Skip to main content

Mesenchymal Stem Cells in Wound Repair, Tissue Homeostasis, and Aging

  • Chapter
Stem Cell Aging: Mechanisms, Consequences, Rejuvenation

Abstract

Wound healing and scar remodeling are complex, multicellular processes that involve coordinated regulation of many cell types and various cytokines. The repair capacity gradually decreases with aging, constituting a severe health problem that frequently affects aged individuals. The decrease in cell number and function of mesenchymal stem cells (MSCs) is most likely responsible for the decline of tissue regeneration and wound healing. MSCs are endowed with the unique capacity for self-renewal and differentiation into histogenetically distinct cell types required for tissue repair. In addition, by their potential to sense danger signals at the wound site, MSCs are able to adaptively respond to infections and unrestrained macrophage activation and thus control inflammation. These properties make them promising for the treatment of chronic nonhealing wounds in the elderly or even for rejuvenation of the skin and other organs. This review will focus on the physiological and therapeutic roles of MSCs in cutaneous wound healing in the context of age-related chronic wounds and will help to decipher how the aging process affects the overall wound repair capacity of MSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AT-MSCs:

Adipose tissue-derived MSCs

MSCs:

Mesenchymal stem cells

BM-MSCs:

Bone-marrow-derived MSCs

EPC:

Endothelial progenitor cells

ESC:

Epidermal stem cells

MHC:

Major histocompatibility complex

References

  • Abe R, Donnelly SC, Peng T, Bucala R, Metz CN (2001) Peripheral blood fibrocytes: differentiation pathway and migration to wound sites. J Immunol 166(12):7556–7562

    CAS  PubMed  Google Scholar 

  • Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105(4):1815–1822

    CAS  PubMed  Google Scholar 

  • Akiyama K, Chen C, Wang D, Xu X, Qu C, Yamaza T, Cai T, Chen W, Sun L, Shi S (2012) Mesenchymal-stem-cell-induced immunoregulation involves FAS-ligand-/FAS-mediated T cell apoptosis. Cell Stem Cell 10(5):544–555

    Google Scholar 

  • Al-Khaldi A, Eliopoulos N, Martineau D, Lejeune L, Lachapelle K, Galipeau J (2003) Postnatal bone marrow stromal cells elicit a potent VEGF-dependent neoangiogenic response in vivo. Gene Ther 10(8):621–629

    CAS  PubMed  Google Scholar 

  • Anderson DC, Smith CW (2001) Leukocyte adhesion deficiencies. In: The metabolic and molecular basis of inherited diseases. McGraw-Hill, New York, pp 4829–4856

    Google Scholar 

  • Arnaout MA (1990) Structure and function of the leukocyte adhesion molecules CD11/CD18. Blood 75(5):1037–1050

    CAS  PubMed  Google Scholar 

  • Atoui R, Chiu RC (2012) Concise review: immunomodulatory properties of mesenchymal stem cells in cellular transplantation: update, controversies, and unknowns. Stem Cells Transl Med 1(3):200–205

    CAS  PubMed Central  PubMed  Google Scholar 

  • Au P, Tam J, Fukumura D, Jain RK (2008) Bone marrow-derived mesenchymal stem cells facilitate engineering of long-lasting functional vasculature. Blood 111(9):4551–4558

    CAS  PubMed Central  PubMed  Google Scholar 

  • Aw D, Silva AB, Palmer DB (2007) Immunosenescence: emerging challenges for an ageing population. Immunology 120(4):435–446

    CAS  PubMed Central  PubMed  Google Scholar 

  • Badiavas EV, Abedi M, Butmarc J, Falanga V, Quesenberry P (2003) Participation of bone marrow derived cells in cutaneous wound healing. J Cell Physiol 196(2):245–250

    CAS  PubMed  Google Scholar 

  • Bartsch G, Yoo JJ, De Coppi P, Siddiqui MM, Schuch G, Pohl HG, Fuhr J, Perin L, Soker S, Atala A (2005) Propagation, expansion, and multilineage differentiation of human somatic stem cells from dermal progenitors. Stem Cells Dev 14(3):337–348

    CAS  PubMed  Google Scholar 

  • Bergers G, Song S (2005) The role of pericytes in blood-vessel formation and maintenance. Neuro Oncol 7(4):452–464

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bucala R, Spiegel LA, Chesney J, Hogan M, Cerami A (1994) Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med 1(1):71–81

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bunnell BA, Betancourt AM, Sullivan DE (2010) New concepts on the immune modulation mediated by mesenchymal stem cells. Stem Cell Res Ther 1(5):34

    CAS  PubMed Central  PubMed  Google Scholar 

  • Campisi J (2005) Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120(4):513–522

    CAS  PubMed  Google Scholar 

  • Caplan AI, Correa D (2011) The MSC: an injury drugstore. Cell Stem Cell 9(1):11–15

    CAS  PubMed Central  PubMed  Google Scholar 

  • Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98(5):1076–1084

    CAS  PubMed  Google Scholar 

  • Chen FG, Zhang WJ, Bi D, Liu W, Wei X, Chen FF, Zhu L, Cui L, Cao Y (2007) Clonal analysis of nestin(−) vimentin(+) multipotent fibroblasts isolated from human dermis. J Cell Sci 120(Pt 16):2875–2883

    CAS  PubMed  Google Scholar 

  • Chen L, Tredget EE, Wu PY, Wu Y (2008) Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One 3(4), e1886

    PubMed Central  PubMed  Google Scholar 

  • Cho YM, Kim JH, Kim M, Park SJ, Koh SH, Ahn HS, Kang GH, Lee JB, Park KS, Lee HK (2012) Mesenchymal stem cells transfer mitochondria to the cells with virtually no mitochondrial function but not with pathogenic mtDNA mutations. PLoS One 7(3), e32778

    CAS  PubMed Central  PubMed  Google Scholar 

  • Choi H, Lee RH, Bazhanov N, Oh JY, Prockop DJ (2011) Anti-inflammatory protein TSG-6 secreted by activated MSCs attenuates zymosan-induced mouse peritonitis by decreasing TLR2/NF-{kappa}B signaling in resident macrophages. Blood 118(2):330–338

    CAS  PubMed Central  PubMed  Google Scholar 

  • Choudhery MS, Khan M, Mahmood R, Mehmood A, Khan SN, Riazuddin S (2012) Bone marrow derived mesenchymal stem cells from aged mice have reduced wound healing, angiogenesis, proliferation and anti-apoptosis capabilities. Cell Biol Int 36(8):747–753

    CAS  PubMed  Google Scholar 

  • Chua F, Laurent GJ (2006) Neutrophil elastase: mediator of extracellular matrix destruction and accumulation. Proc Am Thorac Soc 3(5):424–427

    CAS  PubMed  Google Scholar 

  • Corcione A, Benvenuto F, Ferretti E, Giunti D, Cappiello V, Cazzanti F, Risso M, Gualandi F, Mancardi GL, Pistoia V, Uccelli A (2006) Human mesenchymal stem cells modulate B-cell functions. Blood 107(1):367–372

    CAS  PubMed  Google Scholar 

  • Crigler L, Kazhanie A, Yoon TJ, Zakhari J, Anders J, Taylor B, Virador VM (2007) Isolation of a mesenchymal cell population from murine dermis that contains progenitors of multiple cell lineages. FASEB J 21(9):2050–2063

    CAS  PubMed Central  PubMed  Google Scholar 

  • Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Buhring HJ, Giacobino JP, Lazzari L, Huard J, Peault B (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3(3):301–313

    CAS  PubMed  Google Scholar 

  • Crisostomo PR, Wang M, Wairiuko GM, Morrell ED, Terrell AM, Seshadri P, Nam UH, Meldrum DR (2006) High passage number of stem cells adversely affects stem cell activation and myocardial protection. Shock 26(6):575–580

    CAS  PubMed  Google Scholar 

  • Daley JM, Brancato SK, Thomay AA, Reichner JS, Albina JE (2010) The phenotype of murine wound macrophages. J Leukoc Biol 87(1):59–67

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dash NR, Dash SN, Routray P, Mohapatra S, Mohapatra PC (2009) Targeting nonhealing ulcers of lower extremity in human through autologous bone marrow-derived mesenchymal stem cells. Rejuvenation Res 12(5):359–366

    CAS  PubMed  Google Scholar 

  • Dayan V, Yannarelli G, Billia F, Filomeno P, Wang XH, Davies JE, Keating A (2011) Mesenchymal stromal cells mediate a switch to alternatively activated monocytes/macrophages after acute myocardial infarction. Basic Res Cardiol 106(6):1299–1310

    CAS  PubMed  Google Scholar 

  • De Bari C, Dell’Accio F, Tylzanowski P, Luyten FP (2001) Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum 44(8):1928–1942

    PubMed  Google Scholar 

  • de la Garza-Rodea AS, Knaan-Shanzer S, van Bekkum DW (2011) Pressure ulcers: description of a new model and use of mesenchymal stem cells for repair. Dermatology 223(3):266–284

    PubMed  Google Scholar 

  • Delarosa O, Dalemans W, Lombardo E (2012) Toll-like receptors as modulators of mesenchymal stem cells. Front Immunol 3:182

    PubMed Central  PubMed  Google Scholar 

  • Dodson SA, Bernard GW, Kenney EB, Carranza FA (1996) In vitro comparison of aged and young osteogenic and hemopoietic bone marrow stem cells and their derivative colonies. J Periodontol 67(3):184–196

    CAS  PubMed  Google Scholar 

  • Dufourcq P, Descamps B, Tojais NF, Leroux L, Oses P, Daret D, Moreau C, Lamaziere JM, Couffinhal T, Duplaa C (2008) Secreted frizzled-related protein-1 enhances mesenchymal stem cell function in angiogenesis and contributes to neovessel maturation. Stem Cells 26(11):2991–3001

    PubMed  Google Scholar 

  • Espada J, Varela I, Flores I, Ugalde AP, Cadinanos J, Pendas AM, Stewart CL, Tryggvason K, Blasco MA, Freije JM, Lopez-Otin C (2008) Nuclear envelope defects cause stem cell dysfunction in premature-aging mice. J Cell Biol 181(1):27–35

    CAS  PubMed Central  PubMed  Google Scholar 

  • Falanga V (2005) Wound healing and its impairment in the diabetic foot. Lancet 366(9498):1736–1743

    PubMed  Google Scholar 

  • Falanga V (2012) Stem cells in tissue repair and regeneration. J Invest Dermatol 132(6):1538–1541

    CAS  PubMed Central  PubMed  Google Scholar 

  • Falanga V, Iwamoto S, Chartier M, Yufit T, Butmarc J, Kouttab N, Shrayer D, Carson P (2007) Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds. Tissue Eng 13(6):1299–1312

    CAS  PubMed  Google Scholar 

  • Fischer A, Durandy A, Sterkers G, Griscelli C (1986) Role of the LFA-1 molecule in cellular interactions required for antibody production in humans. J Immunol 136(9):3198–3203

    CAS  PubMed  Google Scholar 

  • Fisher GJ, Varani J, Voorhees JJ (2008) Looking older: fibroblast collapse and therapeutic implications. Arch Dermatol 144(5):666–672

    PubMed Central  PubMed  Google Scholar 

  • Fu X, Fang L. Li X, Chang B, Sheng Z (2006) Enhanced wound-healing quality with bone marrow mesenchymal stem cells autografting after skin injury. Wound Repair Regen 14(3):325–335

    Google Scholar 

  • Gago N, Perez-Lopez V, Sanz-Jaka JP, Cormenzana P, Eizaguirre I, Bernad A, Izeta A (2009) Age-dependent depletion of human skin-derived progenitor cells. Stem Cells 27(5):1164–1172

    CAS  PubMed  Google Scholar 

  • Galderisi U, Helmbold H, Squillaro T, Alessio N, Komm N, Khadang B, Cipollaro M, Bohn W, Giordano A (2009) In vitro senescence of rat mesenchymal stem cells is accompanied by downregulation of stemness-related and DNA damage repair genes. Stem Cells Dev 18(7):1033–1042

    CAS  PubMed  Google Scholar 

  • Geiger H, de Haan G, Florian MC (2013) The ageing haematopoietic stem cell compartment. Nat Rev Immunol 13(5):376–389

    CAS  PubMed  Google Scholar 

  • Ghannam S, Pene J, Torcy-Moquet G, Jorgensen C, Yssel H (2010) Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a T regulatory cell phenotype. J Immunol 185(1):302–312

    CAS  PubMed  Google Scholar 

  • Gonzalez-Rey E, Anderson P, Gonzalez MA, Rico L, Buscher D, Delgado M (2009) Human adult stem cells derived from adipose tissue protect against experimental colitis and sepsis. Gut 58(7):929–939

    CAS  PubMed  Google Scholar 

  • Gruver AL, Hudson LL, Sempowski GD (2007) Immunosenescence of ageing. J Pathol 211(2):144–156

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guo L, Zhao RC, Wu Y (2011) The role of microRNAs in self-renewal and differentiation of mesenchymal stem cells. Exp Hematol 39(6):608–616

    CAS  PubMed  Google Scholar 

  • Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453(7193):314–321

    CAS  PubMed  Google Scholar 

  • Hackl M, Brunner S, Fortschegger K, Schreiner C, Micutkova L, Muck C, Laschober GT, Lepperdinger G, Sampson N, Berger P, Herndler-Brandstetter D, Wieser M, Kuhnel H, Strasser A, Rinnerthaler M, Breitenbach M, Mildner M, Eckhart L, Tschachler E, Trost A, Bauer JW, Papak C, Trajanoski Z, Scheideler M, Grillari-Voglauer R, Grubeck-Loebenstein B, Jansen-Durr P, Grillari J (2010) miR-17, miR-19b, miR-20a, and miR-106a are down-regulated in human aging. Aging Cell 9(2):291–296

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haybesworth SE, Goldberg VM, Caplan AI (1994) Diminution of the number mesenchymal stem cells as a cause for skeletal aging. In: Woo SL-Y (ed) Musculoskeletal soft-tissue aging: impact on mobility. AAOS Workshop, Rosemont, pp 79–87

    Google Scholar 

  • Heo SC, Jeon ES, Lee IH, Kim HS, Kim MB, Kim JH (2011) Tumor necrosis factor-alpha-activated human adipose tissue-derived mesenchymal stem cells accelerate cutaneous wound healing through paracrine mechanisms. J Invest Dermatol 131(7):1559–1567

    CAS  PubMed  Google Scholar 

  • Hocking AM, Gibran NS (2010) Mesenchymal stem cells: paracrine signaling and differentiation during cutaneous wound repair. Exp Cell Res 316(14):2213–2219

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hoenig MR, Bianchi C, Rosenzweig A, Sellke FW (2008) Decreased vascular repair and neovascularization with ageing: mechanisms and clinical relevance with an emphasis on hypoxia-inducible factor-1. Curr Mol Med 8(8):754–767

    CAS  PubMed  Google Scholar 

  • Hoogduijn MJ, Gorjup E, Genever PG (2006) Comparative characterization of hair follicle dermal stem cells and bone marrow mesenchymal stem cells. Stem Cells Dev 15(1):49–60

    CAS  PubMed  Google Scholar 

  • Hwa Cho H, Bae YC, Jung JS (2006) Role of toll-like receptors on human adipose-derived stromal cells. Stem Cells 24(12):2744–2752

    PubMed  Google Scholar 

  • In’t Anker PS, Scherjon SA, der Kleijburg-van KC, Noort WA, Claas FH, Willemze R, Fibbe WE, Kanhai HH (2003) Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 102(4):1548–1549

    Google Scholar 

  • Islam MN, Das SR, Emin MT, Wei M, Sun L, Westphalen K, Rowlands DJ, Quadri SK, Bhattacharya S, Bhattacharya J (2012) Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat Med 18(5):759–765

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jackson WM, Nesti LJ, Tuan RS (2012) Mesenchymal stem cell therapy for attenuation of scar formation during wound healing. Stem Cell Res Ther 3(3):20

    PubMed Central  PubMed  Google Scholar 

  • Jahoda CA, Reynolds AJ (2001) Hair follicle dermal sheath cells: unsung participants in wound healing. Lancet 358(9291):1445–1448

    CAS  PubMed  Google Scholar 

  • Jahoda CA, Whitehouse J, Reynolds AJ, Hole N (2003) Hair follicle dermal cells differentiate into adipogenic and osteogenic lineages. Exp Dermatol 12(6):849–859

    PubMed  Google Scholar 

  • Jaul E (2010) Assessment and management of pressure ulcers in the elderly: current strategies. Drugs Aging 27(4):311–325

    PubMed  Google Scholar 

  • Jiang D, Qi Y, Walker NG, Sindrilaru A, Hainzl A, Wlaschek M, Macneil S, Scharffetter-Kochanek K (2013) The effect of adipose tissue derived MSCs delivered by a chemically defined carrier on full-thickness cutaneous wound healing. Biomaterials 34(10):2501–2515

    CAS  PubMed  Google Scholar 

  • Joannides A, Gaughwin P, Schwiening C, Majed H, Sterling J, Compston A, Chandran S (2004) Efficient generation of neural precursors from adult human skin: astrocytes promote neurogenesis from skin-derived stem cells. Lancet 364(9429):172–178

    CAS  PubMed  Google Scholar 

  • Jung-Hynes B, Ahmad N (2009) SIRT1 controls circadian clock circuitry and promotes cell survival: a connection with age-related neoplasms. FASEB J 23(9):2803–2809

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kavanagh H, Mahon BP (2011) Allogeneic mesenchymal stem cells prevent allergic airway inflammation by inducing murine regulatory T cells. Allergy 66(4):523–531

    CAS  PubMed  Google Scholar 

  • Keating A (2012) Mesenchymal stromal cells: new directions. Cell Stem Cell 10(6):709–716

    CAS  PubMed  Google Scholar 

  • Kim J, Hematti P (2009) Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Exp Hematol 37(12):1445–1453

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim EK, Li G, Lee TJ, Hong JP (2011) The effect of human adipose-derived stem cells on healing of ischemic wounds in a diabetic nude mouse model. Plast Reconstr Surg 128(2):387–394

    CAS  PubMed  Google Scholar 

  • Kim C, Schneider G, Abdel-Latif A, Mierzejewska K, Sunkara M, Borkowska S, Ratajczak J, Morris AJ, Kucia M, Ratajczak MZ (2013) Ceramide-1-phosphate regulates migration of multipotent stromal cells and endothelial progenitor cells–implications for tissue regeneration. Stem Cells 31(3):500–510

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kishimoto TK, Hollander N, Roberts TM, Anderson DC, Springer TA (1987) Heterogeneous mutations in the beta subunit common to the LFA-1, Mac-1, and p150,95 glycoproteins cause leukocyte adhesion deficiency. Cell 50(2):193–202

    CAS  PubMed  Google Scholar 

  • Kligman LH, Kligman AM (1986) The nature of photoaging: its prevention and repair. Photodermatol 3(4):215–227

    CAS  PubMed  Google Scholar 

  • Kretlow JD, Jin YQ, Liu W, Zhang WJ, Hong TH, Zhou G, Baggett LS, Mikos AG, Cao Y (2008) Donor age and cell passage affects differentiation potential of murine bone marrow-derived stem cells. BMC Cell Biol 9:60

    PubMed Central  PubMed  Google Scholar 

  • Ksander BR, Kolovou PE, Wilson BJ, Saab KR, Guo Q, Ma J, McGuire SP, Gregory MS, Vincent WJ, Perez VL, Cruz-Guilloty F, Kao WW, Call MK, Tucker BA, Zhan Q, Murphy GF, Lathrop KL, Alt C, Mortensen LJ, Lin CP, Zieske JD, Frank MH, Frank NY (2014) ABCB5 is a limbal stem cell gene required for corneal development and repair. Nature 511(7509):353–357

    Google Scholar 

  • Kwon DS, Gao X, Liu YB, Dulchavsky DS, Danyluk AL, Bansal M, Chopp M, McIntosh K, Arbab AS, Dulchavsky SA, Gautam SC (2008) Treatment with bone marrow-derived stromal cells accelerates wound healing in diabetic rats. Int Wound J 5(3):453–463

    PubMed  Google Scholar 

  • Lai RC, Arslan F, Lee MM, Sze NS, Choo A, Chen TS, Salto-Tellez M, Timmers L, Lee CN, El Oakley RM, Pasterkamp G, de Kleijn DP, Lim SK (2010a) Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res 4(3):214–222

    CAS  PubMed  Google Scholar 

  • Lai RC, Arslan F, Tan SS, Tan B, Choo A, Lee MM, Chen TS, Teh BJ, Eng JK, Sidik H, Tanavde V, Hwang WS, Lee CN, El Oakley RM, Pasterkamp G, de Kleijn DP, Tan KH, Lim SK (2010b) Derivation and characterization of human fetal MSCs: an alternative cell source for large-scale production of cardioprotective microparticles. J Mol Cell Cardiol 48(6):1215–1224

    CAS  PubMed  Google Scholar 

  • Lai RC, Chen TS, Lim SK (2011) Mesenchymal stem cell exosome: a novel stem cell-based therapy for cardiovascular disease. Regen Med 6(4):481–492

    PubMed  Google Scholar 

  • Laschober GT, Brunauer R, Jamnig A, Singh S, Hafen U, Fehrer C, Kloss F, Gassner R, Lepperdinger G (2011) Age-specific changes of mesenchymal stem cells are paralleled by upregulation of CD106 expression as a response to an inflammatory environment. Rejuvenation Res 14(2):119–131

    CAS  PubMed  Google Scholar 

  • Lee RH, Seo MJ, Reger RL, Spees JL, Pulin AA, Olson SD, Prockop DJ (2006) Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice. Proc Natl Acad Sci U S A 103(46):17438–17443

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee RH, Pulin AA, Seo MJ, Kota DJ, Ylostalo J, Larson BL, Semprun-Prieto L, Delafontaine P, Prockop DJ (2009) Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 5(1):54–63

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee SH, Jin SY, Song JS, Seo KK, Cho KH (2012) Paracrine effects of adipose-derived stem cells on keratinocytes and dermal fibroblasts. Ann Dermatol 24(2):136–143

    PubMed Central  PubMed  Google Scholar 

  • Li H, Fu X, Ouyang Y, Cai C, Wang J, Sun T (2006) Adult bone-marrow-derived mesenchymal stem cells contribute to wound healing of skin appendages. Cell Tissue Res 326(3):725–736

    CAS  PubMed  Google Scholar 

  • Li Q, Ke F, Zhang W, Shen X, Xu Q, Wang H, Yu XZ, Leng Q, Wang H (2011) Plasmin plays an essential role in amplification of psoriasiform skin inflammation in mice. PLoS One 6(2), e16483

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liang XJ, Chen XJ, Yang DH, Huang SM, Sun GD, Chen YP (2012) Differentiation of human umbilical cord mesenchymal stem cells into hepatocyte-like cells by hTERT gene transfection in vitro. Cell Biol Int 36(2):215–221

    CAS  PubMed  Google Scholar 

  • Lin Q, Wang L, Lin Y, Liu X, Ren X, Wen S, Du X, Lu T, Su SY, Yang X, Huang W, Zhou S, Wen F, Su SB (2012) Toll-like receptor 3 ligand polyinosinic:polycytidylic acid promotes wound healing in human and murine skin. J Invest Dermatol 132(8):2085–2092

    CAS  PubMed  Google Scholar 

  • Liu D, Ou L, Clemenson GD Jr, Chao C, Lutske ME, Zambetti GP, Gage FH, Xu Y (2010) Puma is required for p53-induced depletion of adult stem cells. Nat Cell Biol 12(10):993–998

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu GH, Barkho BZ, Ruiz S, Diep D, Qu J, Yang SL, Panopoulos AD, Suzuki K, Kurian L, Walsh C, Thompson J, Boue S, Fung HL, Sancho-Martinez I, Zhang K, Yates J 3rd, Izpisua Belmonte JC (2011) Recapitulation of premature ageing with iPSCs from Hutchinson-Gilford progeria syndrome. Nature 472(7342):221–225

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu B, Ghosh S, Yang X, Zheng H, Liu X, Wang Z, Jin G, Zheng B, Kennedy BK, Suh Y, Kaeberlein M, Tryggvason K, Zhou Z (2012) Resveratrol rescues SIRT1-dependent adult stem cell decline and alleviates progeroid features in laminopathy-based progeria. Cell Metab 16(6):738–750

    CAS  PubMed  Google Scholar 

  • Liu S, Jiang L, Li H, Shi H, Luo H, Zhang Y, Yu C, Jin Y (2014) Mesenchymal stem cells prevent hypertrophic scar formation via inflammatory regulation when undergoing apoptosis. J Invest Dermatol 134(10):2648–2657

    Google Scholar 

  • Lorenz K, Sicker M, Schmelzer E, Rupf T, Salvetter J, Schulz-Siegmund M, Bader A (2008) Multilineage differentiation potential of human dermal skin-derived fibroblasts. Exp Dermatol 17(11):925–932

    CAS  PubMed  Google Scholar 

  • Lu D, Chen B, Liang Z, Deng W, Jiang Y, Li S, Xu J, Wu Q, Zhang Z, Xie B, Chen S (2011) Comparison of bone marrow mesenchymal stem cells with bone marrow-derived mononuclear cells for treatment of diabetic critical limb ischemia and foot ulcer: a double-blind, randomized, controlled trial. Diabetes Res Clin Pract 92(1):26–36

    PubMed  Google Scholar 

  • Maby-El Hajjami H, Ame-Thomas P, Pangault C, Tribut O, DeVos J, Jean R, Bescher N, Monvoisin C, Dulong J, Lamy T, Fest T, Tarte K (2009) Functional alteration of the lymphoma stromal cell niche by the cytokine context: role of indoleamine-2,3 dioxygenase. Cancer Res 69(7):3228–3237

    CAS  PubMed  Google Scholar 

  • Mastri M, Shah Z, McLaughlin T, Greene CJ, Baum L, Suzuki G, Lee T (2012) Activation of Toll-like receptor 3 amplifies mesenchymal stem cell trophic factors and enhances therapeutic potency. Am J Physiol Cell Physiol 303(10):C1021–C1033

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matsumoto R, Omura T, Yoshiyama M, Hayashi T, Inamoto S, Koh KR, Ohta K, Izumi Y, Nakamura Y, Akioka K, Kitaura Y, Takeuchi K, Yoshikawa J (2005) Vascular endothelial growth factor-expressing mesenchymal stem cell transplantation for the treatment of acute myocardial infarction. Arterioscler Thromb Vasc Biol 25(6):1168–1173

    Google Scholar 

  • Meisel R, Zibert A, Laryea M, Gobel U, Daubener W, Dilloo D (2004) Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood 103(12):4619–4621

    CAS  PubMed  Google Scholar 

  • Meraviglia V, Azzimato V, Piacentini L, Chiesa M, Kesharwani RK, Frati C, Capogrossi MC, Gaetano C, Pompilio G, Colombo GI, Rossini A (2014) Syngeneic cardiac and bone marrow stromal cells display tissue-specific microRNA signatures and microRNA subsets restricted to diverse differentiation processes. PLoS One 9(9), e107269

    Google Scholar 

  • Miura Y, Miura M, Gronthos S, Allen MR, Cao C, Uveges TE, Bi Y, Ehirchiou D, Kortesidis A, Shi S, Zhang L (2005) Defective osteogenesis of the stromal stem cells predisposes CD18-null mice to osteoporosis. Proc Natl Acad Sci U S A 102(39):14022–14027

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mulder GD, Lee DK, Faghihnia N (2010) Autologous bone marrow-derived stem cells for chronic wounds of the lower extremity: a retrospective study. Wounds 22(9):219–225

    PubMed  Google Scholar 

  • Murphy MB, Moncivais K, Caplan AI (2013) Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine. Exp Mol Med 45, e54

    PubMed Central  PubMed  Google Scholar 

  • Nasef A, Ashammakhi N, Fouillard L (2008) Immunomodulatory effect of mesenchymal stromal cells: possible mechanisms. Regen Med 3(4):531–546

    CAS  PubMed  Google Scholar 

  • Nauta AJ, Kruisselbrink AB, Lurvink E, Willemze R, Fibbe WE (2006) Mesenchymal stem cells inhibit generation and function of both CD34+−derived and monocyte-derived dendritic cells. J Immunol 177(4):2080–2087

    CAS  PubMed  Google Scholar 

  • Nemeth K, Leelahavanichkul A, Yuen PS, Mayer B, Parmelee A, Doi K, Robey PG, Leelahavanichkul K, Koller BH, Brown JM, Hu X, Jelinek I, Star RA, Mezey E (2009) Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 15(1):42–49

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nemeth K, Keane-Myers A, Brown JM, Metcalfe DD, Gorham JD, Bundoc VG, Hodges MG, Jelinek I, Madala S, Karpati S, Mezey E (2010) Bone marrow stromal cells use TGF-beta to suppress allergic responses in a mouse model of ragweed-induced asthma. Proc Natl Acad Sci U S A 107(12):5652–5657

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nurmenniemi S, Kuvaja P, Lehtonen S, Tiuraniemi S, Alahuhta I, Mattila RK, Risteli J, Salo T, Selander KS, Nyberg P, Lehenkari P (2010) Toll-like receptor 9 ligands enhance mesenchymal stem cell invasion and expression of matrix metalloprotease-13. Exp Cell Res 316(16):2676–2682

    CAS  PubMed  Google Scholar 

  • O’Loughlin A, Kulkarni M, Creane M, Vaughan EE, Mooney E, Shaw G, Murphy M, Dockery P, Pandit A, O’Brien T (2013) Topical administration of allogeneic mesenchymal stromal cells seeded in a collagen scaffold augments wound healing and increases angiogenesis in the diabetic rabbit ulcer. Diabetes 62(7):2588–2594

    Google Scholar 

  • Opalenik SR, Davidson JM (2005) Fibroblast differentiation of bone marrow-derived cells during wound repair. FASEB J 19(11):1561–1563

    CAS  PubMed  Google Scholar 

  • Ortiz LA, Gambelli F, McBride C, Gaupp D, Baddoo M, Kaminski N, Phinney DG (2003) Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci U S A 100(14):8407–8411

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oswald J, Boxberger S, Jorgensen B, Feldmann S, Ehninger G, Bornhauser M, Werner C (2004) Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells 22(3):377–384

    PubMed  Google Scholar 

  • Ozerdem U, Alitalo K, Salven P, Li A (2005) Contribution of bone marrow-derived pericyte precursor cells to corneal vasculogenesis. Invest Ophthalmol Vis Sci 46(10):3502–3506

    PubMed Central  PubMed  Google Scholar 

  • Park JS, Kim HY, Kim HW, Chae GN, Oh HT, Park JY, Shim H, Seo M, Shin EY, Kim EG, Park SC, Kwak SJ (2005) Increased caveolin-1, a cause for the declined adipogenic potential of senescent human mesenchymal stem cells. Mech Ageing Dev 126(5):551–559

    CAS  PubMed  Google Scholar 

  • Pekovic V, Hutchison CJ (2008) Adult stem cell maintenance and tissue regeneration in the ageing context: the role for A-type lamins as intrinsic modulators of ageing in adult stem cells and their niches. J Anat 213(1):5–25

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peters T, Sindrilaru A, Hinz B, Hinrichs R, Menke A, Al-Azzeh EA, Holzwarth K, Oreshkova T, Wang H, Kess D, Walzog B, Sulyok S, Sunderkotter C, Friedrich W, Wlaschek M, Krieg T, Scharffetter-Kochanek K (2005) Wound-healing defect of CD18(−/−) mice due to a decrease in TGF-beta1 and myofibroblast differentiation. EMBO J 24(19):3400–3410

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peters T, Sindrilaru A, Wang H, Oreshkova T, Renkl AC, Kess D, Scharffetter-Kochanek K (2006) CD18 in monogenic and polygenic inflammatory processes of the skin. J Investig Dermatol Symp Proc 11(1):7–15

    CAS  PubMed  Google Scholar 

  • Peters T, Weiss JM, Sindrilaru A, Wang H, Oreshkova T, Wlaschek M, Maity P, Reimann J, Scharffetter-Kochanek K (2009) Reactive oxygen intermediate-induced pathomechanisms contribute to immunosenescence, chronic inflammation and autoimmunity. Mech Ageing Dev 130(9):564–587

    CAS  PubMed  Google Scholar 

  • Pevsner-Fischer M, Morad V, Cohen-Sfady M, Rousso-Noori L, Zanin-Zhorov A, Cohen S, Cohen IR, Zipori D (2007) Toll-like receptors and their ligands control mesenchymal stem cell functions. Blood 109(4):1422–1432

    CAS  PubMed  Google Scholar 

  • Pietila M, Lehtonen S, Tuovinen E, Lahteenmaki K, Laitinen S, Leskela HV, Natynki A, Pesala J, Nordstrom K, Lehenkari P (2012) CD200 positive human mesenchymal stem cells suppress TNF-alpha secretion from CD200 receptor positive macrophage-like cells. PLoS One 7(2), e31671

    CAS  PubMed Central  PubMed  Google Scholar 

  • Piwko-Czuchra A, Koegel H, Meyer H, Bauer M, Werner S, Brakebusch C, Fassler R (2009) Beta1 integrin-mediated adhesion signalling is essential for epidermal progenitor cell expansion. PLoS One 4(5), e5488

    PubMed Central  PubMed  Google Scholar 

  • Plotnikov EY, Khryapenkova TG, Vasileva AK, Marey MV, Galkina SI, Isaev NK, Sheval EV, Polyakov VY, Sukhikh GT, Zorov DB (2008) Cell-to-cell cross-talk between mesenchymal stem cells and cardiomyocytes in co-culture. J Cell Mol Med 12(5A):1622–1631

    CAS  PubMed Central  PubMed  Google Scholar 

  • Popova AP, Bozyk PD, Goldsmith AM, Linn MJ, Lei J, Bentley JK, Hershenson MB (2010) Autocrine production of TGF-beta1 promotes myofibroblastic differentiation of neonatal lung mesenchymal stem cells. Am J Physiol Lung Cell Mol Physiol 298(6):L735–L743

    CAS  PubMed Central  PubMed  Google Scholar 

  • Potapova IA, Gaudette GR, Brink PR, Robinson RB, Rosen MR, Cohen IS, Doronin SV (2007) Mesenchymal stem cells support migration, extracellular matrix invasion, proliferation, and survival of endothelial cells in vitro. Stem Cells 25(7):1761–1768

    CAS  PubMed  Google Scholar 

  • Prockop DJ (2012) Mitochondria to the rescue. Nat Med 18(5):653–654

    CAS  PubMed  Google Scholar 

  • Prockop DJ, Brenner M, Fibbe WE, Horwitz E, Le Blanc K, Phinney DG, Simmons PJ, Sensebe L, Keating A (2010) Defining the risks of mesenchymal stromal cell therapy. Cytotherapy 12(5):576–578

    PubMed  Google Scholar 

  • Qi Y, Jiang D, Sindrilaru A, Stegemann A, Schatz S, Treiber N, Rojewski M, Schrezenmeier H, Vander Beken S, Wlaschek M, Bohm M, Seitz A, Scholz N, Durselen L, Brinckmann J, Ignatius A, Scharffetter-Kochanek K (2014) TSG-6 released from intradermally injected mesenchymal stem cells accelerates wound healing and reduces tissue fibrosis in murine full-thickness skin wounds. J Invest Dermatol 134(2):526–537

    CAS  PubMed  Google Scholar 

  • Quan TE, Cowper S, Wu SP, Bockenstedt LK, Bucala R (2004) Circulating fibrocytes: collagen-secreting cells of the peripheral blood. Int J Biochem Cell Biol 36(4):598–606

    CAS  PubMed  Google Scholar 

  • Quarto R, Thomas D, Liang CT (1995) Bone progenitor cell deficits and the age-associated decline in bone repair capacity. Calcif Tissue Int 56(2):123–129

    CAS  PubMed  Google Scholar 

  • Raffaghello L, Bianchi G, Bertolotto M, Montecucco F, Busca A, Dallegri F, Ottonello L, Pistoia V (2008) Human mesenchymal stem cells inhibit neutrophil apoptosis: a model for neutrophil preservation in the bone marrow niche. Stem Cells 26(1):151–162

    CAS  PubMed  Google Scholar 

  • Raicevic G, Rouas R, Najar M, Stordeur P, Boufker HI, Bron D, Martiat P, Goldman M, Nevessignsky MT, Lagneaux L (2010) Inflammation modifies the pattern and the function of toll-like receptors expressed by human mesenchymal stromal cells. Hum Immunol 71(3):235–244

    CAS  PubMed  Google Scholar 

  • Raju S, Neglen P (2009) Clinical practice. Chronic venous insufficiency and varicose veins. N Engl J Med 360(22):2319–2327

    CAS  PubMed  Google Scholar 

  • Rando TA (2006) Stem cells, ageing and the quest for immortality. Nature 441(7097):1080–1086

    CAS  PubMed  Google Scholar 

  • Ravari H, Hamidi-Almadari D, Salimifar M, Bonakdaran S, Parizadeh MR, Koliakos G (2011) Treatment of non-healing wounds with autologous bone marrow cells, platelets, fibrin glue and collagen matrix. Cytotherapy 13(6):705–711

    CAS  PubMed  Google Scholar 

  • Ren G, Zhang L, Zhao X, Xu G, Zhang Y, Roberts AI, Zhao RC, Shi Y (2008) Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell 2(2):141–150

    CAS  PubMed  Google Scholar 

  • Rodriguez-Menocal L, Salgado M, Ford D, Van Badiavas E (2012) Stimulation of skin and wound fibroblast migration by mesenchymal stem cells derived from normal donors and chronic wound patients. Stem Cells Transl Med 1(3):221–229

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rose RA, Jiang H, Wang X, Helke S, Tsoporis JN, Gong N, Keating SC, Parker TG, Backx PH, Keating A (2008) Bone marrow-derived mesenchymal stromal cells express cardiac-specific markers, retain the stromal phenotype, and do not become functional cardiomyocytes in vitro. Stem Cells 26(11):2884–2892

    CAS  PubMed  Google Scholar 

  • Rosengardten Y, McKenna T, Grochova D, Eriksson M (2011) Stem cell depletion in Hutchinson-Gilford progeria syndrome. Aging Cell 10(6):1011–1020

    CAS  PubMed  Google Scholar 

  • Salmon AB, Perez VI, Bokov A, Jernigan A, Kim G, Zhao H, Levine RL, Richardson A (2009) Lack of methionine sulfoxide reductase a in mice increases sensitivity to oxidative stress but does not diminish life span. FASEB J 23(10):3601–3608

    CAS  PubMed Central  PubMed  Google Scholar 

  • Salvolini E, Lucarini G, Zizzi A, Orciani M, Di Benedetto G, Di Primio R (2010a) Human skin-derived mesenchymal stem cells as a source of VEGF and nitric oxide. Arch Dermatol Res 302(5):367–374

    CAS  PubMed  Google Scholar 

  • Salvolini E, Orciani M, Vignini A, Mattioli-Belmonte M, Mazzanti L, Di Primio R (2010b) Skin-derived mesenchymal stem cells (S-MSCs) induce endothelial cell activation by paracrine mechanisms. Exp Dermatol 19(9):848–850

    PubMed  Google Scholar 

  • Sanges D, Lluis F, Cosma MP (2011) Cell-fusion-mediated reprogramming: pluripotency or transdifferentiation? Implications for regenerative medicine. Adv Exp Med Biol 713:137–159

    CAS  PubMed  Google Scholar 

  • Sarasua JG, Lopez SP, Viejo MA, Basterrechea MP, Rodriguez AF, Gutierrez AF, Gala JG, Menendez YM, Augusto DE, Arias AP, Hernandez JO (2011) Treatment of pressure ulcers with autologous bone marrow nuclear cells in patients with spinal cord injury. J Spinal Cord Med 34(3):301–307

    PubMed Central  PubMed  Google Scholar 

  • Sasaki M, Abe R, Fujita Y, Ando S, Inokuma D, Shimizu H (2008) Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J Immunol 180(4):2581–2587

    CAS  PubMed  Google Scholar 

  • Scaffidi P, Misteli T (2008) Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing. Nat Cell Biol 10(4):452–459

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schatteman GC, Ma N (2006) Old bone marrow cells inhibit skin wound vascularization. Stem Cells 24(3):717–721

    PubMed  Google Scholar 

  • Scheid A, Wenger RH, Schaffer L, Camenisch I, Distler O, Ferenc A, Cristina H, Ryan HE, Johnson RS, Wagner KF, Stauffer UG, Bauer C, Gassmann M, Meuli M (2002) Physiologically low oxygen concentrations in fetal skin regulate hypoxia-inducible factor 1 and transforming growth factor-beta3. FASEB J 16(3):411–413

    CAS  PubMed  Google Scholar 

  • Schneider RK, Neuss S, Stainforth R, Laddach N, Bovi M, Knuechel R, Perez-Bouza A (2008) Three-dimensional epidermis-like growth of human mesenchymal stem cells on dermal equivalents: contribution to tissue organization by adaptation of myofibroblastic phenotype and function. Differentiation 76(2):156–167

    CAS  PubMed  Google Scholar 

  • Sellheyer K, Krahl D (2010) Skin mesenchymal stem cells: prospects for clinical dermatology. J Am Acad Dermatol 63(5):859–865

    PubMed  Google Scholar 

  • Selmani Z, Naji A, Zidi I, Favier B, Gaiffe E, Obert L, Borg C, Saas P, Tiberghien P, Rouas-Freiss N, Carosella ED, Deschaseaux F (2008) Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells. Stem Cells 26(1):212–222

    CAS  PubMed  Google Scholar 

  • Sen CK, Khanna S, Babior BM, Hunt TK, Ellison EC, Roy S (2002) Oxidant-induced vascular endothelial growth factor expression in human keratinocytes and cutaneous wound healing. J Biol Chem 277(36):33284–33290

    CAS  PubMed  Google Scholar 

  • Sensebe L, Krampera M, Schrezenmeier H, Bourin P, Giordano R (2010) Mesenchymal stem cells for clinical application. Vox Sang 98(2):93–107

    CAS  PubMed  Google Scholar 

  • Seppanen E, Roy E, Ellis R, Bou-Gharios G, Fisk NM, Khosrotehrani K (2013) Distant mesenchymal progenitors contribute to skin wound healing and produce collagen: evidence from a murine fetal microchimerism model. PLoS One 8(5), e62662

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sharpless NE, DePinho RA (2007) How stem cells age and why this makes us grow old. Nat Rev Mol Cell Biol 8(9):703–713

    CAS  PubMed  Google Scholar 

  • Sheng Z, Fu X, Cai S, Lei Y, Sun T, Bai X, Chen M (2009) Regeneration of functional sweat gland-like structures by transplanted differentiated bone marrow mesenchymal stem cells. Wound Repair Regen 17(3):427–435

    PubMed  Google Scholar 

  • Shi Y, Hu G, Su J, Li W, Chen Q, Shou P, Xu C, Chen X, Huang Y, Zhu Z, Huang X, Han X, Xie N, Ren G (2010) Mesenchymal stem cells: a new strategy for immunosuppression and tissue repair. Cell Res 20(5):510–518

    CAS  PubMed  Google Scholar 

  • Shilo S, Roy S, Khanna S, Sen CK (2007) MicroRNA in cutaneous wound healing: a new paradigm. DNA Cell Biol 26(4):227–237

    CAS  PubMed  Google Scholar 

  • Si Y, Zhao Y, Hao H, Liu J, Guo Y, Mu Y, Shen J, Cheng Y, Fu X, Han W (2012) Infusion of mesenchymal stem cells ameliorates hyperglycemia in type 2 diabetic rats: identification of a novel role in improving insulin sensitivity. Diabetes 61(6):1616–1625

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sindrilaru A, Seeliger S, Ehrchen JM, Peters T, Roth J, Scharffetter-Kochanek K, Sunderkotter CH (2007) Site of blood vessel damage and relevance of CD18 in a murine model of immune complex-mediated vasculitis. J Invest Dermatol 127(2):447–454

    CAS  PubMed  Google Scholar 

  • Sindrilaru A, Peters T, Schymeinsky J, Oreshkova T, Wang H, Gompf A, Mannella F, Wlaschek M, Sunderkotter C, Rudolph KL, Walzog B, Bustelo XR, Fischer KD, Scharffetter-Kochanek K (2009) Wound healing defect of Vav3−/− mice due to impaired {beta}2-integrin-dependent macrophage phagocytosis of apoptotic neutrophils. Blood 113(21):5266–5276

    CAS  PubMed  Google Scholar 

  • Sindrilaru A, Peters T, Wieschalka S, Baican C, Baican A, Peter H, Hainzl A, Schatz S, Qi Y, Schlecht A, Weiss JM, Wlaschek M, Sunderkotter C, Scharffetter-Kochanek K (2011) An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. J Clin Invest 121(3):985–997

    CAS  PubMed Central  PubMed  Google Scholar 

  • Singer NG, Caplan AI (2011) Mesenchymal stem cells: mechanisms of inflammation. Annu Rev Pathol 6:457–478

    CAS  PubMed  Google Scholar 

  • Smith AN, Willis E, Chan VT, Muffley LA, Isik FF, Gibran NS, Hocking AM (2010) Mesenchymal stem cells induce dermal fibroblast responses to injury. Exp Cell Res 316(1):48–54

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sotiropoulou PA, Perez SA, Gritzapis AD, Baxevanis CN, Papamichail M (2006) Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells 24(1):74–85

    PubMed  Google Scholar 

  • Spees JL, Olson SD, Whitney MJ, Prockop DJ (2006) Mitochondrial transfer between cells can rescue aerobic respiration. Proc Natl Acad Sci U S A 103(5):1283–1288

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stappenbeck TS, Miyoshi H (2009) The role of stromal stem cells in tissue regeneration and wound repair. Science 324(5935):1666–1669

    CAS  PubMed  Google Scholar 

  • Stenderup K, Justesen J, Clausen C, Kassem M (2003) Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone 33(6):919–926

    PubMed  Google Scholar 

  • Stock P, Bruckner S, Ebensing S, Hempel M, Dollinger MM, Christ B (2010) The generation of hepatocytes from mesenchymal stem cells and engraftment into murine liver. Nat Protoc 5(4):617–627

    CAS  PubMed  Google Scholar 

  • Stoff A, Rivera AA, Sanjib Banerjee N, Moore ST, Michael Numnum T, Espinosa-de-Los-Monteros A, Richter DF, Siegal GP, Chow LT, Feldman D, Vasconez LO, Michael Mathis J, Stoff-Khalili MA, Curiel DT (2009) Promotion of incisional wound repair by human mesenchymal stem cell transplantation. Exp Dermatol 18(4):362–369

    PubMed Central  PubMed  Google Scholar 

  • Stolzing A, Jones E, McGonagle D, Scutt A (2008) Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mech Ageing Dev 129(3):163–173

    CAS  PubMed  Google Scholar 

  • Su X, Paris M, Gi YJ, Tsai KY, Cho MS, Lin YL, Biernaskie JA, Sinha S, Prives C, Pevny LH, Miller FD, Flores ER (2009) TAp63 prevents premature aging by promoting adult stem cell maintenance. Cell Stem Cell 5(1):64–75

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sun J, Han ZB, Liao W, Yang SG, Yang Z, Yu J, Meng L, Wu R, Han ZC (2011) Intrapulmonary delivery of human umbilical cord mesenchymal stem cells attenuates acute lung injury by expanding CD4+CD25+ Forkhead Boxp3 (FOXP3)+regulatory T cells and balancing anti- and pro-inflammatory factors. Cell Physiol Biochem 27(5):587–596

    CAS  PubMed  Google Scholar 

  • Tang YL, Zhao Q, Qin X, Shen L, Cheng L, Ge J, Phillips MI (2005) Paracrine action enhances the effects of autologous mesenchymal stem cell transplantation on vascular regeneration in rat model of myocardial infarction. Ann Thorac Surg 80(1):229–236

    Google Scholar 

  • Tark KC, Hong JW, Kim YS, Hahn SB, Lee WJ, Lew DH (2010) Effects of human cord blood mesenchymal stem cells on cutaneous wound healing in leprdb mice. Ann Plast Surg 65(6):565–572

    CAS  PubMed  Google Scholar 

  • Tobin DJ, Gunin A, Magerl M, Handijski B, Paus R (2003) Plasticity and cytokinetic dynamics of the hair follicle mesenchyme: implications for hair growth control. J Invest Dermatol 120(6):895–904

    CAS  PubMed  Google Scholar 

  • Toma JG, Akhavan M, Fernandes KJ, Barnabe-Heider F, Sadikot A, Kaplan DR, Miller FD (2001) Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol 3(9):778–784

    CAS  PubMed  Google Scholar 

  • Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD (2002) Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105(1):93–98

    PubMed  Google Scholar 

  • Traktuev DO, Merfeld-Clauss S, Li J, Kolonin M, Arap W, Pasqualini R, Johnstone BH, March KL (2008) A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res 102(1):77–85

    CAS  PubMed  Google Scholar 

  • Tso GH, Law HK, Tu W, Chan GC, Lau YL (2010) Phagocytosis of apoptotic cells modulates mesenchymal stem cells osteogenic differentiation to enhance IL-17 and RANKL expression on CD4+ T cells. Stem Cells 28(5):939–954

    CAS  PubMed  Google Scholar 

  • Ueda M, Nishino Y (2010) Cell-based cytokine therapy for skin rejuvenation. J Craniofac Surg 21(6):1861–1866

    PubMed  Google Scholar 

  • Vaculik C, Schuster C, Bauer W, Iram N, Pfisterer K, Kramer G, Reinisch A, Strunk D, Elbe-Burger A (2012) Human dermis harbors distinct mesenchymal stromal cell subsets. J Invest Dermatol 132(3 Pt 1):563–574

    CAS  PubMed Central  PubMed  Google Scholar 

  • Valle-Prieto A, Conget PA (2010) Human mesenchymal stem cells efficiently manage oxidative stress. Stem Cells Dev 19(12):1885–1893

    CAS  PubMed  Google Scholar 

  • Varani J, Schuger L, Dame MK, Leonard C, Fligiel SE, Kang S, Fisher GJ, Voorhees JJ (2004) Reduced fibroblast interaction with intact collagen as a mechanism for depressed collagen synthesis in photodamaged skin. J Invest Dermatol 122(6):1471–1479

    CAS  PubMed  Google Scholar 

  • Wan J, Xia L, Liang W, Liu Y, Cai Q (2013) Transplantation of bone marrow-derived mesenchymal stem cells promotes delayed wound healing in diabetic rats. J Diabetes Res 2013:647107

    PubMed Central  PubMed  Google Scholar 

  • Wang H, Peters T, Kess D, Sindrilaru A, Oreshkova T, Van Rooijen N, Stratis A, Renkl AC, Sunderkotter C, Wlaschek M, Haase I, Scharffetter-Kochanek K (2006) Activated macrophages are essential in a murine model for T cell-mediated chronic psoriasiform skin inflammation. J Clin Invest 116(8):2105–2114

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang XJ, Dong Z, Zhong XH, Shi RZ, Huang SH, Lou Y, Li QP (2008) Transforming growth factor-beta1 enhanced vascular endothelial growth factor synthesis in mesenchymal stem cells. Biochem Biophys Res Commun 365(3):548–554

    CAS  PubMed  Google Scholar 

  • Waterman RS, Tomchuck SL, Henkle SL, Betancourt AM (2010) A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an Immunosuppressive MSC2 phenotype. PLoS One 5(4), e10088

    PubMed Central  PubMed  Google Scholar 

  • Williams JT, Southerland SS, Souza J, Calcutt AF, Cartledge RG (1999) Cells isolated from adult human skeletal muscle capable of differentiating into multiple mesodermal phenotypes. Am Surg 65(1):22–26

    CAS  PubMed  Google Scholar 

  • Wlaschek M, Scharffetter-Kochanek K (2005) Oxidative stress in chronic venous leg ulcers. Wound Repair Regen 13(5):452–461

    PubMed  Google Scholar 

  • Wu XB, Tao R (2012) Hepatocyte differentiation of mesenchymal stem cells. Hepatobiliary Pancreat Dis Int 11(4):360–371

    CAS  PubMed  Google Scholar 

  • Wu Y, Chen L, Scott PG, Tredget EE (2007) Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells 25(10):2648–2659

    CAS  PubMed  Google Scholar 

  • Wu Y, Huang S, Enhe J, Ma K, Yang S, Sun T, Fu X (2014) Bone marrow-derived mesenchymal stem cell attenuates skin fibrosis development in mice. Int Wound J 11(6):701–710

    Google Scholar 

  • Xie MW, Gorodetsky R, Micevicz ED, Mackenzie NC, Gaberman E, Levdansky L, McBride WH (2013) Marrow-derived stromal cell delivery on fibrin microbeads can correct radiation-induced wound-healing deficits. J Invest Dermatol 133(2):553–561

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu B, deWaal RM, Mor-Vaknin N, Hibbard C, Markovitz DM, Kahn ML (2004) The endothelial cell-specific antibody PAL-E identifies a secreted form of vimentin in the blood vasculature. Mol Cell Biol 24(20):9198–9206

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xue S, Li L (2011) Upregulation of collagen type 1 in aged murine dermis after transplantation of dermal multipotent cells. Clin Exp Dermatol 36(7):775–781

    CAS  PubMed  Google Scholar 

  • Yang LY, Zheng JK, Liu XM, Hui GZ, Guo LH (2004) Culture of skin-derived precursors and their differentiation into neurons. Chin J Traumatol 7(2):91–95

    PubMed  Google Scholar 

  • Yao H, Ting X, Minjie W, Yemin C, Xiqiao W, Yuzhi J, Ming T, Weida W, Peifen Q, Shuliang L (2012) The investigation of demographic characteristics and the health-related quality of life in patients with diabetic foot ulcers at first presentation. Int J Low Extrem Wounds 11(3):187–193

    PubMed  Google Scholar 

  • Yew TL, Hung YT, Li HY, Chen HW, Chen LL, Tsai KS, Chiou SH, Chao KC, Huang TF, Chen HL, Hung SC (2011) Enhancement of wound healing by human multipotent stromal cell conditioned medium: the paracrine factors and p38 MAPK activation. Cell Transplant 20(5):693–706

    Google Scholar 

  • Zech NH (2005) Plasticity of stem cells: cell-fusion versus transdifferentiation. J Reproduktionsmed Endokrinol 2(4):239–245

    CAS  Google Scholar 

  • Zhang QZ, Su WR, Shi SH, Wilder-Smith P, Xiang AP, Wong A, Nguyen AL, Kwon CW, Le AD (2010) Human gingiva-derived mesenchymal stem cells elicit polarization of m2 macrophages and enhance cutaneous wound healing. Stem Cells 28(10):1856–1868

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang J, Lian Q, Zhu G, Zhou F, Sui L, Tan C, Mutalif RA, Navasankari R, Zhang Y, Tse HF, Stewart CL, Colman A (2011) A human iPSC model of Hutchinson Gilford Progeria reveals vascular smooth muscle and mesenchymal stem cell defects. Cell Stem Cell 8(1):31–45

    CAS  PubMed  Google Scholar 

  • Zhang DY, Pan Y, Zhang C, Yan BX, Yu SS, Wu DL, Shi MM, Shi K, Cai XX, Zhou SS, Wang JB, Pan JP, Zhang LH (2013) Wnt/beta-catenin signaling induces the aging of mesenchymal stem cells through promoting the ROS production. Mol Cell Biochem 374(1–2):13–20

    CAS  PubMed  Google Scholar 

  • Zou Z, Zhang Y, Hao L, Wang F, Liu D, Su Y, Sun H (2010) More insight into mesenchymal stem cells and their effects inside the body. Expert Opin Biol Ther 10(2):215–230

    CAS  PubMed  Google Scholar 

  • Zouboulis CC, Adjaye J, Akamatsu H, Moe-Behrens G, Niemann C (2008) Human skin stem cells and the ageing process. Exp Gerontol 43(11):986–997

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We thank Dr. Meinhard Wlaschek for his helpful suggestion and critical discussion for preparing the manuscript. We are grateful to John Wiley & Sons publications for the copyright permission to reproduce Fig. 14.1 in our previous publication in Wound Repair and Regeneration (Wlaschek and Scharffetter-Kochanek 2005). Our work is supported by the European Commission (CASCADE HEALTH-FP7-223236), the German Research Foundation (DFG KFO142 and DFG SFB1149), and the Baden-Württemberg Stiftung (P-BWS-ASII/15) to K.S.-K., and Bausteinförderung from the Medical Faculty, University of Ulm (LSBN.0100) to D.J.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Scharffetter-Kochanek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Wien

About this chapter

Cite this chapter

Jiang, D., Scharffetter-Kochanek, K. (2015). Mesenchymal Stem Cells in Wound Repair, Tissue Homeostasis, and Aging. In: Geiger, H., Jasper, H., Florian, M. (eds) Stem Cell Aging: Mechanisms, Consequences, Rejuvenation. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1232-8_14

Download citation

Publish with us

Policies and ethics