Skip to main content

Glutamate in the Immune System: Glutamate Receptors in Immune Cells, Potent Effects, Endogenous Production and Involvement in Disease

  • Chapter
  • First Online:
Nerve-Driven Immunity

Abstract

Glutamate, an amino acid, is the principal excitatory neurotransmitter within the vertebrate nervous system. Glutamate is involved in most aspects of normal brain function including cognition, memory and learning, and also plays major roles in the development of the central nervous system, including synapse induction and elimination, and cell migration, differentiation and death. Glutamate further plays a signaling role in peripheral organs and tissues, such as the heart, kidney, intestine, lungs, muscles, liver, ovary, testis, bone, pancreas and the adrenal, pituitary and pineal glands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Affaticati P, Mignen O, Jambou F, Potier MC, Klingel-Schmitt I, Degrouard J, Peineau S, Gouadon E, Collingridge GL, Liblau R, Capiod T, Cohen-Kaminsky S (2011) Sustained calcium signalling and caspase-3 activation involve NMDA receptors in thymocytes in contact with dendritic cells. Cell Death Differ 18(1):99–108

    Article  PubMed  CAS  Google Scholar 

  • Andrews PI, McNamara JO (1996) Rasmussen’s encephalitis: an autoimmune disorder? Curr Opin Neurobiol 6(5):673–678

    Article  PubMed  CAS  Google Scholar 

  • Andrews PI, Dichter MA, Berkovic SF, Newton MR, McNamara JO (1996) Plasmapheresis in Rasmussen’s encephalitis. Neurology 46(1):242–246

    PubMed  CAS  Google Scholar 

  • Antozzi C, Granata T, Aurisano N, Zardini G, Confalonieri P, Airaghi G, Mantegazza R, Spreafico R (1998) Long-term selective IgG immuno-adsorption improves Rasmussen’s encephalitis. Neurology 51(1):302–305

    PubMed  CAS  Google Scholar 

  • Arcella A, Carpinelli G, Battaglia G, D’Onofrio M, Santoro F, Ngomba RT, Bruno V, Casolini P, Giangaspero F, Nicoletti F (2005) Pharmacological blockade of group II metabotropic glutamate receptors reduces the growth of glioma cells in vivo. Neuro Oncol 7(3):236–245

    Article  PubMed  CAS  Google Scholar 

  • Armstrong N, Sun Y, Chen GQ, Gouaux E (1998) Structure of a glutamate-receptor ligand-binding core in complex with kainate. Nature 395(6705):913–917

    Article  PubMed  CAS  Google Scholar 

  • Baranzini SE, Laxer K, Saketkhoo R, Elkins MK, Parent JM, Mantegazza R, Oksenberg JR (2002) Analysis of antibody gene rearrangement, usage, and specificity in chronic focal encephalitis. Neurology 58(5):709–716

    PubMed  CAS  Google Scholar 

  • Boldyrev AA, Kazey VI, Leinsoo TA, Mashkina AP, Tyulina OV, Johnson P, Tuneva JO, Chittur S, Carpenter DO (2004) Rodent lymphocytes express functionally active glutamate receptors. Biochem Biophys Res Commun 324(1):133–139

    Article  PubMed  CAS  Google Scholar 

  • Bonsi P, Cuomo D, De Persis C, Centonze D, Bernardi G, Calabresi P, Pisani A (2005) Modulatory action of metabotropic glutamate receptor (mGluR) 5 on mGluR1 function in striatal cholinergic interneurons. Neuropharmacology 49(Suppl 1):104–113

    Article  PubMed  CAS  Google Scholar 

  • Cahalan MD, Wulff H, Chandy KG (2001) Molecular properties and physiological roles of ion channels in the immune system. J Clin Immunol 21(4):235–252

    Article  PubMed  CAS  Google Scholar 

  • Chatterton JE, Awobuluyi M, Premkumar LS, Takahashi H, Talantova M, Shin Y, Cui J, Tu S, Sevarino KA, Nakanishi N, Tong G, Lipton SA, Zhang D (2002) Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. Nature 415(6873):793–798

    Article  PubMed  CAS  Google Scholar 

  • Chiocchetti A, Miglio G, Mesturini R, Varsaldi F, Mocellin M, Orilieri E, Dianzani C, Fantozzi R, Dianzani U, Lombardi G (2006) Group I mGlu receptor stimulation inhibits activation-induced cell death of human T lymphocytes. Br J Pharmacol 148(6):760–768

    Article  PubMed  CAS  Google Scholar 

  • Chu Z, Hablitz JJ (2000) Quisqualate induces an inward current via mGluR activation in neocortical pyramidal neurons. Brain Res 879(1–2):88–92

    Article  PubMed  CAS  Google Scholar 

  • Cohen-Kashi Malina K, Ganor Y, Levite M, Teichberg VI (2006) Autoantibodies against an extracellular peptide of the GluR3 subtype of AMPA receptors activate both homomeric and heteromeric AMPA receptor channels. Neurochem Res 31(10):1181–1190

    Article  PubMed  CAS  Google Scholar 

  • Collard CD, Park KA, Montalto MC, Alapati S, Buras JA, Stahl GL, Colgan SP (2002) Neutrophil-derived glutamate regulates vascular endothelial barrier function. J Biol Chem 277(17):14801–14811

    Article  PubMed  CAS  Google Scholar 

  • Collingridge GL, Singer W (1990) Excitatory amino acid receptors and synaptic plasticity. Trends Pharmacol Sci 11(7):290–296

    Article  PubMed  CAS  Google Scholar 

  • Dalmau J, Lancaster E, Martinez-Hernandez E, Rosenfeld MR, Balice-Gordon R (2011) Clinical experience and laboratory investigations in patients with anti-NMDAR encephalitis. Lancet Neurol 10(1):63–74

    Article  PubMed  CAS  Google Scholar 

  • Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65(1):1–105

    Article  PubMed  CAS  Google Scholar 

  • Das S, Sasaki YF, Rothe T, Premkumar LS, Takasu M, Crandall JE, Dikkes P, Conner DA, Rayudu PV, Cheung W, Chen HS, Lipton SA, Nakanishi N (1998) Increased NMDA current and spine density in mice lacking the NMDA receptor subunit NR3A. Nature 393(6683):377–381

    Article  PubMed  CAS  Google Scholar 

  • Dickman KG, Youssef JG, Mathew SM, Said SI (2004) Ionotropic glutamate receptors in lungs and airways: molecular basis for glutamate toxicity. Am J Respir Cell Mol Biol 30(2):139–144

    Article  PubMed  CAS  Google Scholar 

  • Divino Filho JC, Hazel SJ, Furst P, Bergstrom J, Hall K (1998) Glutamate concentration in plasma, erythrocyte and muscle in relation to plasma levels of insulin-like growth factor (IGF)-I, IGF binding protein-1 and insulin in patients on haemodialysis. J Endocrinol 156(3):519–527

    Article  PubMed  CAS  Google Scholar 

  • Droge W, Eck HP, Betzler M, Schlag P, Drings P, Ebert W (1988) Plasma glutamate concentration and lymphocyte activity. J Cancer Res Clin Oncol 114(2):124–128

    Article  PubMed  CAS  Google Scholar 

  • Droge W, Murthy KK, Stahl-Hennig C, Hartung S, Plesker R, Rouse S, Peterhans E, Kinscherf R, Fischbach T, Eck HP (1993) Plasma amino acid dysregulation after lentiviral infection. AIDS Res Hum Retroviruses 9(9):807–809

    Article  PubMed  CAS  Google Scholar 

  • Eck HP, Drings P, Droge W (1989a) Plasma glutamate levels, lymphocyte reactivity and death rate in patients with bronchial carcinoma. J Cancer Res Clin Oncol 115(6):571–574

    Article  PubMed  CAS  Google Scholar 

  • Eck HP, Frey H, Droge W (1989b) Elevated plasma glutamate concentrations in HIV-1-infected patients may contribute to loss of macrophage and lymphocyte functions. Int Immunol 1(4):367–372

    Article  PubMed  CAS  Google Scholar 

  • Endoh T (2004) Characterization of modulatory effects of postsynaptic metabotropic glutamate receptors on calcium currents in rat nucleus tractus solitarius. Brain Res 1024(1–2):212–224

    Article  PubMed  CAS  Google Scholar 

  • Ferrarese C, Aliprandi A, Tremolizzo L, Stanzani L, De Micheli A, Dolara A, Frattola L (2001) Increased glutamate in CSF and plasma of patients with HIV dementia. Neurology 57(4):671–675

    PubMed  CAS  Google Scholar 

  • Florance NR, Davis RL, Lam C, Szperka C, Zhou L, Ahmad S, Campen CJ, Moss H, Peter N, Gleichman AJ, Glaser CA, Lynch DR, Rosenfeld MR, Dalmau J (2009) Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis in children and adolescents. Ann Neurol 66(1):11–18

    Article  PubMed  Google Scholar 

  • Foster AC, Fagg GE (1984) Acidic amino acid binding sites in mammalian neuronal membranes: their characteristics and relationship to synaptic receptors. Brain Res 319(2):103–164

    PubMed  CAS  Google Scholar 

  • Gahring L, Carlson NG, Meyer EL, Rogers SW (2001) Granzyme B proteolysis of a neuronal glutamate receptor generates an autoantigen and is modulated by glycosylation. J Immunol 166(3):1433–1438

    PubMed  CAS  Google Scholar 

  • Ganor Y, Besser M, Ben-Zakay N, Unger T, Levite M (2003) Human T cells express a functional ionotropic glutamate receptor GluR3, and glutamate by itself triggers integrin-mediated adhesion to laminin and fibronectin and chemotactic migration. J Immunol 170(8):4362–4372

    PubMed  CAS  Google Scholar 

  • Ganor Y, Goldberg-Stern H, Amrom D, Lerman-Sagie T, Teichberg VI, Pelled D, Futerman AH, Zeev BB, Freilinger M, Verheulpen D, Van Bogaert P, Levite M (2004) Autoimmune epilepsy: some epilepsy patients harbor autoantibodies to glutamate receptors and dsDNA on both sides of the blood–brain barrier, which may kill neurons and decrease in brain fluids after hemispherotomy. Clin Dev Immunol 11(3–4):241–252

    Article  PubMed  CAS  Google Scholar 

  • Ganor Y, Goldberg-Stern H, Lerman-Sagie T, Teichberg VI, Levite M (2005a) Autoimmune epilepsy: distinct subpopulations of epilepsy patients harbor serum autoantibodies to either glutamate/AMPA receptor GluR3, glutamate/NMDA receptor subunit NR2A or double-stranded DNA. Epilepsy Res 65(1–2):11–22

    Article  PubMed  CAS  Google Scholar 

  • Ganor Y, Gottlieb M, Eilam R, Otmy H, Teichberg VI, Levite M (2005b) Immunization with the glutamate receptor-derived peptide GluR3B induces neuronal death and reactive gliosis, but confers partial protection from pentylenetetrazole-induced seizures. Exp Neurol 195(1):92–102

    Article  PubMed  CAS  Google Scholar 

  • Ganor Y, Teichberg VI, Levite M (2007) TCR activation eliminates glutamate receptor GluR3 from the cell surface of normal human T cells, via an autocrine/paracrine granzyme B-mediated proteolytic cleavage. J Immunol 178(2):683–692

    PubMed  CAS  Google Scholar 

  • Ganor Y, Grinberg I, Reis A, Cooper I, Goldstein RS, Levite M (2009) Human T-leukemia and T-lymphoma express glutamate receptor AMPA GluR3, and the neurotransmitter glutamate elevates the cancer-related matrix-metalloproteinases inducer CD147/EMMPRIN, MMP-9 secretion and engraftment of T-leukemia in vivo. Leuk Lymphoma 50(6):985–997

    Article  PubMed  CAS  Google Scholar 

  • Gill SS, Pulido OM (2001) Glutamate receptors in peripheral tissues: current knowledge, future research, and implications for toxicology. Toxicol Pathol 29(2):208–223

    Article  PubMed  CAS  Google Scholar 

  • Graham TE, Sgro V, Friars D, Gibala MJ (2000) Glutamate ingestion: the plasma and muscle free amino acid pools of resting humans. Am J Physiol Endocrinol Metab 278(1):E83–89

    PubMed  CAS  Google Scholar 

  • Green DR, Droin N, Pinkoski M (2003) Activation-induced cell death in T cells. Immunol Rev 193:70–81

    Article  PubMed  CAS  Google Scholar 

  • Guse AH (1998) Ca2+ signaling in T-lymphocytes. Crit Rev Immunol 18(5):419–448

    PubMed  CAS  Google Scholar 

  • Hawkins LM, Chazot PL, Stephenson FA (1999) Biochemical evidence for the co-association of three N-methyl-D-aspartate (NMDA) R2 subunits in recombinant NMDA receptors. J Biol Chem 274(38):27211–27218

    Article  PubMed  CAS  Google Scholar 

  • Hemmer B, Cepok S, Nessler S, Sommer N (2002) Pathogenesis of multiple sclerosis: an update on immunology. Curr Opin Neurol 15(3):227–231

    Article  PubMed  Google Scholar 

  • Hinoi E, Yoneda Y (2011) Possible involvement of glutamatergic signaling machineries in pathophysiology of rheumatoid arthritis. J Pharmacol Sci 116(3):248–256

    Article  PubMed  CAS  Google Scholar 

  • Hinoi E, Ogita K, Takeuchi Y, Ohashi H, Maruyama T, Yoneda Y (2001) Characterization with [3H]quisqualate of group I metabotropic glutamate receptor subtype in rat central and peripheral excitable tissues. Neurochem Int 38(3):277–285

    Article  PubMed  CAS  Google Scholar 

  • Hinoi E, Takarada T, Ueshima T, Tsuchihashi Y, Yoneda Y (2004) Glutamate signaling in peripheral tissues. Eur J Biochem 271(1):1–13

    Article  PubMed  CAS  Google Scholar 

  • Hollmann M, Heinemann S (1994) Cloned glutamate receptors. Annu Rev Neurosci 17:31–108

    Article  PubMed  CAS  Google Scholar 

  • Hollmann M, O’Shea-Greenfield A, Rogers SW, Heinemann S (1989) Cloning by functional expression of a member of the glutamate receptor family. Nature 342(6250):643–648

    Article  PubMed  CAS  Google Scholar 

  • Huerta PT, Kowal C, DeGiorgio LA, Volpe BT, Diamond B (2006) Immunity and behavior: antibodies alter emotion. Proc Natl Acad Sci USA 103(3):678–683

    Article  PubMed  CAS  Google Scholar 

  • Huettner JE (2003) Kainate receptors and synaptic transmission. Prog Neurobiol 70(5):387–407

    Article  PubMed  CAS  Google Scholar 

  • Hughes EG, Peng X, Gleichman AJ, Lai M, Zhou L, Tsou R, Parsons TD, Lynch DR, Dalmau J, Balice-Gordon RJ (2011) Cellular and synaptic mechanisms of anti-NMDA receptor encephalitis. J Neurosci 30(17):5866–5875

    Article  CAS  Google Scholar 

  • Irani SR, Vincent A (2011) NMDA receptor antibody encephalitis. Curr Neurol Neurosci Rep 11(3):298–304

    Article  PubMed  CAS  Google Scholar 

  • Ishiuchi S, Tsuzuki K, Yoshida Y, Yamada N, Hagimura N, Okado H, Miwa A, Kurihara H, Nakazato Y, Tamura M, Sasaki T, Ozawa S (2002) Blockage of Ca(2+)-permeable AMPA receptors suppresses migration and induces apoptosis in human glioblastoma cells. Nat Med 8(9):971–978

    Article  PubMed  CAS  Google Scholar 

  • Kalariti N, Pissimissis N, Koutsilieris M (2005) The glutamatergic system outside the CNS and in cancer biology. Expert Opin Investig Drugs 14(12):1487–1496

    Article  PubMed  CAS  Google Scholar 

  • Kaul M, Zheng J, Okamoto S, Gendelman HE, Lipton SA (2005) HIV-1 infection and AIDS: consequences for the central nervous system. Cell Death Differ 12(Suppl 1):878–892

    Article  PubMed  CAS  Google Scholar 

  • Keinanen K, Wisden W, Sommer B, Werner P, Herb A, Verdoorn TA, Sakmann B, Seeburg PH (1990) A family of AMPA-selective glutamate receptors. Science 249(4968):556–560

    Article  PubMed  CAS  Google Scholar 

  • Kew JN, Kemp JA (2005) Ionotropic and metabotropic glutamate receptor structure and pharmacology. Psychopharmacology (Berl) 179(1):4–29

    Article  CAS  Google Scholar 

  • Komuro H, Rakic P (1993) Modulation of neuronal migration by NMDA receptors. Science 260(5104):95–97

    Article  PubMed  CAS  Google Scholar 

  • Kostanyan IA, Merkulova MI, Navolotskaya EV, Nurieva RI (1997) Study of interaction between L-glutamate and human blood lymphocytes. Immunol Lett 58(3):177–180

    Article  PubMed  CAS  Google Scholar 

  • Kowal C, DeGiorgio LA, Nakaoka T, Hetherington H, Huerta PT, Diamond B, Volpe BT (2004) Cognition and immunity; antibody impairs memory. Immunity 21(2):179–188

    Article  PubMed  CAS  Google Scholar 

  • Lerma J (2006) Kainate receptor physiology. Curr Opin Pharmacol 6(1):89–97

    Article  PubMed  CAS  Google Scholar 

  • Levite M (2002) Autoimmune epilepsy. Nat Immunol 3(6):500

    Article  PubMed  CAS  Google Scholar 

  • Levite M (2008) Neurotransmitters activate T-cells and elicit crucial functions via neurotransmitter receptors. Curr Opin Pharmacol 8(4):460–471

    Article  PubMed  CAS  Google Scholar 

  • Levite M, Ganor Y (2008) Autoantibodies to glutamate receptors can damage the brain in epilepsy, systemic lupus erythematosus and encephalitis. Expert Rev Neurother 8(7):1141–1160

    Article  PubMed  CAS  Google Scholar 

  • Levite M, Hermelin A (1999) Autoimmunity to the glutamate receptor in mice–a model for Rasmussen’s encephalitis? J Autoimmun 13(1):73–82

    Article  PubMed  CAS  Google Scholar 

  • Levite M, Fleidervish IA, Schwarz A, Pelled D, Futerman AH (1999) Autoantibodies to the glutamate receptor kill neurons via activation of the receptor ion channel. J Autoimmun 13(1):61–72

    Article  PubMed  CAS  Google Scholar 

  • Levite M, Cahalon L, Peretz A, Hershkoviz R, Sobko A, Ariel A, Desai R, Attali B, Lider O (2000) Extracellular K(+) and opening of voltage-gated potassium channels activate T cell integrin function: physical and functional association between Kv1.3 channels and beta1 integrins. J Exp Med 191(7):1167–1176

    Article  PubMed  CAS  Google Scholar 

  • Li F, Tsien JZ (2009) Memory and the NMDA receptors. N Engl J Med 361(3):302–303

    Article  PubMed  CAS  Google Scholar 

  • Lin CS, Boltz RC, Blake JT, Nguyen M, Talento A, Fischer PA, Springer MS, Sigal NH, Slaughter RS, Garcia ML et al (1993) Voltage-gated potassium channels regulate calcium-dependent pathways involved in human T lymphocyte activation. J Exp Med 177(3):637–645

    Article  PubMed  CAS  Google Scholar 

  • Lombardi G, Dianzani C, Miglio G, Canonico PL, Fantozzi R (2001) Characterization of ionotropic glutamate receptors in human lymphocytes. Br J Pharmacol 133(6):936–944

    Article  PubMed  CAS  Google Scholar 

  • Lombardi G, Miglio G, Canonico PL, Naldi P, Comi C, Monaco F (2003) Abnormal response to glutamate of T lymphocytes from multiple sclerosis patients. Neurosci Lett 340(1):5–8

    Article  PubMed  CAS  Google Scholar 

  • Lombardi G, Miglio G, Dianzani C, Mesturini R, Varsaldi F, Chiocchetti A, Dianzani U, Fantozzi R (2004) Glutamate modulation of human lymphocyte growth: in vitro studies. Biochem Biophys Res Commun 318(2):496–502

    Article  PubMed  CAS  Google Scholar 

  • Mantegazza R, Bernasconi P, Baggi F, Spreafico R, Ragona F, Antozzi C, Bernardi G, Granata T (2002) Antibodies against GluR3 peptides are not specific for Rasmussen’s encephalitis but are also present in epilepsy patients with severe, early onset disease and intractable seizures. J Neuroimmunol 131(1–2):179–185

    Article  PubMed  CAS  Google Scholar 

  • Manto M, Dalmau J, Didelot A, Rogemond V, Honnorat J (2011) In vivo effects of antibodies from patients with anti-NMDA receptor encephalitis: further evidence of synaptic glutamatergic dysfunction. Orphanet J Rare Dis 5:31

    Article  Google Scholar 

  • Mashkina AP, Tyulina OV, Solovyova TI, Kovalenko EI, Kanevski LM, Johnson P, Boldyrev AA (2007) The excitotoxic effect of NMDA on human lymphocyte immune function. Neurochem Int 51(6–7):356–360

    Article  PubMed  CAS  Google Scholar 

  • Masu M, Tanabe Y, Tsuchida K, Shigemoto R, Nakanishi S (1991) Sequence and expression of a metabotropic glutamate receptor. Nature 349(6312):760–765

    Article  PubMed  CAS  Google Scholar 

  • Mayer ML (2005a) Crystal structures of the GluR5 and GluR6 ligand binding cores: molecular mechanisms underlying kainate receptor selectivity. Neuron 45(4):539–552

    Article  PubMed  CAS  Google Scholar 

  • Mayer ML (2005b) Glutamate receptor ion channels. Curr Opin Neurobiol 15(3):282–288

    Article  PubMed  CAS  Google Scholar 

  • Mayer ML, Westbrook GL (1987) The physiology of excitatory amino acids in the vertebrate central nervous system. Prog Neurobiol 28(3):197–276

    Article  PubMed  CAS  Google Scholar 

  • Meldrum BS (2000) Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J Nutr 130(4S Suppl):1007S–1015S

    PubMed  CAS  Google Scholar 

  • Merrill JE, Benveniste EN (1996) Cytokines in inflammatory brain lesions: helpful and harmful. Trends Neurosci 19(8):331–338

    Article  PubMed  CAS  Google Scholar 

  • Miglio G, Varsaldi F, Dianzani C, Fantozzi R, Lombardi G (2005a) Stimulation of group I metabotropic glutamate receptors evokes calcium signals and c-jun and c-fos gene expression in human T cells. Biochem Pharmacol 70(2):189–199

    Article  PubMed  CAS  Google Scholar 

  • Miglio G, Varsaldi F, Lombardi G (2005b) Human T lymphocytes express N-methyl-D-aspartate receptors functionally active in controlling T cell activation. Biochem Biophys Res Commun 338(4):1875–1883

    Article  PubMed  CAS  Google Scholar 

  • Miglio G, Dianzani C, Fallarini S, Fantozzi R, Lombardi G (2007) Stimulation of N-methyl-D-aspartate receptors modulates Jurkat T cell growth and adhesion to fibronectin. Biochem Biophys Res Commun 361(2):404–409

    Article  PubMed  CAS  Google Scholar 

  • Monaghan DT, Bridges RJ, Cotman CW (1989) The excitatory amino acid receptors: their classes, pharmacology, and distinct properties in the function of the central nervous system. Annu Rev Pharmacol Toxicol 29:365–402

    Article  PubMed  CAS  Google Scholar 

  • Moriyoshi K, Masu M, Ishii T, Shigemoto R, Mizuno N, Nakanishi S (1991) Molecular cloning and characterization of the rat NMDA receptor. Nature 354(6348):31–37

    Article  PubMed  CAS  Google Scholar 

  • Moscato EH, Jain A, Peng X, Hughes EG, Dalmau J, Balice-Gordon RJ (2011) Mechanisms underlying autoimmune synaptic encephalitis leading to disorders of memory, behavior and cognition: insights from molecular, cellular and synaptic studies. Eur J Neurosci 32(2):298–309

    Article  Google Scholar 

  • Nakayama T, Yamashita M (2010) The TCR-mediated signaling pathways that control the direction of helper T cell differentiation. Semin Immunol 22(5):303–309

    Article  PubMed  CAS  Google Scholar 

  • Nedergaard M, Takano T, Hansen AJ (2002) Beyond the role of glutamate as a neurotransmitter. Nat Rev Neurosci 3(9):748–755

    Article  PubMed  CAS  Google Scholar 

  • Nicoletti F, Arcella A, Iacovelli L, Battaglia G, Giangaspero F, Melchiorri D (2007) Metabotropic glutamate receptors: new targets for the control of tumor growth? Trends Pharmacol Sci 28(5):206–213

    Article  PubMed  CAS  Google Scholar 

  • Ohashi H, Maruyama T, Higashi-Matsumoto H, Nomoto T, Nishimura S, Takeuchi Y (2002) A novel binding assay for metabotropic glutamate receptors using [3H] L-quisqualic acid and recombinant receptors. Z Naturforsch C 57(3–4):348–355

    PubMed  CAS  Google Scholar 

  • Ollenschlager G, Karner J, Karner-Hanusch J, Jansen S, Schindler J, Roth E (1989) Plasma glutamate–a prognostic marker of cancer and of other immunodeficiency syndromes? Scand J Clin Lab Invest 49(8):773–777

    Article  PubMed  CAS  Google Scholar 

  • Pacheco R, Ciruela F, Casado V, Mallol J, Gallart T, Lluis C, Franco R (2004) Group I metabotropic glutamate receptors mediate a dual role of glutamate in T cell activation. J Biol Chem 279(32):33352–33358

    Article  PubMed  CAS  Google Scholar 

  • Pacheco R, Oliva H, Martinez-Navio JM, Climent N, Ciruela F, Gatell JM, Gallart T, Mallol J, Lluis C, Franco R (2006) Glutamate released by dendritic cells as a novel modulator of T cell activation. J Immunol 177(10):6695–6704

    PubMed  CAS  Google Scholar 

  • Pacheco R, Gallart T, Lluis C, Franco R (2007) Role of glutamate on T-cell mediated immunity. J Neuroimmunol 185(1–2):9–19

    Article  PubMed  CAS  Google Scholar 

  • Piani D, Frei K, Do KQ, Cuenod M, Fontana A (1991) Murine brain macrophages induced NMDA receptor mediated neurotoxicity in vitro by secreting glutamate. Neurosci Lett 133(2):159–162

    Article  PubMed  CAS  Google Scholar 

  • Piani D, Spranger M, Frei K, Schaffner A, Fontana A (1992) Macrophage-induced cytotoxicity of N-methyl-D-aspartate receptor positive neurons involves excitatory amino acids rather than reactive oxygen intermediates and cytokines. Eur J Immunol 22(9):2429–2436

    Article  PubMed  CAS  Google Scholar 

  • Pin JP, Duvoisin R (1995) The metabotropic glutamate receptors: structure and functions. Neuropharmacology 34(1):1–26

    Article  PubMed  CAS  Google Scholar 

  • Pitt D, Werner P, Raine CS (2000) Glutamate excitotoxicity in a model of multiple sclerosis. Nat Med 6(1):67–70

    Article  PubMed  CAS  Google Scholar 

  • Platt SR (2007) The role of glutamate in central nervous system health and disease–a review. Vet J 173(2):278–286

    Article  PubMed  CAS  Google Scholar 

  • Poulopoulou C, Davaki P, Koliaraki V, Kolovou D, Markakis I, Vassilopoulos D (2005a) Reduced expression of metabotropic glutamate receptor 2 mRNA in T cells of ALS patients. Ann Neurol 58(6):946–949

    Article  PubMed  CAS  Google Scholar 

  • Poulopoulou C, Markakis I, Davaki P, Nikolaou C, Poulopoulos A, Raptis E, Vassilopoulos D (2005b) Modulation of voltage-gated potassium channels in human T lymphocytes by extracellular glutamate. Mol Pharmacol 67(3):856–867

    Article  PubMed  CAS  Google Scholar 

  • Poulopoulou C, Papadopoulou-Daifoti Z, Hatzimanolis A, Fragiadaki K, Polissidis A, Anderzanova E, Davaki P, Katsiari CG, Sfikakis PP (2008) Glutamate levels and activity of the T cell voltage-gated potassium Kv1.3 channel in patients with systemic lupus erythematosus. Arthritis Rheum 58(5):1445–1450

    Article  PubMed  CAS  Google Scholar 

  • Reynolds JD, Amory DW, Grocott HP, White WD, Newman MF (2002) Change in plasma glutamate concentration during cardiac surgery is a poor predictor of cognitive outcome. J Cardiothorac Vasc Anesth 16(4):431–436

    Article  PubMed  Google Scholar 

  • Rezzani R, Corsetti G, Rodella L, Angoscini P, Lonati C, Bianchi R (2003) Cyclosporine-A treatment inhibits the expression of metabotropic glutamate receptors in rat thymus. Acta Histochem 105(1):81–87

    Article  PubMed  CAS  Google Scholar 

  • Rogers SW, Andrews PI, Gahring LC, Whisenand T, Cauley K, Crain B, Hughes TE, Heinemann SF, McNamara JO (1994) Autoantibodies to glutamate receptor GluR3 in Rasmussen’s encephalitis. Science 265(5172):648–651

    Article  PubMed  CAS  Google Scholar 

  • Rosenmund C, Stern-Bach Y, Stevens CF (1998) The tetrameric structure of a glutamate receptor channel. Science 280(5369):1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Rzeski W, Turski L, Ikonomidou C (2001) Glutamate antagonists limit tumor growth. Proc Natl Acad Sci USA 98(11):6372–6377

    Article  PubMed  CAS  Google Scholar 

  • Sarchielli P, Di Filippo M, Candeliere A, Chiasserini D, Mattioni A, Tenaglia S, Bonucci M, Calabresi P (2007) Expression of ionotropic glutamate receptor GLUR3 and effects of glutamate on MBP- and MOG-specific lymphocyte activation and chemotactic migration in multiple sclerosis patients. J Neuroimmunol 188(1–2):146–158

    Article  PubMed  CAS  Google Scholar 

  • Sattler R, Tymianski M (2001) Molecular mechanisms of glutamate receptor-mediated excitotoxic neuronal cell death. Mol Neurobiol 24(1–3):107–129

    Article  PubMed  CAS  Google Scholar 

  • Schmitz D, Mellor J, Nicoll RA (2001) Presynaptic kainate receptor mediation of frequency facilitation at hippocampal mossy fiber synapses. Science 291(5510):1972–1976

    Article  PubMed  CAS  Google Scholar 

  • Sixt M, Engelhardt B, Pausch F, Hallmann R, Wendler O, Sorokin LM (2001) Endothelial cell laminin isoforms, laminins 8 and 10, play decisive roles in T cell recruitment across the blood–brain barrier in experimental autoimmune encephalomyelitis. J Cell Biol 153(5):933–946

    Article  PubMed  CAS  Google Scholar 

  • Sladeczek F, Momiyama A, Takahashi T (1993) Presynaptic inhibitory action of a metabotropic glutamate receptor agonist on excitatory transmission in visual cortical neurons. Proc Biol Sci 253(1338):297–303

    Article  PubMed  CAS  Google Scholar 

  • Smith T, Groom A, Zhu B, Turski L (2000) Autoimmune encephalomyelitis ameliorated by AMPA antagonists. Nat Med 6(1):62–66

    Article  PubMed  CAS  Google Scholar 

  • Song I, Huganir RL (2002) Regulation of AMPA receptors during synaptic plasticity. Trends Neurosci 25(11):578–588

    Article  PubMed  CAS  Google Scholar 

  • Stepulak A, Sifringer M, Rzeski W, Endesfelder S, Gratopp A, Pohl EE, Bittigau P, Felderhoff-Mueser U, Kaindl AM, Buhrer C, Hansen HH, Stryjecka-Zimmer M, Turski L, Ikonomidou C (2005) NMDA antagonist inhibits the extracellular signal-regulated kinase pathway and suppresses cancer growth. Proc Natl Acad Sci USA 102(43):15605–15610

    Article  PubMed  CAS  Google Scholar 

  • Stepulak A, Luksch H, Gebhardt C, Uckermann O, Marzahn J, Sifringer M, Rzeski W, Staufner C, Brocke KS, Turski L, Ikonomidou C (2009) Expression of glutamate receptor subunits in human cancers. Histochem Cell Biol 132(4):435–445

    Article  PubMed  CAS  Google Scholar 

  • Storto M, de Grazia U, Battaglia G, Felli MP, Maroder M, Gulino A, Ragona G, Nicoletti F, Screpanti I, Frati L, Calogero A (2000) Expression of metabotropic glutamate receptors in murine thymocytes and thymic stromal cells. J Neuroimmunol 109(2):112–120

    Article  PubMed  CAS  Google Scholar 

  • Sturgill JL, Mathews J, Scherle P, Conrad DH (2011) Glutamate signaling through the kainate receptor enhances human immunoglobulin production. J Neuroimmunol 233(1–2):80–89

    Google Scholar 

  • Takano T, Lin JH, Arcuino G, Gao Q, Yang J, Nedergaard M (2001) Glutamate release promotes growth of malignant gliomas. Nat Med 7(9):1010–1015

    Article  PubMed  CAS  Google Scholar 

  • Tanabe Y, Masu M, Ishii T, Shigemoto R, Nakanishi S (1992) A family of metabotropic glutamate receptors. Neuron 8(1):169–179

    Article  PubMed  CAS  Google Scholar 

  • Tay DL, Hoffbrand AV, Wickremasinghe GR (1996) Expression of c-fos and c-jun proteins and AP-1 binding activity during cell cycle progression of HL60 cells and phytohemagglutinin-stimulated lymphocytes. Exp Hematol 24(2):277–284

    PubMed  CAS  Google Scholar 

  • Twyman RE, Gahring LC, Spiess J, Rogers SW (1995) Glutamate receptor antibodies activate a subset of receptors and reveal an agonist binding site. Neuron 14(4):755–762

    Article  PubMed  CAS  Google Scholar 

  • Tziperman B, Garty BZ, Schoenfeld N, Hoffer V, Watemberg N, Lev D, Ganor Y, Levite M, Lerman-Sagie T (2007) Acute intermittent porphyria, Rasmussen encephalitis, or both? J Child Neurol 22(1):99–105

    Article  PubMed  Google Scholar 

  • Vincent A, Bien CG, Irani SR, Waters P (2011) Autoantibodies associated with diseases of the CNS: new developments and future challenges. Lancet Neurol 10(8):759–772

    Article  PubMed  CAS  Google Scholar 

  • Wiendl H, Bien CG, Bernasconi P, Fleckenstein B, Elger CE, Dichgans J, Mantegazza R, Melms A (2001) GluR3 antibodies: prevalence in focal epilepsy but no specificity for Rasmussen’s encephalitis. Neurology 57(8):1511–1514

    PubMed  CAS  Google Scholar 

  • Zhou L, Chong MM, Littman DR (2009) Plasticity of CD4+ T cell lineage differentiation. Immunity 30(5):646–655

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonatan Ganor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Ganor, Y., Levite, M. (2012). Glutamate in the Immune System: Glutamate Receptors in Immune Cells, Potent Effects, Endogenous Production and Involvement in Disease. In: Levite, M. (eds) Nerve-Driven Immunity. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0888-8_4

Download citation

Publish with us

Policies and ethics