAS  PubMed  Google Scholar 

  • His W (1865) Über ein perivasculäres Kanalsystem in den nervösen Centrai-Organen und über dessen Beziehungen zum Lymphsystem. Z Wiss Zool 15:127–141

    Google Scholar 

  • Hockwald GM, van Driel A, Robinson ME, Thorbecke GJ (1988) Immune response in draining lymph nodes and spleen after intraventricular injection of antigen. Int J Neurosci 39:299–306

    Article  Google Scholar 

  • Hutchings M, Weller RO (1986) Anatomical relationships of the pia mater to cerebral blood vessels in man. J Neurosurg 65:316–325

    Article  CAS  PubMed  Google Scholar 

  • Ichimura T, Fraser PA, Cserr HF (1991) Distribution of extracellular tracers in perivascular spaces of the rat brain. Brain Res (in press)

    Google Scholar 

  • Katzman R, Pappius HM (1973) Brain electrolytes and fluid metabolism. Williams and Wilkins, Baltimore, p 125

    Google Scholar 

  • Klatzo I, Wisniewski H, Steinwall O, Streicher E (1967) Dynamics of cold injury edema. In: Klatzo I, Seitelberger F (eds) Brain edema. Springer, Berlin Heidelberg New York, pp 554–563

    Google Scholar 

  • Krahn V (1982) The pia mater at the site of entry of blood vessels into the central nervous system. Anat Embryol (Berl) 164:257–263

    Article  CAS  Google Scholar 

  • Krisch B, Leonhardt H, Oksche A (1984) Compartments and perivascular arrangement of the meninges covering the cerebral cortex of the rat. Cell Tissue Res 238:459–474

    Article  CAS  PubMed  Google Scholar 

  • Levin VA, Fenstermacher JD, Patlak CS (1970) Sucrose and inulin space measurements of ceresbral cortex in four mammalian species. Am J Physiol 219:1528–1533

    CAS  PubMed  Google Scholar 

  • Murphy VA, Johanson CE (1989) Acidosis, acetazolamide, and amiloride: effects on 22Na transfer across the blood-brain and blood-CSF barriers. J Neurochem 52:1058–1063

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa H, Groothuis D, Owens E, Fenstermacher J, Patlak C, Blasberg R (1987) Dexamethasone effects on (125I) albumin distribution in experimental RG–2 gliomas and adjacent brain. J Cereb Blood Flow Metab 7:687–701

    Article  CAS  PubMed  Google Scholar 

  • Nicholson C, Rice ME (1986) The migration of substances in the neuronal microenvironment. Ann NY Acad Sci 481:55–68

    Article  CAS  Google Scholar 

  • Oehmichen M (1978) Mononuclear phagocytes in the central nervous system. Springer, Berlin Heidelberg New York, pp 65–82 (Neurology series, vol 21)

    Google Scholar 

  • Oldendorf WH, Cornford ME, Brown WJ (1977) The large apparent work capability of the blood-brain barrier: a study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Ann Neurol 1:409–417

    Article  CAS  PubMed  Google Scholar 

  • Pullen RGL, Cserr HF (1984) Pressure dependent penetration of CSF into brain. Fed Proc 43:2521

    Google Scholar 

  • Pullen RGL, DePasquale M, Cserr HF (1987) Bulk flow of cerebrospinal fluid into brain in response to acute hyperosmolality. Am J Physiol 253:F538–F545

    CAS  PubMed  Google Scholar 

  • Rennels ML, Gregory TF, Blaumanis OR, Fujimoto K, Grady PA (1985) Evidence for a “paravascular” fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res 326:47–63

    Article  CAS  PubMed  Google Scholar 

  • Reulen HJ, Graham R, Spatz M, Klatzo I (1977) Role of pressure gradients and bulk flow in dynamics of vasogenic brain edema. J Neurosurg 46:24–35

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg GA, Kyner WT, Estrada E (1980) Bulk flow of brain interstitial fluid under normal and hyperosmolar conditions. Am J Physiol 238:F42–F49

    CAS  PubMed  Google Scholar 

  • Rosenberg GA, Kyner WT, Estrada E (1982) The effect of increased CSF pressure on interstitial fluid flow during ventriculocisternal perfusion in the cat. Brain Res 232:141–150

    Article  CAS  PubMed  Google Scholar 

  • Szentistvanyi I, Patlak CS, Ellis RA, Cserr HF (1984) Drainage of interstitial fluid from different regions of rat brain. Am J Physiol 246:F835–F844

    PubMed  Google Scholar 

  • Welch K (1970) Discussion. In: Coxon RV (ed) Proceedings of a symposium on the blood-brain barrier. Truex, Oxford, pp 170–171

    Google Scholar 

  • Widner H (1990) Immunological basis for intracerebral reconstructive transplantations. Tryckt hos Graphic Systems, Malmo, pp 34–35

    Google Scholar 

  • Widner H, Moller G, Johansson BB (1988) Immune response in deep cervical lymph nodes and spleen in the mouse after antigen deposition in different intracerebral sites. Scand J Immunol 28:563–571

    Article  PubMed  Google Scholar 

  • Wiig H, Reed RK (1983) Rat brain interstitial fluid pressure measured with micropipettes. Am J Physiol 244:H239–H246

    Google Scholar 

  • Woollam DHM, Millen JW (1954) Perivascular spaces of the mammalian central nervous system. Biol Rev 29:251–283

    Article  Google Scholar 

  • Yamada S, DePasquale M, Patlak CS, Cserr HF (1991) Albumin outflow into deep cervical lymph from different regions of rabbit brain. Am J Physiol (in press)

    Google Scholar 

  • Zhang ET, Inman CBE, Weller RO (1990) Interrelationships of the pia mater and the perivascular (Virchow-Robin) spaces in the human cerebrum. J Anat 170: 111–123

    PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cserr, H.F., Patlak, C.S. (1992). Secretion and Bulk Flow of Interstitial Fluid. In: Bradbury, M.W.B. (eds) Physiology and Pharmacology of the Blood-Brain Barrier. Handbook of Experimental Pharmacology, vol 103. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76894-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76894-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76896-5

  • Online ISBN: 978-3-642-76894-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics