Skip to main content

Pathophysiology of Obstructive Nephropathy

  • Chapter
Nephrology

Summary

The effects of obstructive uropathy on renal function are the consequence of a variety of factors with complex interactions. Obstruction of the urinary tract decreases glomerular filtration rate (GFR) and renal plasma flow, and modifies tubular function. The decrease in GFR and plasma flow is mediated, in part, by the vasoconstrictors angiotensin II and thromboxane A2.

A significant infiltration of leukocytes occurs in the kidney following obstruction; furthermore, by abolishing this infiltrate the renal function of the post-obstructed kidney is significantly improved. This indicates that leukocytes have an important role in modulating renal hemodynamics after release of obstruction, whose pathophysiology must now be considered to include an immunological component. Further work is required to define the mechanisms whereby macrophages can influence renal function and to define how the kidney can recruit these cells in such large numbers following obstruction.

Abnormalities in renal tubule function are common in urinary tract obstruction. The major alterations appear to be located in distal segments of the nephron. There is decreased ability to concentrate the urine, the reabsorption of sodium and water is altered, and the secretion of hydrogen and potassium is impaired.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Klahr S, Harris KPG (to be published) Obstructive nephropathy. In: Seldin DW, Giebisch G (eds) The kidney, 2nd Edn. Raven, New York

    Google Scholar 

  2. Klahr S, Harris KPG, Purkerson ML (1988) Effects of obstruction on renal function. Pediatr Nephrol 2: 34–42

    Article  PubMed  CAS  Google Scholar 

  3. Wright FS (1982) Effects of urinary tract obstruction on glomerular filtration rate and renal blood flow. Semin Nephrol 2: 5–16

    Google Scholar 

  4. Dal Canton A, Corradi A, Stanziale R, Maruccio G, Migone L (1979) Effects of 24-hour ureteral obstruction on glomerular hemodynamics in rat kidney. Kidney Int 15: 457–462

    Article  Google Scholar 

  5. Buerkert J, Martin D (1983) Relation of nephron recruitment to detectable filtration and recovery of function after release of ureteral obstruction. Proc Soc Exp Biol Med 173: 533–540

    Article  PubMed  CAS  Google Scholar 

  6. Purkerson ML, Blaine EH, Stokes TJ, Klahr S (1989) Role of atrial peptide in the natriuresis and diuresis that follows relief of obstruction in the rat. Am J Physiol 256: F583 - F589

    PubMed  CAS  Google Scholar 

  7. Purkerson ML, Klahr S (1989) Prior inhibition of vasoconstrictors normalizes GFR in postobstructed kidneys. Kidney Int 35: 1305–1314

    Article  PubMed  CAS  Google Scholar 

  8. Yarger WE, Shocken DD, Harris RH (1980) Obstructive nephropathy in the rat: possible roles for the renin-angiotensin system, prostaglandins, and thromboxanes in postobstructive renal function. J Clin Invest 65: 400–412

    Article  PubMed  CAS  Google Scholar 

  9. Mene P, Dunn MJ (1986) Contractile effects of TxA2 and endoperoxide analogues on cultured rat glomerular mesangial cells. Am J Physiol 251: F1029 - F1035

    PubMed  CAS  Google Scholar 

  10. Nagle RB, Johnson ME, Jervis HR (1976) Proliferation of renal interstitial cells following injury induced by ureteral obstruction. Lab Invest 35: 18–22

    PubMed  CAS  Google Scholar 

  11. Okegawa T, Jonas PE, DeSchryver K, Kawasaki A, Needleman P (1983) Metabolic and cellular alterations underlying the exaggerated renal prostaglandin and thromboxane synthesis in ureter obstruction in rabbits. Inflammatory response involving fibroblasts and mononuclear cells. J Clin Invest 71: 81–90

    Google Scholar 

  12. Schreiner G, Harris KPG, Purkerson ML, Klahr S (1988) The immunological aspects of acute ureteral obstruction: Immune cell infiltrate in the kidney. Kidney Int 34: 487–493

    Google Scholar 

  13. Harris KPG, Schreiner GF, Klahr S (1989) Effect of leukocyte depletion on the function of the postobstructed kidney in the rat. Kidney Int 36: 210–215

    Article  PubMed  CAS  Google Scholar 

  14. Yanagisawa H, Morrissey J, Morrison AR, Klahr S (1990) Role of angiotensin II in eicosanoid production by isolated glomeruli from rats with bilateral ureteral obstruction. Am J Physiol 258: F85 - F93

    PubMed  CAS  Google Scholar 

  15. Rovin BH, Harris KPG, Morrison A, Klahr S, Schreiner GF (1990) Renal cortical release of a specific macrophage chemoattractant in response to ureteral obstruction. Lab Invest 63: 213–220

    PubMed  CAS  Google Scholar 

  16. Spaethe SM, Freed MS, De Schryver-Kecskemeti K, Lefkowith JB, Needleman P (1988) Essential fatty acid deficiency reduces the inflammatory cell invasion in rabbit hydronephrosis resulting in suppression of the exaggerated eicosanoid production. J Pharmacol Exp Ther 245: 1088–1094

    PubMed  CAS  Google Scholar 

  17. Steinhardt GF, Ramon G, Salinas-Madrigal L (1988) Glomerulosclerosis in obstructive uropathy. J Urol 140: 1316–1318

    PubMed  CAS  Google Scholar 

  18. Davis BB, Thomason D, Zenser TV (1983) Renal disease profoundly alters cortical interstitial cell function. Kidney Int 23: 458–464

    Article  PubMed  CAS  Google Scholar 

  19. Bander SJ, Buerkert JE, Martin D, Klahr S (1985) Long-term effects of 24-hour unilateral ureteral obstruction on renal function in the rat. Kidney Int 28: 614–620

    Article  PubMed  CAS  Google Scholar 

  20. Yarger WE, Buerkert J (1982) Effect of urinary tract obstruction on renal tubular function. Semin Nephrol 2: 17–30

    Google Scholar 

  21. Hanley MJ, Davidson K (1982) Isolated nephron segments from rabbit models of obstructive nephropathy. J Clin Invest 69: 165–174

    Article  PubMed  CAS  Google Scholar 

  22. Campbell HT, Bello-Reuss E, Klahr S (1985) Hydraulic water permeability and trans-epithelial voltage in the isolated perfused rabbit cortical collecting tubule following acute unilateral ureteral obstruction. J Clin Invest 75: 219–225

    Article  PubMed  CAS  Google Scholar 

  23. Purkerson ML, Klahr S (1984) Protein intake conditions the diuresis seen after relief of bilateral ureteral obstruction in the rat. Proc Soc Exp Biol Med 177: 62–68

    Article  PubMed  CAS  Google Scholar 

  24. Laski ME, Kurtzman NA (1989) Site of the acidification defect in the post-obstructed collecting tubule. Miner Electrolyte Metab 15: 195–200

    PubMed  CAS  Google Scholar 

  25. Sabatini S, Kurtzman NA (1990) Enzyme activity in obstructive uropathy: basis for salt wastage and the acidification defect. Kidney Int 37: 79–84

    Article  PubMed  CAS  Google Scholar 

  26. Purcell H, Harris KPG, Lim I, Klahr S, Gluck S (1989) Mechanisms of the acidifying defect after release of unilateral ureteral obstruction (abstract) Kidney Int 35: 461

    Google Scholar 

  27. Batlle DC, Arruda JAL, Kurtzman NA (1981) Hyperkalemic distal tubular renal acidosis associated with obstructive uropathy. N Engl J Med 304: 373–380

    Article  PubMed  CAS  Google Scholar 

  28. Miller JC, Jorgensen TM, Mortensen J (1986) Proximal tubular atrophy: qualitative and quantitative structural changes in chronic obstructive nephropathy in the pig. Cell Tiss Res 244: 479–491

    Google Scholar 

  29. Tanner GA, Evan AP (1989) Glomerular and proximal tubular morphology after single nephron obstruction. Kidney Int 36: 1050–1060

    Article  PubMed  CAS  Google Scholar 

  30. Nathan CR (1987) Secretory products of macrophages. J Clin Invest 79: 319–326

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Japan

About this chapter

Cite this chapter

Klahr, S. (1991). Pathophysiology of Obstructive Nephropathy. In: Hatano, M. (eds) Nephrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-35158-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-35158-1_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70074-6

  • Online ISBN: 978-3-662-35158-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics