Skip to main content

Opioid Actions on Membrane Ion Channels

  • Chapter
Opioids

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 104 / 1))

Abstract

Drugs, hormones, and neurotransmitters can open and close ion channels by several molecular mechanisms. First, the transmitter receptor might itself comprise the ion channel: examples are the nicotinic acetylcholine (ACh) receptors, the glutamate receptors, γ-aminobutyric acid (GABAA) receptors, 5-hydroxytryptamine (5-HT3) receptors, and adenosine 5’- triphosphate (ATP P2x) receptors (North 1989a). In this case, the channel is named for the transmitter that causes it to open whereas other channels are usually named for the ions that pass through them. The movement of ions through such ligand-gated channels has immediate electrical consequences and may have secondary metabolic consequences; for example, significant entry of calcium ions through the channel may activate intracellular enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aghajanian GK, Wang YY (1986) Pertussis toxin blocks the outward currents evoked by opiate and a2 agonists in locus coeruleus. Brain Res 371: 390–394

    Article  PubMed  CAS  Google Scholar 

  • Andrade R, Van der Maalen CP, Aghajanian GK (1983) Morphine tolerance and dependence in the locus coeruleus: single cell studies in brain slices. Eur J Pharmacol 91: 161–169

    Article  PubMed  CAS  Google Scholar 

  • Ashcroft FM (1988) Adenosine 5’-triphosphate-sensitive potassium channels. Annu Rev Neurosci 11: 97–118

    Article  PubMed  CAS  Google Scholar 

  • Augustine GJ (1990) Regulation of transmitter release at the squid giant synapse by presynaptic delayed rectifer potassium channel. J Physiol (Lond) 431: 343–364

    CAS  Google Scholar 

  • Bean BP (1989) Neurotransmitter inhibition of neuronal calcium currents by changes in channel voltage dependence. Nature 340: 153–156

    Article  PubMed  CAS  Google Scholar 

  • Brown AM, Birnbaumer L (1990) Ionic channels and their regulation by G protein subunits. Annu Rev Physiol 52: 197–213

    Article  PubMed  CAS  Google Scholar 

  • Brown DA, Docherty RJ, McFadzean I (1989) Calcium channels in vertebrate neurons: experiments on a neuroblastoma hybrid model. Ann NY Acad Sci 560: 358–372

    Article  PubMed  CAS  Google Scholar 

  • Bug W, Williams JT, North RA (1986) Membrane potential measured during potassium evoked noradrenaline release from rat brain neurons: effects of normorphine. J Neurochem 47: 652–655

    Article  PubMed  CAS  Google Scholar 

  • Carbone E, Lux HD (1984) A low voltage–activated fully inactivating Ca channel in vertebrate sensory neurones. Nature 310: 501–502

    Article  PubMed  CAS  Google Scholar 

  • Catterall WA (1988) Structure and function of voltage-sensitive ion channels. Science 242: 50–61

    Article  PubMed  CAS  Google Scholar 

  • Chalazonitis A, Crain SM (1986) Maturation of opioid sensitivity of fetal mouse dorsal root ganglion neruon perikarya in organotypic cultures: regulation by spinal cord. Neuroscience 17: 1181–1198

    Article  PubMed  CAS  Google Scholar 

  • Chen G-G, Chalazonitis A, Shen K-F, Crain SM (1988) Inhibitor of cyclic AMP- dependent protein kinase blocks opioid-induced prolongation of the action potential of mouse sensory ganglion neurons in dissociated cell cultures. Brain Res 462: 372–377

    Article  PubMed  CAS  Google Scholar 

  • Cherubini E, North RA (1985) μ and ĸ opioids inhibit transmitter release by different mechanisms. Proc Natl Acad Sci USA 82:1860–1863

    Google Scholar 

  • Christie MJ, North RA (1988) Agonists at μ opioid, M2 muscarinic and GABAB receptors increase the same potassium conductance in rat lateral parabrachial neurones. Br J Pharmacol 95: 896–902

    PubMed  CAS  Google Scholar 

  • Christie MJ, Williams JT, North RA (1987) Cellular mechanisms of opioid tolerance: studies in single brain neurons. Mol Pharmacol 32: 633–638

    PubMed  CAS  Google Scholar 

  • Collier HOJ, Roy AC (1974) Morphine-like drugs inhibit the stimulation by E prostaglandins of cyclic AMP formation by rat brain homogenates. Nature 248: 24–27

    CAS  Google Scholar 

  • Crain SM, Shen K-F (1990) Opioids can evoke direct receptor-mediated excitatory effects on sensory neurons. Trends Pharmacol Sci 11: 77–81

    Article  PubMed  CAS  Google Scholar 

  • Crain SM, Shen K-F, Chalazonitis A (1988) Opioids excite rather than inhibit sensory neurons after chronic opioid exposure of spinal cord-ganglion cultures. Brain Res 455: 99–109

    Article  PubMed  CAS  Google Scholar 

  • Decker ER, Dani JA (1990) Calcium permeability of the nicotinic acetylcholine receptor: the single channel calcium influx is significant. J Neurosci 10:3413–3421

    Google Scholar 

  • Dolphin AC, Scott RH (1989) Modulation of Ca2+-channel currents in sensory neurons by pertussis toxin-sensitive G-proteins. Ann NY Acad Sci 560: 387–390

    Article  PubMed  CAS  Google Scholar 

  • Duan S, Shimizu N, Fukuda A, Hori T, Oomura Y (1990) Hyperpolarizing action of enkephalin on neurons in the dorsal motor nucleus of the vagus, in vitro. Brain Res Bull 25: 551–559

    Article  PubMed  CAS  Google Scholar 

  • Duggan AW, North RA (1984) Electrophysiology of opioids. Pharmacol Rev 35: 219–281

    Google Scholar 

  • Duman RS, Tallman JF, Nestler EJ (1988) Acute and chronic opiate regulation of adenylate cyclase in brain: specific effects in locus coeruleus. J Pharmacol Exp Ther 246: 1033–1039

    PubMed  CAS  Google Scholar 

  • Evans RH, Hill RG (1978) Effects of exitatory and inhibitory peptides on isolated spinal cord preparations. In: Ryall RW, Kelly JS (eds) Iontophoresis and transmitter mechanisms in the mammalian central nervous system. Elsevier, Amsterdam, p 101

    Google Scholar 

  • Gross RA, Macdonald RL (1987) Dynorphin A selectively reduces a large transient ( N–type) calcium current of mouse dorsal root ganglion neurons in cell culture. Proc Natl Acad Sci USA 84: 5469–5473

    Google Scholar 

  • Gross RA, Moises HC, Uhler MD, Macdonald RL (1990) Dynorphin A and cAMP dependent protein kinase independently regulate neuronal calcium currents. Proc Natl Acad Sci USA 87: 7025–7029

    Article  PubMed  CAS  Google Scholar 

  • Guitart X, Nestler EJ (1989) Identification of morphine and cyclic AMP regulated phosphoproteins (MARPPs) in the locus coeruleus and other regions of the rat brain: regulation by acute and chronic morphine. J Neurosci 9: 4371–4387

    PubMed  CAS  Google Scholar 

  • Hescheler J, Rosenthal W, Trautwein W, Schultz G (1987) The GTP-binding protein, GO, regulates neuronal calcium channels. Nature 325: 445–447

    Article  PubMed  CAS  Google Scholar 

  • Hess P (1990) Calcium channels in vertebrate cells. Annu Rev Neurosci 13: 337–356

    Article  PubMed  CAS  Google Scholar 

  • Higashi H, Shinnick Gallagher P, Gallagher JP (1982) Morphine enchances and depresses Ca-dependent responses in visceral primary afferent neurons. Brain Res 251: 186–191

    Article  PubMed  CAS  Google Scholar 

  • Jeftinija S (1988) Enkephalins modulate excitatory synaptic transmission in the superficial dorsal horn by acting at μ-opioid receptor sites. Brain Res 460:260–268

    Google Scholar 

  • Jiang Z–G, North RA (1992) Pre- and post-synaptic inhibition by opioids in rat striatum. J Neurosci 12: 356–361

    PubMed  CAS  Google Scholar 

  • Johnson SM, Fleming WW (1989) Mechanisms of cellular adaptive sensitivity changes: applications to opioid tolerance and dependence. Pharmacol Rev 41: 435–488

    PubMed  CAS  Google Scholar 

  • Johnson SW, North RA (1992) Opioids excite dopamine neurons by hyperpolarization of local interneurons. J Neurosci 12: 483–488

    PubMed  CAS  Google Scholar 

  • Kaczmarek LK, Levitan IB (1987) Neuromodulation. Oxford University Press, Oxford

    Google Scholar 

  • Karras PJ, North RA (1979) Inhibition of neuronal firing by opiates: evidence against the involvement of cyclic nucleotides. Br J Pharmacol 65: 647–652

    PubMed  CAS  Google Scholar 

  • Kelly MJ, Loose MD, Ronnekleiv OK (1990) Opioids hyperpolarize β-endorphin neurons via μ-receptor activation of a potassium conductance. Neuro- endocrinology 52: 268–275

    CAS  Google Scholar 

  • Klee WA, Nirenberg M (1974) A neuroblastoma x glioma hybrid cell line with morphine receptors. Proc Natl Acad Sci USA 71: 3474–3477

    Article  PubMed  CAS  Google Scholar 

  • Lacey MG, Mercuri NB, North RA (1989) Two cells types in rat substantia nigra zona compacta distinguished by membrane properties. J Neurosci 9: 1233–1241

    PubMed  CAS  Google Scholar 

  • Latorre R, Oberhauser A, Labarca P, Alvarez O (1989) Varieties of calcium-activated potassium channels. Annu Rev Physiol 51: 385–399

    Article  PubMed  CAS  Google Scholar 

  • Loose MD, Kelly MJ (1990) Opioids act at μ–receptors to hyperpolarize arcuate neurons via an inwardly rectifying potassium conductance. Brain Res 513: 15–23

    Article  PubMed  CAS  Google Scholar 

  • Loose MD, Ronnekleiv OK, Kelly MJ (1990) Membrane properties and response to opioids of identified dopamine neurons in the guinea pig hypothalamus. J Neurosci 10: 3627–3634

    PubMed  CAS  Google Scholar 

  • Lord J AH, Waterfield AA, Hughes J, Kosterlitz HW (1977) Endogenous opioid peptides: multiple agonists and receptors. Nature 267: 495–499

    Article  PubMed  CAS  Google Scholar 

  • Macdonald RL, Nelson PG (1978) Specific opiate induced depression of transmitter release from dorsal root ganglion cells in culture. Science 199: 1449–1451

    Article  PubMed  CAS  Google Scholar 

  • Macdonald RL, Werz MA (1986) Dynorphin A decreases voltage-dependent calcium conductance of dorsal root ganglion neurons. J Physiol (Lond) 377: 237–249

    CAS  Google Scholar 

  • McFadzean I, Docherty RJ (1989) Noradrenaline and encephalin-induced inhibition of voltage-sensitive calcium current in NG108–15 hybrid cells: transduction mechanisms. Eur J Neurosci 1: 141–147

    Article  PubMed  Google Scholar 

  • McFadzean I, Lacey MG, Hill RG, Henderson G (1987) Kappa opioid receptor activation depresses excitatory synaptic input to rat locus coeruleus neurons in vitro. Neuroscience 20: 231–239

    Article  PubMed  CAS  Google Scholar 

  • McFadzean I, Mullaney I, Brown DA, Milligan G (1989) Antibodies to the GTP binding protein, GO, antagonize noradrenaline-induced calcium current inhibition in NG108–15. Neurone 3: 177–182

    Article  CAS  Google Scholar 

  • Madison DV, Nicoll RA (1988) Enkephalin hyperpolarizes interneurons in the rat hippocampus. J Physiol (Lond) 398: 123–130

    CAS  Google Scholar 

  • Mihara S, North RA (1986) Opioids increase potassium conductance in guinea-pig submucous neurones by activating 5 receptors. Br J Pharmacol 88: 315–322

    PubMed  CAS  Google Scholar 

  • Mihara S, North RA, Surprenant A (1987) Somatostatin increase an inwardly rectifying potassium conductance in guinea-pig submucous plexus neurones. J Physiol (Lond) 390: 335–355

    CAS  Google Scholar 

  • Montel H, Starke K, Taube HD (1975) Influence of morphine and naloxone on the release of noradrenaline from rat cerebllar cortex slices. Naunyn Schmiedebergs Arch Pharmacol 288: 427–433

    Article  PubMed  CAS  Google Scholar 

  • Mudge AW, Leeman SE, Fischbach GD (1979) Enkephalin inhibits release of substance P from sensory neurons in culture and decreases action potential duration. Proc Natl Acad Sci USA 76: 526–530

    Article  PubMed  CAS  Google Scholar 

  • Murase K, Nedeljkov V, Randic M (1982) The actions of neuropeptides on dorsal horn neurons in the rat spinal cord preparation: an intracellular study. Brain Res 234: 170–176

    Article  PubMed  CAS  Google Scholar 

  • Nakamura S, Tepper JM, Young SJ, Ling N, Groves PM (1982) Noradrenergic terminal excitability: effects of opioids. Neurosci Lett 30: 57–62

    Article  PubMed  CAS  Google Scholar 

  • Nicoll RA (1982) Responses of central neurones to opiates and opioid peptides. In: Costa E, Trabucchi M (eds) Regulatory peptides: from molecular biology to function. Raven, New York, p 337

    Google Scholar 

  • Nicoll RA, Alger BE, Jahr CE (1980) Enkephalin blocks inhibitory pathways in the vertebrate CNS. Nature 287: 22–25

    Article  PubMed  CAS  Google Scholar 

  • North RA (1989a) Neurotransmitters and their receptors: from the clone to the clinic. Semin Neurosci 1: 81–90

    Google Scholar 

  • North RA (1989b) Drug receptors and the inhibtion of nerve cells. Br J Pharmacol 98: 13–28

    PubMed  CAS  Google Scholar 

  • North RA, Tonini M (1977) The mechanism of action of narcotic analgesics in the guinea-pig ileum. Br J Pharmacol 61: 541–549

    PubMed  CAS  Google Scholar 

  • North RA, Williams JT (1983) How do opiates inhibit transmitter release? Trends Neurosci 6: 337–339

    Article  CAS  Google Scholar 

  • North RA, Williams JT (1985) On the potassium conductance increased by opioids in rat locus coeruleus neurones. J Physiol (Lond) 364: 265–280

    CAS  Google Scholar 

  • North RA, Williams JT, Surprenant A, Christie MJ (1987) μ and β opioid receptors both belong to a family of receptors which couple to a potassium conductance. Proc Natl Acad Sci USA 84:5487–5491

    Google Scholar 

  • Nowycky MC, Fox AP, Tsien RW (1985) Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature 316: 440–443

    Article  PubMed  CAS  Google Scholar 

  • Pan ZZ, Williams JT, Osborne PB (1990) Opioid actions on single nucleus raphe magnus neurons from rat and guinea pig in vitro. J Physiol (Lond) 427: 519–532

    CAS  Google Scholar 

  • Pepper CM, Henderson G (1980) Opiates and opioid peptides hyperpolarize locus coeruleus neurones in vitro. Science 209: 394–396

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen K, Beitner-Johnson DB, Krystal JH, Aghajanian GK, Nestler EJ (1990) Opiate withdrawal and the rat locus coeruleus: behavioral, electrophysiological, and biochemical correlates. J Neurosci 10: 2308–2317

    PubMed  CAS  Google Scholar 

  • Rudy B (1988) Diversity and ubiquity of K channels. Neuroscience 25: 729–749

    Article  PubMed  CAS  Google Scholar 

  • Sah DWY (1990) Neurotransmitter modulation of calcium current in rat spinal cord neurons. J Neurosci 10: 136–141

    PubMed  CAS  Google Scholar 

  • Sakmann B, Noma A, Trautwein W (1983) Acetylcholine activation of single muscarinic K channels in isolated pacemaker cells of the mammalian heart. Nature 303: 250–253

    Article  PubMed  CAS  Google Scholar 

  • Schroeder JE, Fischbach PS, Mamo M, McCleskey EW (1990) Two components of high-threshold Ca2+ current inactivate by different mechanisms. Neurone 5:445–452

    Google Scholar 

  • Schroeder JE, Fischbach PS, Zheng D, McCleskey EW (1991) Activation of mu opioid receptors inhibits transient high and low threshold Ca++ currents, but spares a sustained current. Neuron 6: 13–20

    Article  PubMed  CAS  Google Scholar 

  • Seward EP, Henderson G (1990) Characterization of two components of the N-like, high-threshold-activated calcium channel current in differentiated SH–SY5Y cells. Pflugers Arch 417: 223–230

    Article  PubMed  CAS  Google Scholar 

  • Seward E, Hammond C, Henderson G (1991) μ-opioid receptor-mediated inhibition of the N-type calcium channel current. Proc Roy Soc (Lond) B 244:129–135

    Google Scholar 

  • Shen K-F, Crain SM (1989) Dual opioid modulation of the action potential duration of mouse dorsal root ganglion neurons in culture. Brain Res 491: 227–242

    Article  PubMed  CAS  Google Scholar 

  • Shen K-Z, Surprenant A (1990) Mechanisms underlying presynaptic inhibition through α2-adrenoceptors in guinea pig submucosal neurones. J Physiol (Lond) 431: 609–628

    CAS  Google Scholar 

  • Shen K-Z, North RA, Surprenant A (1992) Potassium channels opened by noradrenaline and other transmitters in excised membrane patches of guinea-pig submucosal neurones. J Physiol (Lond) 445: 581–599

    CAS  Google Scholar 

  • Shimahara T, Icard-Liepkalns C (1987) Activation of enkephalin receptors reduces calcium conductance in neuroblastoma cells. Brain Res 415: 357–361

    Article  PubMed  CAS  Google Scholar 

  • Surprenant A, North RA (1988) Mechanism of synaptic inhibtion by noradrenaline acting at α2-adrenoceptors. Proc R Soc Lond [Biol] 234: 85–114

    Article  CAS  Google Scholar 

  • Surprenant A, Shen K-Z, North RA, Tatsumi H (1990) Inhibition of calcium currents by noradrenaline, somatostatin and opioids in guinea-pig submucosal neurones. J Physiol (Lond) 431: 585–608

    CAS  Google Scholar 

  • Tatsumi H, Costa M, Schimerlik M, North RA (1990) Potassium conductance increased by noradrenaline, opioids, somatostatin and G-proteins: whole-cell recording from guinea pig submucous neurons. J Neurosci 10: 1675–1682

    PubMed  CAS  Google Scholar 

  • Tsien RW (1983) Calcium channels in excitable membranes. Annu Rev Physiol 45: 341–358

    Article  PubMed  CAS  Google Scholar 

  • Tsunoo A, Yoshii M, Narahashi T (1986) Block of calcium channels by enkephalin and somatostatin in neuroblastoma-glioma hybrid NG108–15 cells. Proc Natl Acad Sci USA 83: 9832–9836

    Article  PubMed  CAS  Google Scholar 

  • Ullrich S, Wollheim CB (1988) GTP-dependent inhibition of insulin secretion by epinephrine in permeabilized RINm5F cells. J Biol Chem 263: 8615–8620

    PubMed  CAS  Google Scholar 

  • van Dongen AM J, Codina J, Olate J, Mattera R, Joho R, Birnbaumer L, Brown AM (1988) Newly identified brain potassium channels gated by the guanine nucleotide binding protein G0. Science 242: 1433–1437

    Article  Google Scholar 

  • Werz MA, Macdonald RL (1983) Opioid peptides selective for mu and delta opiate receptors reduce calcium-dependent action potential duration by increasing potassium conductance. Neurosci Lett 42: 173–178

    Article  PubMed  CAS  Google Scholar 

  • Werz MA, Macdonald RL (1985) Dynorphin and neoendorphin peptides decrease dorsal root ganglion neurons calcium-dependent action potential duration. J Pharmacol Exp Ther 234: 49–56

    PubMed  CAS  Google Scholar 

  • Westbrook GL, Jahr CE (1989) Glutamate receptors in excitatory transmission. Semin Neurosci 1: 103–114

    Google Scholar 

  • Williams JT, North RA (1984) Opiate-receptor interactions on single locus coeruleus neurones. Mol Pharmacol 26: 489–497

    PubMed  CAS  Google Scholar 

  • Williams JT, Egan TM, North RA (1982) Enkephalin opens potassium channels in mammalian central neurones. Nature 299: 74–76

    Article  PubMed  CAS  Google Scholar 

  • Williams JT, North RA, Tokimasa T (1988) Inward rectification of resting and opiate–activated potassium currents in rat locus coeruleus neurons. J Neurosci 8: 4299–4306

    PubMed  CAS  Google Scholar 

  • Wimpey TL, Chavkin C (1991) Opioids activate both an inward rectifier and a novel voltage–gated potassium conductance in the hippocampal formation. Neuron 6: 281–289

    Article  PubMed  CAS  Google Scholar 

  • Wouters W, Van der Bercken J (1979) Hyperpolarization and depression of slow synaptic inhibition in frog sympathetic ganglion. Nature 277: 53–54

    Article  PubMed  CAS  Google Scholar 

  • Wuarin J-P, Dudek FE (1990) Direct effects of an opioid peptide selective for μ-receptors: intracellular recordings in the paraventricular and supraoptic nuclei of the guinea-pig. Neuroscience 36: 291–298

    Article  PubMed  CAS  Google Scholar 

  • Wuarin J-P, Dubois-Dauphin M, Raggenbass M, Dreifuss JJ (1988) Effect of opioid peptides on the paraventricular nucleus of the guinea pig hypothalamus is mediated by μ-type receptors. Brain Res 445: 289–296

    Article  PubMed  CAS  Google Scholar 

  • Young W, Chen J, Jung F, Gardner P (1988) Dihydropyridine Bay K 8644 activates T lymphocyte calcium-permeable channels. Mol Pharmacol 34: 239–244

    PubMed  CAS  Google Scholar 

  • Yoshimura M, North RA (1983) Substantia gelatinosa neurones in vitro hyperpolarized by enkephalin. Nature 305: 529–530

    Article  PubMed  CAS  Google Scholar 

  • Zieglgänsberger W, Bayerl H (1976) The mechanism of inhibition of neuronal activity by opiates in the spinal cord of the cat. Brain Res 115: 111–128

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

North, R.A. (1993). Opioid Actions on Membrane Ion Channels. In: Herz, A., Akil, H., Simon, E.J. (eds) Opioids. Handbook of Experimental Pharmacology, vol 104 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77460-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77460-7_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77462-1

  • Online ISBN: 978-3-642-77460-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics