Skip to main content

Part of the book series: Journal of Neural Transmission. Supplementa ((NEURAL SUPPL,volume 54))

Summary

Alzheimer’s disease is an immutably progressing dementing disorder. Its major pathologic hallmark is the gradual development of neurofibrillary changes in a few susceptible nerve cell types. The cortical changes do not occur inevitably with advancing age. Once the disease has begun, spontaneous recovery or remissions are not observed. The initial changes develop in poorly myelinated areas of the temporal lobe. The destructive process then follows a predictable pattern as it extends into other cortical areas. Advanced age is not a prerequisite for the evolution of the lesions. Alzheimer’s disease is thus an age-related, but not an age-dependent disease. The spread of the neurofibrillary changes resembles the process of cortical myelination, however in reverse order.

The human cerebral cortex consists of a small allocortex and an extensive neocortex. The allocortex is located chiefly in the anteromedial portions of the temporal lobe and includes the hippocampal formation and the entorhinal region. The subcortical amygdala is closely related. The parietal, occipital, and temporal neocortices are each comprised of a primary core field, a secondary belt region, and related association areas. Sensory data proceeds through the core and belt fields to the respective association areas, and is then conveyed to the frontal association cortex (prefrontal cortex). Tracts generated in this highest organisational level of the human brain guide the data through the frontal belt (premotor areas) to the primary motor area. The striatal loop and the cerebellar loop provide the major routes for this transport. Part of the stream of data from the sensory association areas branches off and converges upon the entorhinal region and the amygdala (afferent leg of the limbic loop). The information is processed in the entorhinal region, amygdala, and hippocampal formation, and projections from all these areas contribute to the efferent leg of the limbic loop, which heads toward the prefrontal cortex (Fig. 1). All components of the limbic loop play a significant role in the maintenance of memory functions. Precisely these areas are susceptible to early and grave pathologic changes in Alzheimer’s disease (AD) (Kemper, 1978).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnold SE, Hyman BT, Flory J, Damasio AR, van Hoesen GW (1991) The topographical and neuroanatomicai distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer’s disease. Cerebral Cortex 1:103–116

    Article  PubMed  CAS  Google Scholar 

  • Bancher C, Brunner C, Lassmann H, Budka H, Jellinger K, Wiche G, Seitelberger F, Grundke-Iqbal I, Wisniewski HM (1989) Accumulation of abnormally phosphory–lated τ precedes the formation of neurofibrillary tangles in Alzheimer’s disease. Brain Res 477: 90–99

    Article  PubMed  CAS  Google Scholar 

  • Braak E, Braak H, Mandelkow EM (1994) A sequence of cytoskeleton changes related to the formation of neurofibrillary tangles and neuropil threads. Acta Neuropathol 87: 554–567

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82: 239–259

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Braak E (1994) Pathology of Alzheimer’s disease. In: Calne DB (ed) Neurodegenerative diseases. Saunders, Philadelphia, pp 585–613

    Google Scholar 

  • Braak H, Braak E (1996) Development of Alzheimer-related neurofibrillary changes in the neocortex inversely recapitulates cortical myelogenesis. Acta Neuropathol 92: 197–201

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Braak E (1997) Aspects of cortical destruction in Alzheimer’s disease. In: Hyman BT, Duyckaerts, Christen Y (eds) Connections, cognition and Alzheimer’s disease. Springer, Berlin Heidelberg New York Tokyo, pp 1–16

    Chapter  Google Scholar 

  • Braak H, Braak E, Yilmazer D, Schultz C, DeVos RAI, Jansen ENH (1995) Nigral and extranigral pathology in Parkinson’s disease. J Neural Transm [Suppl] 46: 15–31

    CAS  Google Scholar 

  • Duyckaerts C, Delaère P, He Y, Camilleri S, Braak H, Piette F, Hauw JJ (1995) The relative merits of tau- and amyloid markers in the neuropathology of Alzheimer’s disease. In: Bergener M, Finkel SI (eds) Treating Alzheimer’s and other dementias. Springer, New York, pp 81–89

    Google Scholar 

  • Flechsig P (1920) Anatomie des menschlichen Gehirns und Rückenmarks auf myelogenetischer Grundlage. Thieme, Leipzig

    Google Scholar 

  • Goedert M (1993) Tau protein and the neurofibrillary pathology of Alzheimer’s disease. Trends Neurosci 16: 460–465

    Article  PubMed  CAS  Google Scholar 

  • Hyman BT, Gomez-Isla T (1994) Alzheimer’s disease is a laminar, regional, and neural system specific diasease, not a global brain disease. Neurobiol Aging 15: 353–354

    Article  PubMed  CAS  Google Scholar 

  • Hyman BT, van Hoesen GW, Damasio AR (1990) Memory-related neural systems in Alzheimer’s disease: an anatomic study. Neurology 40: 1721–1730

    Article  PubMed  CAS  Google Scholar 

  • Iqbal K, Alonso AC, Gong CX, Khatoon S, Singh TJ, Grundke-Iqbal I (1994) Mechanism of neurofibrillary degeneration in Alzheimer’s disease. Mol Neurobiol 9: 119–123

    Article  PubMed  CAS  Google Scholar 

  • Kapfhammer JP, Schwab ME (1994) Inverse patterns of myelination and GAP-43 expression in the adult CNS: neurite growth inhibitors as regulators of neuronal plasticity. J Comp Neurol 340: 194–206

    Article  PubMed  CAS  Google Scholar 

  • Kemper TL (1978) Senile dementia: a focal disease in the temporal lobe. In: Nandy E (ed) Senile dementia: a biomedical approach. Elsevier, Amsterdam, pp 105–113

    Google Scholar 

  • McGeer PL, McGeer EG, Akiyama H, Itagaki S, Harrop R, Peppard R (1990) Neuronal degeneration and memory loss in Alzheimer’s disease and aging. Exp Brain Res [Suppl]21: 411–426 Ohm TG, Müller H, Braak H, Bohl J (1995) Close-meshed prevalence rates of different stages as a tool to uncover the rate of Alzheimer’s disease-related neurofibrillary changes. Neuroscience 64: 209–217

    Google Scholar 

  • Ohm TG, Müller H, Braak H, Bohl J (1995) Close-meshed prevalence rates of different stages as a tool to uncover the rate of Alzheimer’s disease-related neurofibrillary changes. Neuroscience 64: 209–217

    Article  PubMed  CAS  Google Scholar 

  • Price JL, Davis PB, Morris JC, White DL (1991) The distribution of tangles, plaques and related immunohistochemical markers in healthy aging and Alzheimer’s disease. Neurobiol Aging 12: 295–312

    Article  PubMed  CAS  Google Scholar 

  • Reisberg B, Pattschull-Furlan A, Franssen E, Sclan SG, Kluger A, Dingcong L, Ferris SH (1992) Dementia of the Alzheimer type recapitulates ontogeny inversely on specific ordinal and temporal parameters. In: Kostovic I, Knezevic S, Wisniewski HM, Spillich GJ (eds) Neurodevelopment, aging and cognition. Birkhäuser, Boston, pp 345–369

    Chapter  Google Scholar 

  • Schwab ME (1990) Myelin-associated inhibitors of neurite growth and regeneration in the CNS. Trends Neurosci 13: 452–456

    Article  PubMed  CAS  Google Scholar 

  • Trojanowski JQ, Shin RW, Schmidt ML, Lee VMY (1995) Relationship between plaques, tangles, and dystrophic processes in Alzheimer’s disease. Neurobiol Aging 16: 335–340

    Article  PubMed  CAS  Google Scholar 

  • van Hoesen GW, Hyman BT, Damasio AR (1991) Entorhinal cortex pathology in Alzheimer’s disease. Hippocampus 1: 1–8

    Article  PubMed  Google Scholar 

  • Yakovlev PI, Lecours AR (1967) The myelogenetic cycles of regional maturation of the brain. In: Minkowksi A (ed) Regional development of the brain in early life. Blackwell, Oxford, pp 3–70

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag/Wien

About this paper

Cite this paper

Braak, H., Braak, E., Bohl, J., Bratzke, H. (1998). Evolution of Alzheimer’s disease related cortical lesions. In: Gertz, HJ., Arendt, T. (eds) Alzheimer’s Disease — From Basic Research to Clinical Applications. Journal of Neural Transmission. Supplementa, vol 54. Springer, Vienna. https://doi.org/10.1007/978-3-7091-7508-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-7508-8_9

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83112-0

  • Online ISBN: 978-3-7091-7508-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics