Skip to main content

Dendritic Cell-Based Immunotherapy

  • Chapter
Dendritic Cells and Virus Infection

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 276))

Abstract

Dendritic cell (DC)-based vaccinations represent a promising approach for the immunotherapy of cancer and infectious diseases as DCs play an essential role in initiating cellular immune responses. A number of clinical trials using ex vivo-generated DCs have been performed so far and only minor toxicity has been reported. Both the induction of antigen-specific T cells and clinical responses have been observed in vaccinated cancer patients. Nevertheless, DC-based immunotherapy is still in its infancy and there are many issues to be addressed such as antigen loading procedures, DC source and maturational state, migration properties, route, frequency, and dosage of DC vaccination. The increasing knowledge of DC biology should be used to improve the efficacy of this new therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albert ML, Pearce SF, Francisco LM, Sauter B, Roy P, Silverstein RL, Bhardwaj N: Immature dendritic cells phagocytose apoptotic cells via alphavbeta5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J.Exp.Med. 1998, 188:1359–1368.

    Article  Google Scholar 

  • Alexopoulou L, Holt AC, Medzhitov R, Flavell RA: Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 2001, 413:732–738.

    Article  PubMed  CAS  Google Scholar 

  • Altman JD, Moss PH, Goulder PR, Barouch DH, McHeyzer-Williams MG, Bell JI, McMichael AJ, Davis MM: Phenotypic analysis of antigen-specific T lymphocytes [published erratum appears in Science 1998 Jun 19;280(5371):1821]. Science 1996, 274: 94–96.

    Article  PubMed  CAS  Google Scholar 

  • Andersen MH, Pedersen LO, Capeller B, Brocker EB, Becker JC, Thor SP: Spontaneous cytotoxic T-cell responses against survivin-derived MHC class I-restricted T-cell epitopes in situ as well as ex vivo in cancer patients. Cancer Res. 2001, 61: 5964–5968.

    PubMed  CAS  Google Scholar 

  • Arnold D, Faath S, Rammensee H, Schild H: Cross-priming of minor histocompatibility antigen-specific cytotoxic T cells upon immunization with the heat shock protein gp96. J.Exp.Med. 1995, 182: 885–889.

    Article  PubMed  CAS  Google Scholar 

  • Arnold D, Wahl C, Faath S, Rammensee HG, Schild H: Influences of transporter associated with antigen processing (TAP) on the repertoire of peptides associated with the endoplasmic reticulum-resident stress protein gp96. J.Exp.Med. 1997, 186: 461–466.

    Article  PubMed  CAS  Google Scholar 

  • Ashley DM, Faiola B, Nair S, Hale LP, Bigner DD, Gilboa E: Bone marrow-generated dendritic cells pulsed with tumor extracts or tumor RNA induce antitumor immunity against central nervous system tumors. J Exp.Med. 1997, 186: 1177–1182.

    Article  PubMed  CAS  Google Scholar 

  • Austrup F, Vestweber D, Borges E, Lohning M, Brauer R, Herz U, Renz H, Hall-mann R, Scheffold A, Radbruch A, Hamann A: P- and E-selectin mediate recruitment of T-helper-1 but not T-helper-2 cells into inflamed tissues. Nature 1997, 385: 81–83.

    Article  PubMed  CAS  Google Scholar 

  • Banchereau J, Palucka AK, Dhodapkar M, Burkeholder S, Taquet N, Rolland A, Taquet S, Coquery S, Wittkowski KM, Bhardwaj N, Pineiro L, Steinman R, Fay J: Immune and clinical responses in patients with metastatic melanoma to CD34(+) progenitor-derived dendritic cell vaccine. Cancer Res. 2001a, 61: 6451–6458.

    PubMed  CAS  Google Scholar 

  • Banchereau J, Schuler-Thurner B, Palucka AK, Schuler G: Dendritic cells as vectors for therapy. Cell 2001b, 106: 271–274.

    Article  PubMed  CAS  Google Scholar 

  • Banchereau J, Steinman RM: Dendritic cells and the control of immunity. Nature 1998, 392: 245–252.

    Article  PubMed  CAS  Google Scholar 

  • Bender A, Sapp M, Schuler G, Steinman RM, Bhardwaj N: Improved methods for the generation of dendritic cells from nonproliferating progenitors in human blood. J.Immunol.Methods 1996, 196: 121–135.

    Article  PubMed  CAS  Google Scholar 

  • Benlagha K, Weiss A, Beavis A, Teyton L, Bendelac A: In vivo identification of glycolipid antigen-specific T cells using fluorescent CD1d tetramers. J Exp.Med. 2000, 191: 1895–1903.

    Article  PubMed  CAS  Google Scholar 

  • Bennett SR: Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature. 1998, 393: 478–480.

    Article  PubMed  CAS  Google Scholar 

  • Blachere NE, Li Z, Chandawarkar RY, Suto R, Jaikaria NS, Basu S, Udono H, Srivastava PK: Heat shock protein-peptide complexes, reconstituted in vitro, elicit peptide-specific cytotoxic T lymphocyte response and tumor immunity. J.Exp.Med. 1997, 186: 1315–1322.

    Article  PubMed  CAS  Google Scholar 

  • Blom B, Ho S, Antonenko S, Liu YJ: Generation of interferon alpha-producing predendritic cell (Pre-DC)2 from human CD34(+) hematopoietic stem cells. J Exp.Med. 2000, 192: 1785–1796.

    Article  PubMed  CAS  Google Scholar 

  • Brossart P, Wirths S, Stuhler G, Reichardt VL, Kanz L, Brugger W: Induction of cytotoxic T-lymphocyte responses in vivo after vaccinations with peptide-pulsed dendritic cells. Blood 2000, 96: 3102–3108.

    PubMed  CAS  Google Scholar 

  • Burch PA, Breen JK, Buckner JC, Gastineau DA, Kaur JA, Laus RL, Padley DJ, Peshwa MV, Pitot HC, Richardson RL, Smits BJ, Sopapan P, Strang G, Valone FH, Vuk-Pavlovic S: Priming tissue-specific cellular immunity in a phase I trial of autologous dendritic cells for prostate cancer. Clin.Cancer Res. 2000, 6: 2175–2182.

    PubMed  CAS  Google Scholar 

  • Caux C, Massacrier C, Vanbervliet B, Dubois B, Durand I, Cella M, Lanzavecchia A, Banchereau J: CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to granulocyte-macrophage colony-stimulating factor plus tumor necrosis factor alpha: II. Functional analysis. Blood 1997, 90: 1458–1470.

    PubMed  CAS  Google Scholar 

  • Caux C, Vanbervliet B, Massacrier C, Dezutter-Dambuyant C, Saint-Vis B, Jacquet C, Yoneda K, Imamura S, Schmitt D, Banchereau J: CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF+TNF alpha. J Exp.Med. 1996, 184: 695–706.

    Article  PubMed  CAS  Google Scholar 

  • Cella M, Engering A, Pinet V, Pieters J, Lanzavecchia A: Inflammatory stimuli induce accumulation of MHC class II complexes on dendritic cells. Nature 1997, 388: 782–787.

    Article  PubMed  CAS  Google Scholar 

  • Cella M, Salio M, Sakakibara Y, Langen H, Julkunen I, Lanzavecchia A: Maturation, activation, and protection of dendritic cells induced by double-stranded RNA. J.Exp.Med. 1999, 189: 821–829.

    Article  PubMed  CAS  Google Scholar 

  • Coughlin CM, Salhany KE, Gee MS, LaTemple DC, Kotenko S, Ma X, Gri G, Wysocka M, Kim JE, Liu L, Liao F, Farber JM, Pestka S, Trinchieri G, Lee WM: Tumor cell responses to IFNgamma affect tumorigenicity and response to IL-12 therapy and antiangiogenesis. Immunity. 1998, 9: 25–34.

    Article  PubMed  CAS  Google Scholar 

  • Da Silva DM, Eiben GL, Fausch SC, Wakabayashi MT, Rudolf MP, Velders MP, Kast WM: Cervical cancer vaccines: emerging concepts and developments. J Cell Physiol 2001, 186: 169–182.

    Article  PubMed  Google Scholar 

  • de Baey A, Lanzavecchia A: The role of aquaporins in dendritic cell macropinocytosis. J.Exp.Med. 2000, 191: 743–748.

    Article  PubMed  Google Scholar 

  • de Jong EC, Vieira PL, Kalinski P, Schuitemaker JH, Tanaka Y, Wierenga EA, Yazdanbakhsh M, Kapsenberg ML: Microbial compounds selectively induce Th1 cell-promoting or Th2 cell-promoting dendritic cells in vitro with diverse th cell-polarizing signals. J Immunol. 2002, 168: 1704–1709.

    PubMed  Google Scholar 

  • Dhodapkar MV, Krasovsky J, Steinman RM, Bhardwaj N: Mature dendritic cells boost functionally superior CD8(+) T-cell in humans without foreign helper epitopes. J Clin.Invest 2000, 105: R9 - R14.

    Article  PubMed  CAS  Google Scholar 

  • Dhodapkar MV, Steinman RM, Krasovsky J, Munz C, Bhardwaj N: Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J.Exp.Med. 2001, 193: 233–238.

    Article  PubMed  CAS  Google Scholar 

  • Dhodapkar MV, Steinman RM, Sapp M, Desai H, Fossella C, Krasovsky J, Donahoe SM, Dunbar PR, Cerundolo V, Nixon DF, Bhardwaj N: Rapid generation of broad T-cell immunity in humans after a single injection of mature dendritic cells. J.Clin.Invest. 1999, 104: 173–180.

    Article  PubMed  CAS  Google Scholar 

  • Dietz AB, Vuk-Pavlovic S: High efficiency adenovirus-mediated gene transfer to human dendritic cells. Blood 1998, 91: 392–398.

    PubMed  CAS  Google Scholar 

  • Dieu MC, Vanbervliet B, Vicari A, Bridon JM, Oldham E, Ait-Yahia S, Briere F, Zlotnik A, Lebecque S, Caux C: Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites. J Exp.Med. 1998, 188: 373–386.

    Article  PubMed  CAS  Google Scholar 

  • Dubey P, Hendrickson RC, Meredith SC, Siegel CT, Shabanowitz J, Skipper JC, Engelhard VH, Hunt DF, Schreiber H: The immunodominant antigen of an ultraviolet-induced regressor tumor is generated by a somatic point mutation in the DEAD box helicase p68. J Exp.Med. 1997, 185: 695–705.

    Article  PubMed  CAS  Google Scholar 

  • Dyall J, Latouche JB, Schnell S, Sadelain M: Lentivirus-transduced human monocyte-derived dendritic cells efficiently stimulate antigen-specific cytotoxic T lymphocytes. Blood 2001, 97: 114–121.

    Article  PubMed  CAS  Google Scholar 

  • Dzionek A, Fuchs A, Schmidt P, Cremer S, Zysk M, Miltenyi S, Buck DW, Schmitz J: BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood. J Immunol. 2000, 165: 6037–6046.

    PubMed  CAS  Google Scholar 

  • Eggert AA, Schreurs MW, Boerman OC, Oyen WJ, de Boer AJ, Punt CJ, Figdor CG, Adema GJ: Biodistribution and vaccine efficiency of murine dendritic cells are dependent on the route of administration. Cancer Res. 1999, 59: 3340–3345.

    PubMed  CAS  Google Scholar 

  • Engelmayer J, Larsson M, Lee A, Lee M, Cox WI, Steinman RM, Bhardwaj N: Mature dendritic cells infected with canarypox virus elicit strong anti-human immunodeficiency virus CD8+ and CD4+ T-cell responses from chronically infected individuals. J Virol. 2001, 75: 2142–2153.

    Article  PubMed  CAS  Google Scholar 

  • Engelmayer J, Larsson M, Subklewe M, Chahroudi A, Cox WI, Steinman RM, Bhardwaj N: Vaccinia virus inhibits the maturation of human dendritic cells: a novel mechanism of immune evasion. J.Immunol. 1999, 163: 6762–6768.

    PubMed  CAS  Google Scholar 

  • Ferlazzo G, Tsang ML, Moretta L, Melioli G, Steinman RM, Munz C: Human dendritic cells activate resting natural killer (NK) cells and are recognized via the NKp30 receptor by activated NK cells. J Exp.Med. 2002, 195: 343–351.

    Article  PubMed  CAS  Google Scholar 

  • Ferlazzo G, Wesa A, Wei WZ, Galy A: Dendritic cells generated either from CD34+ progenitor cells or from monocytes differ in their ability to activate antigen-specific CD8+ T cells. J Immunol. 1999, 163: 3597–3604.

    PubMed  CAS  Google Scholar 

  • Fernandez NC, Lozier A, Flament C, Ricciardi-Castagnoli P, Bellet D, Suter M, Perricaudet M, Tursz T, Maraskovsky E, Zitvogel L: Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo. Nat.Med. 1999, 5: 405–411.

    Article  PubMed  CAS  Google Scholar 

  • Feuerstein B, Berger TG, Maczek C, Roder C, Schreiner D, Hirsch U, Haendle I, Leisgang W, Glaser A, Kuss O, Diepgen TL, Schuler G, Schuler-Thurner B: A method for the production of cryopreserved aliquots of antigen-preloaded, mature dendritic cells ready for clinical use. J Immunol Methods 2000, 245: 15–29.

    Article  PubMed  CAS  Google Scholar 

  • Fong L, Brockstedt D, Benike C, Breen JK, Strang G, Ruegg CL, Engleman EG: Dendritic cell-based xenoantigen vaccination for prostate cancer immunotherapy. J Immunol. 2001a, 167: 7150–7156.

    PubMed  CAS  Google Scholar 

  • Fong L, Brockstedt D, Benike C, Wu L, Engleman EG: Dendritic cells injected via different routes induce immunity in cancer patients. J.Immunol. 2001b, 166: 4254–4259.

    PubMed  CAS  Google Scholar 

  • Gong J, Nikrui N, Chen D, Koido S, Wu Z, Tanaka Y, Cannistra S, Avigan D, Kufe D: Fusions of human ovarian carcinoma cells with autologous or allogeneic dendritic cells induce antitumor immunity. J Immunol. 2000, 165: 1705–1711.

    PubMed  CAS  Google Scholar 

  • Hahn S, Gehri R, Erb P: Mechanism and biological significance of CD4-mediated cytotoxicity. Immunol.Rev. 1995, 146: 57–79.

    Article  PubMed  CAS  Google Scholar 

  • Haicheur N, Bismuth E, Bosset S, Adotevi O, Warnier G, Lacabanne V, Regnault A, Desaymard C, Amigorena S, Ricciardi-Castagnoli P, Goud B, Fridman WH, Johannes L, Tartour E: The B subunit of Shiga toxin fused to a tumor antigen elicits CTL and targets dendritic cells to allow MHC class I-restricted presentation of peptides derived from exogenous antigens. J.Immunol. 2000, 165: 3301–3308.

    PubMed  CAS  Google Scholar 

  • Henderson RA, Nimgaonkar MT, Watkins SC, Robbins PD, Ball ED, Finn OJ: Human dendritic cells genetically engineered to express high levels of the human epithelial tumor antigen mucin (MUC-1). Cancer Res. 1996, 56: 3763–3770.

    PubMed  CAS  Google Scholar 

  • Hermans IF, Ritchie DS, Yang J, Roberts JM, Ronchese F: CD8+ T cell-dependent elimination of dendritic cells in vivo limits the induction of antitumor immunity. J Immunol. 2000, 164: 3095–3101.

    PubMed  CAS  Google Scholar 

  • Hernando J, Park TW, Kubler K, Offergeld R, Schlebusch H, Bauknecht T: Vaccination with autologous tumour antigen-pulsed dendritic cells in advanced gynaecological malignancies: clinical and immunological evaluation of a phase I trial. Cancer Immunol.Immunother. 2002, 51: 45–52.

    Article  PubMed  CAS  Google Scholar 

  • Holtl L: CD83+ blood dendritic cells as a vaccine for immunotherapy of metastatic renal-cell cancer. Lancet. 1998, 352: 1358.

    Article  PubMed  CAS  Google Scholar 

  • Hsu FJ, Benike C, Fagnoni F, Liles TM, Czerwinski D, Taidi B, Engleman EG, Levy R: Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat.Med. 1996, 2: 52–58.

    Article  PubMed  CAS  Google Scholar 

  • Ignatius R, Mahnke K, Rivera M, Hong K, Isdell F, Steinman RM, Pope M, Stamatatos L: Presentation of proteins encapsulated in sterically stabilized liposomes by dendritic cells initiates CD8(+) T-cell responses in vivo. Blood 2000a, 96: 3505–3513.

    PubMed  CAS  Google Scholar 

  • Ignatius R, Marovich M, Mehlhop E, Villamide L, Mahnke K, Cox WI, Isdell F, Frankel SS, Mascola JR, Steinman RM, Pope M: Canarypox virus-induced maturation of dendritic cells is mediated by apoptotic cell death and tumor necrosis factor alpha secretion. J Virol. 2000b, 74: 11329–11338.

    Article  PubMed  CAS  Google Scholar 

  • Inaba K, Turley S, Iyoda T, Yamaide F, Shimoyama S, Sousa C, Germain RN, Mellman I, Steinman RM: The formation of immunogenic major histocompatibility complex class II-peptide ligands in lysosomal compartments of dendritic cells is regulated by inflammatory stimuli. J Exp.Med. 2000, 191: 927–936.

    Article  PubMed  CAS  Google Scholar 

  • Inaba K, Turley S, Yamaide F, Iyoda T, Mahnke K, Inaba M, Pack M, Subklewe M, Sauter B, Sheff D, Albert M, Bhardwaj N, Mellman I, Steinman RM: Efficient presentation of phagocytosed cellular fragments on the major histocompatibility complex class II products of dendritic cells. J.Exp.Med. 1998, 188: 2163–2173.

    Article  PubMed  CAS  Google Scholar 

  • Irvine AS, Trinder PK, Laughton DL, Ketteringham H, McDermott RH, Reid SC, Haines AM, Amir A, Husain R, Doshi R, Young LS, Mountain A: Efficient nonviral transfection of dendritic cells and their use for in vivo immunization. Nat.Biotechnol. 2000, 18: 1273–1278.

    Article  PubMed  CAS  Google Scholar 

  • Jager E, Nagata Y, Gnjatic S, Wada H, Stockert E, Karbach J, Dunbar PR, Lee SY, Jungbluth A, Jager D, Arand M, Ritter G, Cerundolo V, Dupont B, Chen YT, Old LJ, Knuth A: Monitoring CD8 T cell responses to NY-ESO-1: correlation of humoral and cellular immune responses. Proc.Natl.Acad.Sci.U.S.A 2000, 97: 4760–4765.

    Article  PubMed  CAS  Google Scholar 

  • Jakob T, Walker PS, Krieg AM, von Stebut E, Udey MC, Vogel JC: Bacterial DNA and CpG-containing oligodeoxynucleotides activate cutaneous dendritic cells and induce IL-12 production: implications for the augmentation of Th1 responses. Int.Arch.Allergy Immunol. 1999, 118: 457–461.

    Article  PubMed  CAS  Google Scholar 

  • Jenne L, Arrighi JF, Sauter B, Kern P: Dendritic cells pulsed with unfractionated helminthic proteins to generate antiparasitic cytotoxic T lymphocyte. Parasite Immunol. 2001a, 23: 195–201.

    Article  PubMed  CAS  Google Scholar 

  • Jenne L, Hauser C, Arrighi JF, Saurat JH, Hugin A: Poxvirus as a vector to transduce human dendritic cells for immunotherapy: abortive infection but reduced APC function. Gene Therapy 2000, 7: 1575–1583.

    Article  PubMed  CAS  Google Scholar 

  • Jenne L, Schuler G, Steinkasserer A: Viral vectors for dendritic cell-based immunotherapy. Trends Immunol 2001b, 22: 102–107.

    Article  PubMed  CAS  Google Scholar 

  • Jiang W, Swiggard WJ, Heufler C, Peng M, Mirza A, Steinman RM, Nussenzweig MC: The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing. Nature 1995, 375: 151–155.

    Article  PubMed  CAS  Google Scholar 

  • Jonuleit H, Giesecke-Tuettenberg A, Tuting T, Thurner-Schuler B, Stuge TB, Paragnik L, Kandemir A, Lee PP, Schuler G, Knop J, Enk AH: A comparison of two types of dendritic cell as adjuvants for the induction of melanoma-specific T-cell responses in humans following intranodal injection. Int.J.Cancer 2001, 93: 243–251.

    Article  PubMed  CAS  Google Scholar 

  • Jonuleit H, Kuhn U, Muller G, Steinbrink K, Paragnik L, Schmitt E, Knop J, Enk AH: Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions. Eur.J.Immunol. 1997, 27: 3135–3142.

    Article  PubMed  CAS  Google Scholar 

  • Jonuleit H, Schmitt E, Schuler G, Knop J, Enk AH: Induction of interleukin 10-producing, nonproliferating CD4(+) T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J.Exp.Med. 2000, 192: 1213–1222.

    Article  PubMed  CAS  Google Scholar 

  • Josien R, Li HL, Ingulli E, Sarma S, Wong BR, Vologodskaia M, Steinman RM, Choi Y: TRANCE, a tumor necrosis factor family member, enhances the longevity and adjuvant properties of dendritic cells in vivo. J Exp.Med. 2000, 191: 495–502.

    Article  PubMed  CAS  Google Scholar 

  • Kaisho T, Akira S: Critical roles of Toll-like receptors in host defense. Crit Rev.Immunol. 2000, 20: 393–405.

    Article  PubMed  CAS  Google Scholar 

  • Kalinski P, Hilkens CM, Snijders A, Snijdewint FG, Kapsenberg ML: IL-12-deficient dendritic cells, generated in the presence of prostaglandin E2, promote type 2 cytokine production in maturing human naive T helper cells. J Immunol. 1997, 159: 28–35.

    PubMed  CAS  Google Scholar 

  • Kampgen E, Koch N, Koch F, Stoger P, Heufler C, Schuler G, Romani N: Class II major histocompatibility complex molecules of murine dendritic cells: synthesis, sialylation of invariant chain, and antigen processing capacity are down-regulated upon culture. Proc.Natl.Acad.Sci.U.S.A 1991, 88: 3014–3018.

    Article  PubMed  CAS  Google Scholar 

  • Kawano T, Cui J, Koezuka Y, Toura I, Kaneko Y, Motoki K, Ueno H, Nakagawa R, Sato H, Kondo E, Koseki H, Taniguchi M: CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides. Science 1997, 278: 1626–1629.

    Article  PubMed  CAS  Google Scholar 

  • Kellermann SA, Hudak S, Oldham ER, Liu YJ, McEvoy LM: The CC chemokine receptor-7 ligands 6Ckine and macrophage inflammatory protein-3 beta are potent chemoattractants for in v. J Immunol. 1999, 162: 3859–3864.

    PubMed  CAS  Google Scholar 

  • Kim DT, Mitchell DJ, Brockstedt DG, Fong L, Nolan GP, Fathman CG, Engleman EG, Rothbard JB: Introduction of soluble proteins into the MHC class I pathway by conjugation to an HIV tat peptide. J.Immunol. 1997, 159: 1666–1668.

    PubMed  CAS  Google Scholar 

  • Koido S, Kashiwaba M, Chen D, Gendler S, Kufe D, Gong J: Induction of antitumor immunity by vaccination of dendritic cells transfected with MUC1 RNA. J Immunol. 2000, 165: 5713–5719.

    PubMed  CAS  Google Scholar 

  • Korn EL, Arbuck SG, Pluda JM, Simon R, Kaplan RS, Christian MC: Clinical trial designs for cytostatic agents: are new approaches needed? J Clin.Oncol. 2001, 19: 265–272.

    PubMed  CAS  Google Scholar 

  • Kugler A, Stuhler G, Walden P, Zoller G, Zobywalski A, Brossart P, Trefzer U, Ullrich S, Muller CA, Becker V, Gross AJ, Hemmerlein B, Kanz L, Muller GA, Ringert RH: Regression of human metastatic renal cell carcinoma after vaccination with tumor cell-dendritic cell hybrids. Nat.Med. 2000, 6: 332–336.

    Article  PubMed  CAS  Google Scholar 

  • Kukutsch NA, Rossner S, Austyn JM, Schuler G, Lutz MB: Formation and kinetics of MHC class I-ovalbumin peptide complexes on immature and mature murine dendritic cells. J Invest Dermatol. 2000, 115: 449–453.

    Article  PubMed  CAS  Google Scholar 

  • Labeur MS, Roters B, Pers B, Mehling A, Luger TA, Schwarz T, Grabbe S: Generation of tumor immunity by bone marrow-derived dendritic cells correlates with dendritic cell maturation stage. J Immunol. 1999, 162: 168–175.

    PubMed  CAS  Google Scholar 

  • Langenkamp A, Messi M, Lanzavecchia A, Sallusto F: Kinetics of dendritic cell activation: impact on priming of TH1, TH2 and nonpolarized T cells. Nat.Immunol. 2000, 1: 311–316.

    Article  PubMed  CAS  Google Scholar 

  • Le Bon A, Schiavoni G, D’Agostino G, Gresser I, Belardelli F, Tough DF: Type i inter-ferons potently enhance humoral immunity and can promote isotype switching by stimulating dendritic cells in vivo. Immunity. 2001, 14: 461–470.

    Article  PubMed  Google Scholar 

  • Lee PP, Yee C, Savage PA, Fong L, Brockstedt D, Weber JS, Johnson D, Swetter S, Thompson J, Greenberg PD, Roederer M, Davis MM: Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nat.Med. 1999, 5: 677–685.

    Article  PubMed  CAS  Google Scholar 

  • Lim SH, Bailey-Wood R: Idiotypic protein-pulsed dendritic cell vaccination in multiple myeloma. Int.J Cancer 1999, 83: 215–222.

    Article  PubMed  CAS  Google Scholar 

  • Liso A, Stockerl-Goldstein KE, Auffermann-Gretzinger S, Benike CJ, Reichardt V, van Beckhoven A, Rajapaksa R, Engleman EG, Blume KG, Levy R: Idiotype vaccination using dendritic cells after autologous peripheral blood progenitor cell transplantation for multiple myeloma. Biol.Blood Marrow Transplant. 2000, 6: 621–627.

    Article  PubMed  CAS  Google Scholar 

  • Liu YJ: Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell 2001, 106: 259–262.

    Article  PubMed  CAS  Google Scholar 

  • Ludewig B, Ochsenbein AF, Odermatt B, Paulin D, Hengartner H, Zinkernagel RM: Immunotherapy with dendritic cells directed against tumor antigens shared with normal host cells results in severe autoimmune disease. J Exp.Med. 2000, 191: 795–804.

    Article  PubMed  CAS  Google Scholar 

  • Ludewig B, Odermatt B, Ochsenbein AF, Zinkernagel RM, Hengartner H: Role of dendritic cells in the induction and maintenance of autoimmune diseases. Immunol.Rev. 1999, 169: 45–54.

    Article  PubMed  CAS  Google Scholar 

  • Macagno A, Gilliet M, Sallusto F, Lanzavecchia A, Nestle FO, Groettrup M: Dendritic cells up-regulate immunoproteasomes and the proteasome regulator PA28 during maturation. Eur.J Immunol. 1999, 29: 4037–4042.

    Article  PubMed  CAS  Google Scholar 

  • Mackensen A, Herbst B, Chen JL, Kohler G, Noppen C, Herr W, Spagnoli GC, Cerundolo V, Lindemann A: Phase I study in melanoma patients of a vaccine with peptide-pulsed dendritic cells generated in vitro from CD34(+) hematopoietic progenitor cells. Int.J.Cancer 2000.May.;86.(3.):385–392.

    Google Scholar 

  • Mackensen A, Herbst B, Chen JL, Kohler G, Noppen C, Herr W, Spagnoli GC, Cerundolo V, Lindemann A: Phase I study in melanoma patients of a vaccine with peptide-pulsed dendritic cells generated in vitro from CD34(+) hematopoietic progenitor cells. Int.J.Cancer 2000.May. 86: 385–392.

    Google Scholar 

  • Mahnke K, Guo M, Lee S, Sepulveda H, Swain SL, Nussenzweig M, Steinman RM: The dendritic cell receptor for endocytosis, DEC-205, can recycle and enhance antigen presentation via major histocompatibility complex class II-positive lysosomal compartments. J Cell Biol. 2000, 151: 673–684.

    Article  PubMed  CAS  Google Scholar 

  • Mandruzzato S, Brasseur F, Andry G, Boon T, van der BP: A CASP-8 mutation recognized by cytolytic T lymphocytes on a human head and neck carcinoma. J Exp.Med. 1997, 186: 785–793.

    Article  PubMed  CAS  Google Scholar 

  • Maraskovsky E, Daro E, Roux E, Teepe M, Maliszewski CR, Hoek J, Caron D, Lebsack ME, McKenna HJ: In vivo generation of human dendritic cell subsets by Flt3 ligand. Blood 2000, 96: 878–884.

    PubMed  CAS  Google Scholar 

  • Matsuda JL, Naidenko OV, Gapin L, Nakayama T, Taniguchi M, Wang CR, Koezuka Y, Kronenberg M: Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J Exp.Med. 2000, 192: 741–754.

    Article  PubMed  CAS  Google Scholar 

  • Mbow ML, Zeidner N, Panella N, Titus RG, Piesman J: Borrelia burgdorferi-pulsed dendritic cells induce a protective immune response against tick-transmitted spirochetes. Infect.Immun. 1997, 65: 3386–3390.

    PubMed  CAS  Google Scholar 

  • Medema JP, Schuurhuis DH, Rea D, van Tongeren J, de Jong J, Bres SA, Laban S, Toes RE, Toebes M, Schumacher TN, Bladergroen BA, Ossendorp F, Kummer JA, Melief CJ, Offringa R: Expression of the serpin serine protease inhibitor 6 protects dendritic cells from cytotoxic T lymphocyte-induced apoptosis: differential modulation by T helper type 1 and type 2 cells. J Exp.Med. 2001, 194: 657–667.

    Article  PubMed  CAS  Google Scholar 

  • Mellman I, Steinman RM: Dendritic cells: specialized and regulated antigen processing machines. Cell 2001, 106: 255–258.

    Article  PubMed  CAS  Google Scholar 

  • Miltenyi S, Muller W, Weichel W, Radbruch A: High gradient magnetic cell separation with MACS. Cytometry 1990, 11: 231–238.

    Article  PubMed  CAS  Google Scholar 

  • Moll H, Berberich C: Dendritic cell-based vaccination strategies: induction of protective immunity against leishmaniasis. Immunobiology 2001, 204: 659–666.

    Article  PubMed  CAS  Google Scholar 

  • Morel S, Levy F, Burlet-Schiltz O, Brasseur F, Probst-Kepper M, Peitrequin AL, Monsarrat B, Van Velthoven R, Cerottini JC, Boon T, Gairin JE, Van den Eynde BJ: Processing of some antigens by the standard proteasome but not by the immunoproteasome results in poor presentation by dendritic cells. Immunity. 2000, 12: 107–117.

    Article  PubMed  CAS  Google Scholar 

  • Morse MA, Coleman RE, Akabani G, Niehaus N, Coleman D, Lyerly HK: Migration of human dendritic cells after injection in patients with metastatic malignancies. Cancer Res. 1999, 59: 56–58.

    PubMed  CAS  Google Scholar 

  • Munz C, Bickham KL, Subklewe M, Tsang ML, Chahroudi A, Kurilla MG, Zhang D, O’Donnell M, Steinman RM: Human CD4(+) T lymphocytes consistently respond to the latent Epstein- Barr virus nuclear antigen EBNA1. J Exp.Med. 2000, 191: 1649–1660.

    Article  PubMed  CAS  Google Scholar 

  • Murphy G, Tjoa B, Ragde H, Kenny G, Boynton A: Phase I clinical trial: T-cell therapy for prostate cancer using autologous dendritic cells pulsed with HLA-A0201- specific peptides from prostate-specific membrane antigen. Prostate 1996, 29: 371–380.

    Article  PubMed  CAS  Google Scholar 

  • Murphy GP, Tjoa BA, Simmons SJ, Jarisch J, Bowes VA, Ragde H, Rogers M, Elgamal A, Kenny GM, Cobb OE, Ireton RC, Troychak MJ, Salgaller ML, Boynton AL: Infusion of dendritic cells pulsed with HLA-A2-specific prostate-specific membrane antigen peptides: a phase II prostate cancer vaccine trial involving patients with hormone-refractory metastatic disease. Prostate 1999a, 38: 73–78.

    Article  PubMed  CAS  Google Scholar 

  • Murphy GP, Tjoa BA, Simmons SJ, Ragde H, Rogers M, Elgamal A, Kenny GM, Troychak MJ, Salgaller ML, Boynton AL: Phase II prostate cancer vaccine trial: report of a study involving 37 patients with disease recurrence following primary treatment. Prostate 1999b, 39: 54–59.

    Article  PubMed  CAS  Google Scholar 

  • Murphy GP, Tjoa BA, Simmons SJ, Rogers MK, Kenny GM, Jarisch J: Higher-dose and less frequent dendritic cell infusions with PSMA peptides in hormone-refractory metastatic prostate cancer patients. Prostate 2000, 43: 59–62.

    Article  PubMed  CAS  Google Scholar 

  • Nair SK, Heiser A, Boczkowski D, Majumdar A, Naoe M, Lebkowski JS, Vieweg J, Gilboa E: Induction of cytotoxic T cell responses and tumor immunity against unrelated tumors using telomerase reverse transcriptase RNA transfected dendritic cells. Nat.Med. 2000, 6: 1011–1017.

    Article  PubMed  CAS  Google Scholar 

  • Nair SK, Hull S, Coleman D, Gilboa E, Lyerly HK, Morse MA: Induction of carcinoembryonic antigen (CEA)-specific cytotoxic T- lymphocyte responses in vitro using autologous dendritic cells loaded with CEA peptide or CEA RNA in patients with metastatic malignancies expressing CEA. Int.J Cancer 1999, 82: 121–124.

    Article  PubMed  CAS  Google Scholar 

  • Nepom GT, Buckner JH, Novak EJ, Reichstetter S, Reijonen H, Gebe J, Wang R, Swanson E, Kwok WW: HLA class II tetramers: tools for direct analysis of antigen-specific CD4+ T cells. Arthritis Rheum. 2002, 46: 5–12.

    Article  PubMed  CAS  Google Scholar 

  • Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R, Burg G, Schadendorf D: Vaccination of melanoma patients with peptide-or tumor lysate-pulsed dendritic cells. Nat.Med. 1998, 4: 328–332.

    Article  PubMed  CAS  Google Scholar 

  • Nishimura T, Iwakabe K, Sekimoto M, Ohmi Y, Yahata T, Nakui M, Sato T, Habu S, Tashiro H, Sato M, Ohta A: Distinct role of antigen-specific T helper type 1 (Th1) and Th2 cells in tumor eradication in vivo. J Exp.Med. 1999, 190: 617–627.

    Article  PubMed  CAS  Google Scholar 

  • Pardoll DM: Cancer vaccines. Nat.Med. 1998, 4: 525–531.

    Article  PubMed  CAS  Google Scholar 

  • Peshwa MV: Induction of prostate tumor-specific CD8+ cytotoxic T-lymphocytes in vitro using antigen-presenting cells pulsed with prostatic acid phosphatase peptide. Prostate. 1998, 36: 129–138.

    Article  PubMed  CAS  Google Scholar 

  • Qin Z, Blankenstein T: CD4+ T cell-mediated tumor rejection involves inhibition of angiogenesis that is dependent on IFN gamma receptor expression by nonhematopoietic cells. Immunity. 2000, 12: 677–686.

    Article  PubMed  CAS  Google Scholar 

  • Regnault A, Lankar D, Lacabanne V, Rodriguez A, Thery C, Rescigno M, Saito T, Verbeek S, Bonnerot C, Ricciardi-Castagnoli P, Amigorena S: Fcgamma receptor-mediated induction of dendritic cell maturation and major histocompatibility complex class I-restricted antigen presentation after immune complex internalization. J.Exp.Med. 1999, 189: 371–380.

    Article  PubMed  CAS  Google Scholar 

  • Reichardt VL, Okada CY, Liso A, Benike CJ, Stockerl-Goldstein KE, Engleman EG, Blume KG, Levy R: Idiotype vaccination using dendritic cells after autologous peripheral blood stem cell transplantation for multiple myeloma–a feasibility study. Blood 1999, 93: 2411–2419.

    PubMed  CAS  Google Scholar 

  • Rescigno M, Borrow P: The host-pathogen interaction: new themes from dendritic cell biology. Cell 2001, 106: 267–270.

    Article  PubMed  CAS  Google Scholar 

  • Ridge JP: A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature. 1998, 393: 474–478.

    Article  PubMed  CAS  Google Scholar 

  • Rieser C, Ramoner R, Holtl L, Rogatsch H, Papesh C, Stenzl A, Bartsch G, Thurnher M: Mature dendritic cells induce T-helper type-1-dominant immune responses in patients with metastatic renal cell carcinoma. Urol.Int. 1999, 63: 151–159.

    Article  PubMed  CAS  Google Scholar 

  • Sallusto F, Cella M, Danieli C, Lanzavecchia A: Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J.Exp.Med. 1995, 182: 389–400.

    Article  PubMed  CAS  Google Scholar 

  • Sallusto F, Lanzavecchia A, Mackay CR: Chemokines and chemokine receptors in T-cell priming and Th1/Th2-mediated responses. Immunol Today 1998a, 19: 568–574.

    Article  PubMed  CAS  Google Scholar 

  • Sallusto F, Palermo B, Lenig D, Miettinen M, Matikainen S, Julkunen I, Forster R, Burgstahler R, Lipp M, Lanzavecchia A: Distinct patterns and kinetics of chemokine production regulate dendritic cell function. Eur.J Immunol. 1999, 29: 1617–1625.

    Article  PubMed  CAS  Google Scholar 

  • Sallusto F, Schaerli P, Loetscher P, Schaniel C, Lenig D, Mackay CR, Qin S, Lanzavecchia A: Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. Eur.J Immunol 1998b, 28: 2760–2769.

    Article  PubMed  CAS  Google Scholar 

  • Santin AD, Bellone S, Ravaggi A, Roman JJ, Pecorelli S, Parham GP, Cannon MJ: Induction of tumour-specific CD8(+) cytotoxic T lymphocytes by tumour lysatepulsed autologous dendritic cells in patients with uterine serous papillary cancer. Br.J Cancer 2002, 86: 151–157.

    Article  PubMed  CAS  Google Scholar 

  • Savill J, Fadok V: Corpse clearance defines the meaning of cell death. Nature 2000, 407: 784–788.

    Article  PubMed  CAS  Google Scholar 

  • Schoenberger SP, Toes RE, van der Voort EI, Offringa R, Melief CJ: T-cell help for cytotoxic T lymphocytes is mediated by CD40–CD40L interactions [see comments]. Nature 1998, 393: 480–483.

    Article  PubMed  CAS  Google Scholar 

  • Schuler-Thurner B, Dieckmann D, Keikavoussi P, Bender A, Maczek C, Jonuleit H, Roder C, Haendle I, Leisgang W, Dunbar R, Cerundolo V, von Den DP, Knop J, Brocker EB, Enk A, Kampgen E, Schuler G: Mage-3 and influenza-matrix peptide-specific cytotoxic T cells are inducible in terminal stage HLA-A2.1+ melanoma patients by mature monocyte-derived dendritic cells. J.Immunol. 2000, 165: 3492–3496.

    PubMed  CAS  Google Scholar 

  • Schuler-Thurner B, Schultz ES, Berger T, Weinlich G, Ebner S, Woerl P, Bender A, Feuerstein B Fritsch PO, Romani N, Schuler G: Rapid induction of tumor-specific type 1 helper T cells in metastatic melanoma patients by vaccination with mature, cryopreserved, peptide-loaded monocyte-derived dendritic cells. J Exp.Med. 2002.

    Google Scholar 

  • Schultz ES, Chapiro J, Lurquin C, Claverol S, Burlet-Schiltz O, Warnier G, Russo V, Morel S, Levy F, Boon T, Van den Eynde BJ, van der BP: The production of a new MAGE-3 peptide presented to cytolytic T lymphocytes by HLA-B40 requires the immunoproteasome. J.Exp.Med. 2002, 195: 391–399.

    Article  PubMed  CAS  Google Scholar 

  • Schultz ES, Lethe B, Cambiaso CL, Van Snick J, Chaux P, Corthals J, Heirman C, Thielemans K, Boon T, van der BP: A MAGE-A3 peptide presented by HLA-DP4 is recognized on tumor cells by CD4+ cytolytic T lymphocytes. Cancer Res. 2000, 60: 6272–6275.

    PubMed  CAS  Google Scholar 

  • Schuurhuis DH, Laban S, Toes RE, Ricciardi-Castagnoli P, Kleijmeer MJ, van der Voort EI, Rea D, Offringa R, Geuze HJ, Melief CJ, Ossendorp F: Immature dendritic cells acquire CD8(+) cytotoxic T lymphocyte priming capacity upon activation by T helper cell-independent or -dependent stimuli. J Exp.Med. 2000, 192: 145–150.

    Article  PubMed  CAS  Google Scholar 

  • Seder RA, Hill AV: Vaccines against intracellular infections requiring cellular immunity. Nature 2000, 406: 793–798.

    Article  PubMed  CAS  Google Scholar 

  • Sevilla N, Kunz S, Holz A, Lewicki H, Homann D, Yamada H, Campbell KP, de La Torre JC, Oldstone MB: Immunosuppression and resultant viral persistence by specific viral targeting of dendritic cells. J Exp.Med. 2000, 192: 1249–1260.

    Article  PubMed  CAS  Google Scholar 

  • Small EJ, Fratesi P, Reese DM, Strang G, Laus R, Peshwa MV, Valone FH: Immunotherapy of hormone-refractory prostate cancer with antigen-loaded dendritic cells. J Clin.Oncol. 2000, 18: 3894–3903.

    PubMed  CAS  Google Scholar 

  • Smith SG, Patel PM, Porte J, Selby PJ, Jackson AM: Human dendritic cells genetically engineered to express a melanoma polyepitope DNA vaccine induce multiple cytotoxic T-cell responses. Clin.Cancer Res. 2001, 7: 4253–4261.

    PubMed  CAS  Google Scholar 

  • Smyth MJ, Crowe NY, Hayakawa Y, Takeda K, Yagita H, Godfrey DI: NKT cells–conductors of tumor immunity? Curr.Opin.Immunol. 2002, 14: 165–171.

    Article  PubMed  CAS  Google Scholar 

  • Sozzani S, Allavena P, D’Amico G, Luini W, Bianchi G, Kataura M, Imai T, Yoshie O, Bonecchi R, Mantovani A: Differential regulation of chemokine receptors during dendritic cell maturation: a model for their trafficking properties. J Immunol. 1998, 161: 1083–1086.

    PubMed  CAS  Google Scholar 

  • Sparwasser T, Koch ES, Vabulas RM, Heeg K, Lipford GB, Ellwart JW, Wagner H: Bacterial DNA and immunostimulatory CpG oligonucleotides trigger maturation and activation of murine dendritic cells. Eur.J Immunol. 1998, 28: 2045–2054.

    Article  PubMed  CAS  Google Scholar 

  • Steinman RM, Turley S, Mellman I, Inaba K: The induction of tolerance by dendritic cells that have captured apoptotic cells. J.Exp.Med. 2000, 191: 411–416.

    Article  PubMed  CAS  Google Scholar 

  • Strobel I, Berchtold S, Gotze A, Schulze U, Schuler G, Steinkasserer A: Human dendritic cells transfected with either RNA or DNA encoding influenza matrix protein M1 differ in their ability to stimulate cytotoxic T lymphocytes. Human Gene Therapy 2000a,In Press.

    Google Scholar 

  • Strobel I, Krumbholz M, Menke A, Hoffmann E, Dunbar PR, Bender A, Hobom G, Steinkasserer A, Schuler G, Grassmann R: Efficient expression of the tumor-associated antigen MAGE-3 in human dendritic cells, using an avian influenza virus vector. Hum.Gene Ther. 2000b, 11: 2207–2218.

    Article  PubMed  CAS  Google Scholar 

  • Subklewe M, Chahroudi A, Schmaljohn A, Kurilla MG, Bhardwaj N, Steinman RM: Induction of Epstein-Barr virus-specific cytotoxic T-lymphocyte responses using dendritic cells pulsed with EBNA-3A peptides or UV-inactivated, recombinant EBNA-3Avaccinia virus. Blood 1999, 94: 1372–1381.

    PubMed  CAS  Google Scholar 

  • Takahashi T: Reactivity of autologous CD4+ T lymphocytes against human melanoma. Evidence for a shared melanoma antigen presented by HLA-DR15. J.Immunol. 1995, 154: 772–779.

    PubMed  CAS  Google Scholar 

  • Takashima A, Morita A: Dendritic cells in genetic immunization. J Leukoc.Biol. 1999, 66: 350–356.

    PubMed  CAS  Google Scholar 

  • Tanaka H, Demeure CE, Rubio M, Delespesse G, Sarfati M: Human monocyte-derived dendritic cells induce naive T cell differentiation into T helper cell type 2 (Th2) or Th1/Th2 effectors. Role of stimulator/responder ratio. J Exp.Med. 2000, 192: 405–412.

    Article  PubMed  CAS  Google Scholar 

  • Tang DC, DeVit M, Johnston SA: Genetic immunization is a simple method for eliciting an immune response. Nature 1992, 356: 152–154.

    Article  PubMed  CAS  Google Scholar 

  • Thomas WD: CD4 T cells kill melanoma cells by mechanisms that are independent of Fas (CD95). Int.J.Cancer. 1998, 75: 384–390.

    Article  PubMed  CAS  Google Scholar 

  • Thurner B, Haendle I, der C, Dieckmann D, Keikavoussi P, Jonuleit H, Bender A, Maczek C, Schreiner D, von Den Driesch P, Br, Steinman RM, Enk A, mpgen E, Schuler G: Vaccination with Mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific Cytotoxic T Cells and induces regression of some metastases in advanced stage IV melanoma. J.Exp.Med. 1999a, 190: 1669–1678.

    Article  PubMed  CAS  Google Scholar 

  • Thurner B, Roder C, Dieckmann D, Heuer M, Kruse M, Glaser A, Keikavoussi P, Kampgen E, Bender A, Schuler G: Generation of large numbers of fully mature and stable dendritic cells from leukapheresis products for clinical application. J.Immunol.Methods 1999b, 223: 1–15.

    Article  PubMed  CAS  Google Scholar 

  • Thurnher M, Rieser C, Holtl L, Papesh C, Ramoner R, Bartsch G: Dendritic cell-based immunotherapy of renal cell carcinoma. Urol.Int. 1998, 61: 67–71.

    Article  PubMed  CAS  Google Scholar 

  • Thurnher M, Zelle-Rieser C, Ramoner R, Bartsch G, Holtl L: The disabled dendritic cell. FASEB J 2001, 15: 1054–1061.

    Article  PubMed  CAS  Google Scholar 

  • Timmerman JM, Czerwinski DK, Davis TA, Hsu FJ, Benike C, Hao ZM, Taidi B, Rajapaksa R, Caspar CB, Okada CY, van Beckhoven A, Liles TM, Engleman EG, Levy R: Idiotype-pulsed dendritic cell vaccination for B-cell lymphoma: clinical and immune responses in 35 patients. Blood 2002, 99: 1517–1526.

    Article  PubMed  CAS  Google Scholar 

  • Tjoa BA: Evaluation of phase I/II clinical trials in prostate cancer with dendritic cells and PSMA peptides. Prostate. 1998, 36: 39–44.

    Article  PubMed  CAS  Google Scholar 

  • Toes RE, Ossendorp F, Offringa R, Melief CJ: CD4 T cells and their role in antitumor immune responses. J.Exp.Med. 1999, 189: 753–756.

    Article  PubMed  CAS  Google Scholar 

  • Toura I, Kawano T, Akutsu Y, Nakayama T, Ochiai T, Taniguchi M: Cutting edge: inhibition of experimental tumor metastasis by dendritic cells pulsed with alphagalactosylceramide. J.Immunol. 1999, 163: 2387–2391.

    PubMed  CAS  Google Scholar 

  • Urban BC, Ferguson DJ, Pain A, Willcox N, Plebanski M, Austyn JM, Roberts DJ: Plasmodium falciparum-infected erythrocytes modulate the maturation of dendritic cells. Nature 1999, 400: 73–77.

    Article  PubMed  CAS  Google Scholar 

  • van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den EB, Knuth A, Boon T: A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 1991, 254: 1643–1647.

    Article  PubMed  Google Scholar 

  • Van Tendeloo VF, Ponsaerts P, Lardon F, Nijs G, Lenjou M, Van Broeckhoven C, Van Bockstaele DR, Berneman ZN: Highly efficient gene delivery by mRNA electroporation in human hematopoietic cells: superiority to lipofection and passive pulsing of mRNA and to electroporation of plasmid cDNA for tumor antigen loading of dendritic cells. Blood 2001, 98: 49–56.

    Article  PubMed  Google Scholar 

  • Verdijk RM, Mutis T, Esendam B, Kamp J, Melief CJ, Brand A, Goulmy E: Polyriboinosinic polyribocytidylic acid (poly(I:C)) induces stable maturation of functionally active human dendritic cells. J.Immunol. 1999, 163: 57–61.

    PubMed  CAS  Google Scholar 

  • Wolfel T, Hauer M, Schneider J, Serrano M, Wolfel C, Klehmann-Hieb E, De Plaen E, Hankeln T, Meyer zum Buschenfelde KH, Beach D: A p 16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science 1995, 269: 1281–1284.

    Article  PubMed  CAS  Google Scholar 

  • Wolfers J, Lozier A, Raposo G, Regnault A, Thery C, Masurier C, Flament C, Pouzieux S, Faure F, Tursz T, Angevin E, Amigorena S, Zitvogel L: Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat.Med. 2001, 7: 297–303.

    Article  PubMed  CAS  Google Scholar 

  • Worgall S, Kikuchi T, Singh R, Martushova K, Lande L, Crystal RG: Protection against pulmonary infection with Pseudomonas aeruginosa following immunization with P. aeruginosa-pulsed dendritic cells. Infect.Immun. 2001, 69: 4521–4527.

    Article  PubMed  CAS  Google Scholar 

  • You Z, Huang XF, Hester J, Rollins L, Rooney C, Chen SY: Induction of vigorous helper and cytotoxic T cell as well as B cell responses by dendritic cells expressing a modified antigen targeting receptor-mediated internalization pathway. J.Immunol. 2000, 165: 4581–4591.

    PubMed  CAS  Google Scholar 

  • Yu JS, Wheeler CJ, Zeltzer PM, Ying H, Finger DN, Lee PK, Yong WH, Incardona F, Thompson RC, Riedinger MS, Zhang W, Prins RM, Black KL: Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration. Cancer Res. 2001, 61: 842–847.

    PubMed  CAS  Google Scholar 

  • Zhong L, Granelli-Piperno A, Choi Y, Steinman RM: Recombinant adenovirus is an efficient and non-perturbing genetic vector for human dendritic cells. Eur.J.Immunol. 1999, 29: 964–972.

    Article  PubMed  CAS  Google Scholar 

  • Zitvogel L, Fernandez N, Lozier A, Wolfers J, Regnault A, Raposo G, Amigorena S: Dendritic cells or their exosomes are effective biotherapies of cancer. Eur.J Cancer 1999, 35 Suppl 3: S36 - S38.

    Google Scholar 

  • Zitvogel L, Regnault A, Lozier A, Wolfers J, Flament C, Tenza D, Ricciardi-Castagnoli P, Raposo G, Amigorena S: Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat.Med. 1998, 4: 594–600.

    Article  PubMed  CAS  Google Scholar 

  • zur Hausen H: Papillomavirus infections–a major cause of human cancers. Biochim.Biophys.Acta 1996, 1288: F55 - F78.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Berger, T.G., Schultz, E.S. (2003). Dendritic Cell-Based Immunotherapy. In: Steinkasserer, A. (eds) Dendritic Cells and Virus Infection. Current Topics in Microbiology and Immunology, vol 276. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06508-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06508-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07926-9

  • Online ISBN: 978-3-662-06508-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics