Skip to main content

Soft Tissue Balance of the Native Knee Provides Guidance for Balancing a Total Knee Arthroplasty

  • Chapter
  • First Online:
Soft Tissue Balancing in Total Knee Arthroplasty

Abstract

Soft tissue balance is a measure of the relative tensions in the soft tissue restraints of the knee. The soft tissues should be considered “balanced” when they are appropriately tensioned to stabilize the joint without causing stiffness, limited motion, or pain. The native knee is inherently stable and has adequate mobility to enable individuals to perform a wide range of activities without pain, stiffness, or feelings of instability. Hence, surgeons may avoid some of the common sources of dissatisfaction and indications for revision after total knee arthroplasty (TKA) including instability, stiffness, functional limitations, and residual pain by striving to restore the soft tissue balance of the native knee. Soft tissue balance is most commonly assessed based on the laxities because no clinical methods are currently available to directly measure the tension in individual soft tissue restraints and the laxities can be measured pre-, intra-, and postoperatively. When using the laxities of the native knee to guide soft tissue balancing during TKA, surgeons must remember that the native knee has negligible laxity in extension and on average becomes three times more lax in varus-valgus, internal-external rotation, and distraction at 90° of flexion. The advantage of striving to restore a patient’s native soft tissue balance after TKA is evident in the positive clinical outcomes after kinematically aligned TKA in which the surgeon strives to restore the native soft tissue balance. After kinematically aligned TKA, patients have better pain relief, have higher functional scores, achieve greater flexion, have more normal kinematics, and are three times more likely to report that their knee feels normal than patients after mechanically aligned TKA, in which surgeons do not strive to restore the native soft tissue balance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sikorski JM. Alignment in total knee replacement. J Bone Joint Surg Br. 2008;90(9):1121–7. doi:10.1302/0301-620X.90B9.20793.

    Article  CAS  PubMed  Google Scholar 

  2. Heesterbeek PJ, Haffner N, Wymenga AB, Stifter J, Ritschl P. Patient-related factors influence stiffness of the soft tissue complex during intraoperative gap balancing in cruciate-retaining total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2015:1–9. doi:10.1007/s00167-015-3694-5.

  3. Blankevoort L, Huiskes R, de Lange A. The envelope of passive knee joint motion. J Biomech. 1988;21(9):705–20. doi: 10.1016/0021-9290(88)90280-1.

  4. Schipplein OD, Andriacchi TP. Interaction between active and passive knee stabilizers during level walking. J Orthop Res. 1991;9(1):113–9. doi: 10.1002/jor.1100090114.

  5. Dyrby CO, Andriacchi TP. Secondary motions of the knee during weight bearing and non-weight bearing activities. J Orthop Res. 2004;22(4):794–800. doi:10.1016/j.orthres.2003.11.003.

    Article  PubMed  Google Scholar 

  6. Wilson DR, Feikes JD, O’Connor JJ. Ligaments and articular contact guide passive knee flexion. J Biomech. 1998;31(12):1127–36. doi: 10.1016/S0021-9290(98)00119-5.

  7. Halewood C, Amis AA. Clinically relevant biomechanics of the knee capsule and ligaments. Knee Surg Sports Traumatol Arthrosc. 2015;23(10):2789–96. doi:10.1007/s00167-015-3594-8.

    Article  PubMed  Google Scholar 

  8. Davidson BS, Judd DL, Thomas AC, Mizner RL, Eckhoff DG, Stevens-Lapsley JE. Muscle activation and coactivation during five-time-sit-to-stand movement in patients undergoing total knee arthroplasty. J Electromyogr Kinesiol. 2013;23(6):1485–93. doi:10.1016/j.jelekin.2013.06.008.

    Article  PubMed  Google Scholar 

  9. Meier W, Mizner RL, Marcus RL, Dibble LE, Peters C, Lastayo PC. Total knee arthroplasty: muscle impairments, functional limitations, and recommended rehabilitation approaches. J Orthop Sports Phys Ther. 2008;38(5):246–56. doi:10.2519/jospt.2008.2715.

    Article  PubMed  Google Scholar 

  10. Thomas AC, Judd DL, Davidson BS, Eckhoff DG, Stevens-Lapsley JE. Quadriceps/hamstrings co-activation increases early after total knee arthroplasty. Knee. 2014;21(6):1115–9. doi:10.1016/j.knee.2014.08.001.

    Article  PubMed  Google Scholar 

  11. Petterson SC, Mizner RL, Stevens JE, Raisis L, Bodenstab A, Newcomb W, Snyder-Mackler L. Improved function from progressive strengthening interventions after total knee arthroplasty: a randomized clinical trial with an imbedded prospective cohort. Arthritis Rheum. 2009;61(2):174–83. doi:10.1002/art.24167.

    Article  PubMed  Google Scholar 

  12. Athwal KK, Hunt NC, Davies AJ, Deehan DJ, Amis AA. Clinical biomechanics of instability related to total knee arthroplasty. Clin Biomech (Bristol, Avon). 2014;29(2):119–28. doi:10.1016/j.clinbiomech.2013.11.004.

    Article  Google Scholar 

  13. Bull AM, Kessler O, Alam M, Amis AA. Changes in knee kinematics reflect the articular geometry after arthroplasty. Clin Orthop Relat Res. 2008;466(10):2491–9. doi:10.1007/s11999-008-0440-z.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mihalko WM, Saleh KJ, Krackow KA, Whiteside LA. Soft-tissue balancing during total knee arthroplasty in the varus knee. J Am Acad Orthop Surg. 2009;17(12):766–74.

    Article  PubMed  Google Scholar 

  15. Camarata DA. Soft tissue balance in total knee arthroplasty with a force sensor. Orthop Clin North Am. 2014;45(2):175–84. doi:10.1016/j.ocl.2013.12.001.

    Article  PubMed  Google Scholar 

  16. Gustke K. Use of smart trials for soft-tissue balancing in total knee replacement surgery. J Bone Joint Surg Br. 2012;94(11 Suppl A):147–50. doi:10.1302/0301-620X.94B11.30621.

    Article  CAS  PubMed  Google Scholar 

  17. Roth JD, Howell SM, Hull ML. Native knee laxities at 0°, 45°, and 90° of flexion and their relationship to the goal of the gap-balancing alignment method of total knee arthroplasty. J Bone Joint Surg Am. 2015;97(20):1678–84. doi:10.2106/jbjs.n.01256.

    Article  PubMed  Google Scholar 

  18. Roth JD, Hull ML, Howell SM. The limits of passive motion are variable between and unrelated within normal tibiofemoral joints. J Orthop Res. 2015;33(11):1594–602. doi:10.1002/jor.22926.

    Article  PubMed  Google Scholar 

  19. Markolf KL, Graff-Radford A, Amstutz HC. In vivo knee stability. A quantitative assessment using an instrumented clinical testing apparatus. J Bone Joint Surg Am. 1978;60(5):664–74.

    Article  CAS  PubMed  Google Scholar 

  20. Markolf KL, Mensch JS, Amstutz HC. Stiffness and laxity of the knee–The contributions of the supporting structures. J Bone Joint Surg Am. 1976;58-A(5):583–94.

    Article  Google Scholar 

  21. Eagar P, Hull ML, Howell SM. A method for quantifying the anterior load-displacement behavior of the human knee in both the low and high stiffness regions. J Biomech. 2001;34(12):1655–60. doi:10.1016/s0021-9290(01)00142-7.

    Article  CAS  PubMed  Google Scholar 

  22. Nowakowski AM, Majewski M, Müller-Gerbl M, Valderrabano V. Measurement of knee joint gaps without bone resection: “Physiologic” extension and flexion gaps in total knee arthroplasty are asymmetric and unequal and anterior and posterior cruciate ligament resections produce different gap changes. J Orthop Res. 2012;30(4):522–7. doi:10.1002/jor.21564.

    Article  PubMed  Google Scholar 

  23. Ghosh KM, Blain AP, Longstaff L, Rushton S, Amis AA, Deehan DJ. Can we define envelope of laxity during navigated knee arthroplasty? Knee Surg Sports Traumatol Arthrosc. 2014;22(8):1736–43. doi:10.1007/s00167-013-2574-0.

    Article  CAS  PubMed  Google Scholar 

  24. Wang X, Malik A, Bartel DL, Wickiewicz TL, Wright T. Asymmetric varus and valgus stability of the anatomic cadaver knee and the load sharing between collateral ligaments and bearing surfaces. J Biomech Eng. 2014;136(8) doi:10.1115/1.4027662.

  25. Moewis P, Boeth H, Heller MO, Yntema C, Jung T, Doyscher R, Ehrig RM, Zhong Y, Taylor WR. Towards understanding knee joint laxity: errors in non-invasive assessment of joint rotation can be corrected. Med Eng Phys. 2014;36(7):889–95. doi:10.1016/j.medengphy.2014.03.017.

    Article  CAS  PubMed  Google Scholar 

  26. Haimes JL, Wroble RR, Grood ES, Noyes FR. Role of the medial structures in the intact and anterior cruciate ligament-deficient knee. Limits of motion in the human knee. Am J Sports Med. 1994;22(3):402–9. doi:10.1177/036354659402200317.

    Article  CAS  PubMed  Google Scholar 

  27. Delport P, Labey L, De Corte R, Innocenti B, Vander Sloten J, Bellemans J. Collateral ligament strains during knee joint laxity evaluation before and after TKA. Clin Biomech (Bristol, Avon). 2013;28(7):777–82. doi:10.1016/j.clinbiomech.2013.06.006.

    Article  Google Scholar 

  28. Okazaki K, Miura H, Matsuda S, Takeuchi N, Mawatari T, Hashizume M, Iwamoto Y. Asymmetry of mediolateral laxity of the normal knee. J Orthop Sci. 2006;11(3):264–6. doi:10.1007/s00776-006-1009-x.

    Article  PubMed  Google Scholar 

  29. Mayman D, Plaskos C, Kendoff D, Wernecke G, Pearle AD, Laskin R. Ligament tension in the ACL-deficient knee: assessment of medial and lateral gaps. Clin Orthop Relat Res. 2009;467(6):1621–8. doi:10.1007/s11999-009-0748-3.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bellemans J, Vandenneucker H, Vanlauwe J, Victor J. The influence of coronal plane deformity on mediolateral ligament status: an observational study in varus knees. Knee Surg Sports Traumatol Arthrosc. 2010;18(2):152–6. doi:10.1007/s00167-009-0903-0.

    Article  PubMed  Google Scholar 

  31. Rudolph KS, Schmitt LC, Lewek MD. Age-related changes in strength, joint laxity, and walking patterns: are they related to knee osteoarthritis? Phys Ther. 2007;87(11):1422–32. doi: 10.2522/ptj.20060137.

  32. Brage ME, Draganich LF, Pottenger LA, Curran JJ. Knee laxity in symptomatic osteoarthritis. Clin Orthop Relat Res. 1994;304(7):184–9.

    Google Scholar 

  33. Sharma L, Lou C, Felson DT, Dunlop DD, Kirwan-Mellis G, Hayes KW, Weinrach D, Buchanan TS. Laxity in healthy and osteoarthritic knees. Arthritis Rheum. 1999;42(5):861–70. doi:10.1002/1529-0131(199905)42:5<861::AID-ANR4>3.0.CO;2-N.

    Article  CAS  PubMed  Google Scholar 

  34. Lewek MD, Rudolph KS, Snyder-Mackler L. Control of frontal plane knee laxity during gait in patients with medial compartment knee osteoarthritis. Osteoarthritis Cartilage. 2004;12(9):745–51. doi:10.1016/j.joca.2004.05.005.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Pottenger LA, Phillips FM, Draganich LF. The effect of marginal osteophytes on reduction of varus-valgus instability in osteoarthritic knees. Arthritis Rheum. 1990;33(6):853–8. doi:10.1002/art.1780330612.

    Article  CAS  PubMed  Google Scholar 

  36. Cyr AJ, Maletsky LP. Unified quantification of variation in passive knee joint constraint. Proc Inst Mech Eng H. 2014;228(5):494–500. doi:10.1177/0954411914530274.

    Article  PubMed  Google Scholar 

  37. Woo SL, Hollis JM, Adams DJ, Lyon RM, Takai S. Tensile properties of the human femur-anterior cruciate ligament-tibia complex. The effects of specimen age and orientation. Am J Sports Med. 1991;19(3):217–25. doi: 10.1177/036354659101900303.

  38. Robinson JR, Bull AM, Amis AA. Structural properties of the medial collateral ligament complex of the human knee. J Biomech. 2005;38(5):1067–74. doi:10.1016/j.jbiomech.2004.05.034.

    Article  PubMed  Google Scholar 

  39. LaPrade RF, Bollom TS, Wentorf FA, Wills NJ, Meister K. Mechanical properties of the posterolateral structures of the knee. Am J Sports Med. 2005;33(9):1386–91. doi:10.1177/0363546504274143.

    Article  PubMed  Google Scholar 

  40. Race A, Amis AA. The mechanical properties of the two bundles of the human posterior cruciate ligament. J Biomech. 1994;27(1):13–24. doi:10.1016/0021-9290(94)90028-0.

    Article  CAS  PubMed  Google Scholar 

  41. Smoger LM, Fitzpatrick CK, Clary CW, Cyr AJ, Maletsky LP, Rullkoetter PJ, Laz PJ. Statistical modeling to characterize relationships between knee anatomy and kinematics. J Orthop Res. 2015;33(11):1620–30. doi:10.1002/jor.22948.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Shultz SJ, Shimokochi Y, Nguyen AD, Schmitz RJ, Beynnon BD, Perrin DH. Measurement of varus-valgus and internal-external rotational knee laxities in vivo–Part I: assessment of measurement reliability and bilateral asymmetry. J Orthop Res. 2007;25(8):981–8. doi:10.1002/jor.20397.

    Article  PubMed  Google Scholar 

  43. Dennis DA, Komistek RD, Colwell Jr CE, Ranawat CS, Scott RD, Thornhill TS, Lapp MA. In vivo anteroposterior femorotibial translation of total knee arthroplasty: a multicenter analysis. Clin Orthop Relat Res. 1998;356(11):47–57.

    Article  Google Scholar 

  44. Dennis DA, Komistek RD, Mahfouz MR, Walker SA, Tucker A. A multicenter analysis of axial femorotibial rotation after total knee arthroplasty. Clin Orthop Relat Res. 2004;428(11):180–9.

    Google Scholar 

  45. Babazadeh S, Stoney JD, Lim K, Choong PFM. The relevance of ligament balancing in total knee arthroplasty: how important is it? A systematic review of the literature. Orthop Rev (Pavia). 2009;1(2)e26. doi: 10.4081/or.2009.e26.

  46. Bottros J, Gad B, Krebs V, Barsoum WK. Gap balancing in total knee arthroplasty. J Arthroplasty. 2006;21(4 Suppl 1):11–5. doi:10.1016/j.arth.2006.02.084.

    Article  PubMed  Google Scholar 

  47. Griffin FM, Insall JN, Scuderi GR. Accuracy of soft tissue balancing in total knee arthroplasty. J Arthroplasty. 2000;15(8):970–3. doi:10.1054/arth.2000.6503.

    Article  CAS  PubMed  Google Scholar 

  48. Pinskerova V, Johal P, Nakagawa S, Sosna A, Williams A, Gedroyc W, Freeman MA. Does the femur roll-back with flexion? J Bone Joint Surg Br. 2004;86(6):925–31. doi: 10.1302/0301-620X.86B6.14589.

  49. Dennis DA, Mahfouz MR, Komistek RD, Hoff W. In vivo determination of normal and anterior cruciate ligament-deficient knee kinematics. J Biomech. 2005;38(2):241–53. doi:10.1016/j.jbiomech.2004.02.042.

    Article  PubMed  Google Scholar 

  50. Freeman MA, Pinskerova V. The movement of the knee studied by magnetic resonance imaging. Clin Orthop Relat Res. 2003;410(5):35–43. doi:10.1097/01.blo.0000063598.67412.0d.

  51. Freeman MA. Soft tissues: a question of balance. Orthopedics. 1997;20(9):827–31. doi: 10.3928/0147-7447-19970901-24.

  52. Kuster MS, Bitschnau B, Votruba T. Influence of collateral ligament laxity on patient satisfaction after total knee arthroplasty: a comparative bilateral study. Arch Orthop Trauma Surg. 2004;124(6):415–7. doi:10.1007/s00402-004-0700-7.

    Article  CAS  PubMed  Google Scholar 

  53. Gu Y, Roth JD, Howell SM, Hull ML. How frequently do four methods for mechanically aligning a total knee arthroplasty cause collateral ligament imbalance and change alignment from normal in white patients? J Bone Joint Surg Am. 2014;96(12):e101. doi: 10.2106/JBJS.M.00306.

  54. Hunt NC, Ghosh KM, Athwal KK, Longstaff LM, Amis AA, Deehan DJ. Lack of evidence to support present medial release methods in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2014;22(12):3100–12. doi:10.1007/s00167-014-3148-5.

    Article  PubMed  Google Scholar 

  55. Peters CL, Jimenez C, Erickson J, Anderson MB, Pelt CE. Lessons learned from selective soft-tissue release for gap balancing in primary total knee arthroplasty: an analysis of 1216 consecutive total knee arthroplasties: AAOS exhibit selection. J Bone Joint Surg Am. 2013;95(20):e152. doi:10.2106/JBJS.L.01686.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kwak DS, In Y, Kim TK, Cho HS, Koh IJ. The pie-crusting technique using a blade knife for medial collateral ligament release is unreliable in varus total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2016;24(1):188–94. doi:10.1007/s00167-014-3362-1.

    Article  PubMed  Google Scholar 

  57. Goudie S, Deep K. Collateral soft tissue release in primary total knee replacement. Comput Aided Surg. 2014;19(1–3):29–33. doi:10.3109/10929088.2014.889212.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kanamiya T, Whiteside LA, Nakamura T, Mihalko WM, Steiger J, Naito M. Ranawat Award paper. Effect of selective lateral ligament release on stability in knee arthroplasty. Clin Orthop Relat Res. 2002;404(11):24–31.

    Article  Google Scholar 

  59. Saeki K, Mihalko WM, Patel V, Conway J, Naito M, Thrum H, Vandenneuker H, Whiteside LA. Stability after medial collateral ligament release in total knee arthroplasty. Clin Orthop Relat Res. 2001;392(11):184–9.

    Article  Google Scholar 

  60. Abdel MP, Haas SB. The unstable knee: wobble and buckle. Bone Joint J. 2014;96-B(11 Supple A):112–4. doi:10.1302/0301-620X.96B11.34325.

    Article  CAS  PubMed  Google Scholar 

  61. Parratte S, Pagnano MW. Instability after total knee arthroplasty. J Bone Joint Surg Am. 2008;90(1):184–94.

    PubMed  Google Scholar 

  62. Zimny ML, Wink CS. Neuroreceptors in the tissues of the knee joint. J Electromyogr Kinesiol. 1991;1(3):148–57. doi:10.1016/1050-6411(91)90031-Y.

    Article  CAS  PubMed  Google Scholar 

  63. Yan J, Sasaki W, Hitomi J. Anatomical study of the lateral collateral ligament and its circumference structures in the human knee joint. Surg Radiol Anat. 2010;32(2):99–106. doi:10.1007/s00276-009-0547-2.

    Article  PubMed  Google Scholar 

  64. Johansson H. Role of knee ligaments in proprioception and regulation of muscle stiffness. J Electromyogr Kinesiol. 1991;1(3):158–79. doi:10.1016/1050-6411(91)90032-Z.

    Article  CAS  PubMed  Google Scholar 

  65. Sojka P, Sjolander P, Johansson H, Djupsjobacka M. Influence from stretch-sensitive receptors in the collateral ligaments of the knee joint on the gamma-muscle-spindle systems of flexor and extensor muscles. Neurosci Res. 1991;11(1):55–62. doi:10.1016/0168-0102(91)90066-8.

    Article  CAS  PubMed  Google Scholar 

  66. De Avila GA, O'Connor BL, Visco DM, Sisk TD. The mechanoreceptor innervation of the human fibular collateral ligament. J Anat. 1989;162:1–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Creaby M, Wrigley T, Lim B-W, Hinman R, Bryant A, Bennell K. Self-reported knee joint instability is related to passive mechanical stiffness in medial knee osteoarthritis. BMC Musculoskelet Disord. 2013;14(1):326. doi: 10.1186/1471-2474-14-326.

  68. Nedopil AJ, Howell SM, Hull ML. Does malrotation of the tibial and femoral components compromise function in kinematically aligned total knee arthroplasty? Orthop Clin North Am. 2016;47(1):41–50. doi: 10.1016/j.ocl.2015.08.006.

  69. Roth JD. How well does kinematically aligned total knee arthroplasty prevent clinically important changes in passive knee function? An in vitro biomechanical study of tibiofemoral laxities and contact. Dissertation, University of California, Davis; 2016. Publication No. 10124447.

    Google Scholar 

  70. Dossett HG, Estrada NA, Swartz GJ, LeFevre GW, Kwasman BG. A randomised controlled trial of kinematically and mechanically aligned total knee replacements: two-year clinical results. Bone Joint J. 2014;96-B(7):907–13. doi:10.1302/0301-620X.96B7.32812.

    Article  CAS  PubMed  Google Scholar 

  71. Dossett HG, Swartz GJ, Estrada NA, LeFevre GW, Kwasman BG. Kinematically versus mechanically aligned total knee arthroplasty. Orthopedics. 2012;35(2):e160–9. doi:10.3928/01477447-20120123-04.

    PubMed  Google Scholar 

  72. Howell SM, Hodapp EE, Vernace JV, Hull ML, Meade TD. Are undesirable contact kinematics minimized after kinematically aligned total knee arthroplasty? An intersurgeon analysis of consecutive patients. Knee Surg Sports Traumatol Arthrosc. 2013;21(10):2281–7. doi:10.1007/s00167-012-2220-2.

    Article  PubMed  Google Scholar 

  73. Nam D, Nunley RM, Barrack RL. Patient dissatisfaction following total knee replacement: a growing concern? Bone Joint J. 2014;96-B(11 Supple A):96–100. doi:10.1302/0301-620X.96B11.34152.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua D. Roth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 ISAKOS

About this chapter

Cite this chapter

Roth, J.D., Howell, S.M. (2017). Soft Tissue Balance of the Native Knee Provides Guidance for Balancing a Total Knee Arthroplasty. In: Matsuda, S., Lustig, S., van der Merwe, W. (eds) Soft Tissue Balancing in Total Knee Arthroplasty. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54082-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54082-4_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54081-7

  • Online ISBN: 978-3-662-54082-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics