Skip to main content

Nanobiosensors: Role in Cancer Detection and Diagnosis

  • Conference paper
  • First Online:
Infectious Diseases and Nanomedicine I

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 807))

Abstract

The ability to detect many cancers at an early stage in its clinical course has the potential to improve patient outcomes in terms of morbidity and mortality. Nanosized components incorporated into existing clinical diagnostic and detection systems as well as novel nanobiosensors have demonstrated improved sensitivity and specificity compared with traditional cancer testing approaches. Nanoparticles, nanowires, nanotubes, and nanocantilevers are examples of four nanobiosensor systems that have been used experimentally in the context of detection and diagnosis of prostate, breast, pancreatic, lung, and brain cancers over the past few years. Nanobiosensors will begin to transition into clinically validated tests as experimental and engineering techniques advance. This paper presents examples of some such nanobiosensors for cancer diagnosis and detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hu DH, Gong P, Ma YF, Cai LT (2009) Research advancement and prospects of nanotechnology in early diagnosis and treatment of cancer. Ai Zheng 28(9):1000–1003

    CAS  Google Scholar 

  2. Cancer facts & figures (2012) Atlanta: American cancer society

    Google Scholar 

  3. Bohunicky B, Mousa S (2011) Biosensors: the new wave in cancer diagnosis nanotechnology. Sci Appl 4:1–10

    CAS  Google Scholar 

  4. LaRocque J, Bharali DJ, Mousa SA (2009) Cancer detection and treatment: the role of nanomedicines. Mol Biotechnol 42(3):358–366

    CAS  Google Scholar 

  5. Jain K (2010) A handbook of biomarkers. Springer, New York

    Google Scholar 

  6. Kissinger PT (2005) Biosensors-a perspective. Biosens Bioelectron 20(12):2512–2516

    CAS  Google Scholar 

  7. Osuwa J, Anusionwu P (2011) Some advances and prospects in nanotechnology: a review. Asian J Inf Technol 10:96–100

    Google Scholar 

  8. Shi J, Xiao Z, Kamaly N, Farokhzad OC (2011) Self-assembled targeted nanoparticles: evolution of technologies and bench to bedside translation. Acc Chem Res 44(10):1123–1134

    CAS  Google Scholar 

  9. Cuenca AG, Jiang H, Hochwald SN, Delano M, Cance WG, Grobmyer SR (2006) Emerging implications of nanotechnology on cancer diagnostics and therapeutics. Cancer 107(3):459–466

    CAS  Google Scholar 

  10. Seydel C (2003) Quantum dots get wet. Science 300(5616):80–81

    CAS  Google Scholar 

  11. Akerman ME, Chan WC, Laakkonen P, Bhatia SN, Ruoslahti E (2002) Nanocrystal targeting in vivo. Proc Natl Acad Sci U S A 99(20):12617–12621

    CAS  Google Scholar 

  12. Zrazhevskiy P, Sena M, Gao X (2010) Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chem Soc Rev 39(11):4326–4354

    CAS  Google Scholar 

  13. Morgan NY, English S, Chen W, Chernomordik V, Russo A, Smith PD et al (2005) Real time in vivo non-invasive optical imaging using near-infrared fluorescent quantum dots. Acad Radiol 12(3):313–323

    Google Scholar 

  14. Gao X, Yang L, Petros JA, Marshall FF, Simons JW, Nie S (2005) In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol 16(1):63–72

    CAS  Google Scholar 

  15. Raffa V, Vittorio O, Riggio C, Cuschieri A (2010) Progress in nanotechnology for healthcare. Minim Invasive Ther Allied Technol 19(3):127–135

    CAS  Google Scholar 

  16. Weissleder R, Elizondo G, Wittenberg J, Rabito CA, Bengele HH, Josephson L (1990) Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology 175(2):489–493

    CAS  Google Scholar 

  17. Artemov D, Mori N, Okollie B, Bhujwalla ZM (2003) MR molecular imaging of the her-2/neu receptor in breast cancer cells using targeted iron oxide nanoparticles. Magn Reson Med 49(3):403–408

    CAS  Google Scholar 

  18. Zhao M, Beauregard DA, Loizou L, Davletov B, Brindle KM (2001) Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent. Nat Med 7(11):1241–1244

    CAS  Google Scholar 

  19. Alexiou C, Jurgons R, Schmid R, Erhardt W, Parak F, Bergemann C et al (2005) Magnetic drug targeting–a new approach in locoregional tumor therapy with chemotherapeutic agents. Experimental animal studies. HNO 53(7):618–622

    CAS  Google Scholar 

  20. Loo C, Lin A, Hirsch L, Lee MH, Barton J, Halas N et al (2004) Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol Cancer Res Treat 3(1):33–40

    CAS  Google Scholar 

  21. Sengupta S, Eavarone D, Capila I, Zhao G, Watson N, Kiziltepe T et al (2005) Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature 436(7050):568–572

    CAS  Google Scholar 

  22. Loo C, Lowery A, Halas N, West J, Drezek R (2005) Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5(4):709–711

    CAS  Google Scholar 

  23. Liu H, Liu T, Wang H, Li L, Tan L, Fu C et al (2013) Impact of PEGylation on the biological effects and light heat conversion efficiency of gold nanoshells on silica nanorattles. Biomaterials 34(28):6967–6975

    CAS  Google Scholar 

  24. Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE et al (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci U S A 100(23):13549–13554

    CAS  Google Scholar 

  25. O’Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL (2004) Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 209(2):171–176

    Google Scholar 

  26. Bao G, Mitragotri S, Tong S (2013) Multifunctional nanoparticles for drug delivery and molecular imaging. Annu Rev Biomed Eng 11(15):253–282

    Google Scholar 

  27. Boyer D, Tamarat P, Maali A, Lounis B, Orrit M (2002) Photothermal imaging of nanometer-sized metal particles among scatterers. Science 297(5584):1160–1163

    CAS  Google Scholar 

  28. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110(14):7238–7248

    CAS  Google Scholar 

  29. Sokolov K, Follen M, Aaron J, Pavlova I, Malpica A, Lotan R et al (2003) Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res 63(9):1999–2004

    CAS  Google Scholar 

  30. Paciotti GF, Myer L, Weinreich D, Goia D, Pavel N, McLaughlin RE et al (2004) Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv 11(3):169–183

    Google Scholar 

  31. Prabhakar U, Maeda H, Jain RK, Sevick-Muraca EM, Zamboni W, Farokhzad OC et al (2013) Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res 73(8):2412–2417

    CAS  Google Scholar 

  32. Wang X, Yang L, Chen ZG, Shin DM (2008) Application of nanotechnology in cancer therapy and imaging. CA Cancer J Clin 58(2):97–110

    Google Scholar 

  33. Lee SK, Kim GS, Wu Y, Kim DJ, Lu Y, Kwak M et al (2012) Nanowire substrate-based laser scanning cytometry for quantitation of circulating tumor cells. Nano Lett 12(6):2697–2704

    CAS  Google Scholar 

  34. Zhang GJ, Ning Y (2012) Silicon nanowire biosensor and its applications in disease diagnostics: a review. Anal Chim Acta 24(749):1–15

    Google Scholar 

  35. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    CAS  Google Scholar 

  36. Kim SN, Rusling JF, Papadimitrakopoulos F (2007) Carbon nanotubes for electronic and electrochemical detection of biomolecules. Adv Mater 19(20):3214–3228

    CAS  Google Scholar 

  37. Kierny MR, Cunningham TD, Kay BK (2012) Detection of biomarkers using recombinant antibodies coupled to nanostructured platforms. Nano Rev 3. doi: 10.3402/nano.v3i0.17240. Epub 2012 Jul 23

  38. Gupta AK, Nair PR, Akin D, Ladisch MR, Broyles S, Alam MA et al (2006) Anomalous resonance in a nanomechanical biosensor. Proc Natl Acad Sci U S A 103(36):13362–13367

    CAS  Google Scholar 

  39. Jain KK (2007) Applications of nanobiotechnology in clinical diagnostics. Clin Chem 53(11):2002–2009

    CAS  Google Scholar 

  40. Sanna V, Sechi M (2012) Nanoparticle therapeutics for prostate cancer treatment. Maturitas 73(1):27–32

    CAS  Google Scholar 

  41. Rao AR, Motiwala HG, Karim OM (2008) The discovery of prostate-specific antigen. BJU Int. 101(1):5–10

    CAS  Google Scholar 

  42. Charatan F (1994) FDA approves test for prostatic cancer. BMJ 309:628

    Google Scholar 

  43. U.S. Preventive Services (2012) Task Force Recommendation Statement. Screening for prostate cancer

    Google Scholar 

  44. Hill HD, Mirkin CA (2006) The bio-barcode assay for the detection of protein and nucleic acid targets using DTT-induced ligand exchange. Nat Protoc 1(1):324–336

    CAS  Google Scholar 

  45. Thaxton CS, Elghanian R, Thomas AD, Stoeva SI, Lee JS, Smith ND et al (2009) Nanoparticle-based bio-barcode assay redefines “undetectable” PSA and biochemical recurrence after radical prostatectomy. Proc Natl Acad Sci U S A 106(44):18437–18442

    CAS  Google Scholar 

  46. Jaffrezic-Renault N, Martelet C, Chevolot Y, J- Cloarec (2007) Biosensors and bio-bar code assays based on biofunctionalized magnetic microbeads. Sensors 7:589–614

    CAS  Google Scholar 

  47. Viator JA, Gupta S, Goldschmidt BS, Bhattacharyyal K, Kannan R, Shukla R et al (2010) Gold nanoparticle mediated detection of prostate cancer cells using photoacoustic flowmetry with optical reflectance. J Biomed Nanotechnol 6(2):187–191

    CAS  Google Scholar 

  48. Harisinghani MG, Barentsz J, Hahn PF, Deserno WM, Tabatabaei S, van de Kaa CH et al (2003) Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 348(25):2491–2499

    Google Scholar 

  49. Janib SM, Moses AS, MacKay JA (2010) Imaging and drug delivery using theranostic nanoparticles. Adv Drug Deliv Rev 62(11):1052–1063

    CAS  Google Scholar 

  50. Kim A, Ah C, Yu H, Yang J, Baek I, Ahn C et al (2007) Ultrasensitive, label-free, and real-time immunodetection using silicon field-effect transistors. Appl Phy Lett 91(10):103901–103903

    Google Scholar 

  51. Zheng G, Patolsky F, Cui Y, Wang WU, Lieber CM (2005) Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol 23(10):1294–1301

    CAS  Google Scholar 

  52. Stern E, Vacic A, Rajan NK, Criscione JM, Park J, Ilic BR et al (2010) Label-free biomarker detection from whole blood. Nat Nanotechnol 5(2):138–142

    CAS  Google Scholar 

  53. Malhotra R, Papadimitrakopoulos F, Rusling JF (2010) Sequential layer analysis of protein immunosensors based on single wall carbon nanotube forests. Langmuir 26(18):15050–15056

    CAS  Google Scholar 

  54. Chikkaveeraiah BV, Bhirde A, Malhotra R, Patel V, Gutkind JS, Rusling JF (2009) Single-wall carbon nanotube forest arrays for immunoelectrochemical measurement of four protein biomarkers for prostate cancer. Anal Chem 81(21):9129–9134

    Google Scholar 

  55. Lee JH, Hwang KS, Park J, Yoon KH, Yoon DS, Kim TS (2005) Immunoassay of prostate-specific antigen (PSA) using resonant frequency shift of piezoelectric nanomechanical microcantilever. Biosens Bioelectron 20(10):2157–2162

    CAS  Google Scholar 

  56. Hwang KS, Lee JH, Park J, Yoon DS, Park JH, Kim TS (2004) In-situ quantitative analysis of a prostate-specific antigen (PSA) using a nanomechanical PZT cantilever. Lab Chip 4(6):547–552

    CAS  Google Scholar 

  57. DeSantis C, Siegel R, Bandi P, Jemal A (2011) Breast cancer statistics. CA Cancer J Clin 61(6):409–418

    Google Scholar 

  58. Grobmyer SR, Morse DL, Fletcher B, Gutwein LG, Sharma P, Krishna V et al (2011) The promise of nanotechnology for solving clinical problems in breast cancer. J Surg Oncol 103(4):317–325

    CAS  Google Scholar 

  59. Colombo M, Corsi F, Foschi D, Mazzantini E, Mazzucchelli S, Morasso C et al (2010) HER2 targeting as a two-sided strategy for breast cancer diagnosis and treatment: Outlook and recent implications in nanomedical approaches. Pharmacol Res 62(2):150–165

    CAS  Google Scholar 

  60. Wu X, Liu H, Liu J, Haley KN, Treadway JA, Larson JP et al (2003) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21(1):41–46

    CAS  Google Scholar 

  61. Chen C, Peng J, Xia HS, Yang GF, Wu QS, Chen LD et al (2009) Quantum dots-based immunofluorescence technology for the quantitative determination of HER2 expression in breast cancer. Biomaterials 30(15):2912–2918

    CAS  Google Scholar 

  62. Rossi LM, Shi L, Rosenzweig N, Rosenzweig Z (2006) Fluorescent silica nanospheres for digital counting bioassay of the breast cancer marker HER2/neu [correction of HER2/nue. Biosens Bioelectron 21(10):1900–1906

    CAS  Google Scholar 

  63. Leuschner C, Kumar CS, Hansel W, Soboyejo W, Zhou J, Hormes J (2006) LHRH-conjugated magnetic iron oxide nanoparticles for detection of breast cancer metastases. Breast Cancer Res Treat 99(2):163–176

    CAS  Google Scholar 

  64. Yang L, Peng XH, Wang YA, Wang X, Cao Z, Ni C et al (2009) Receptor-targeted nanoparticles for in vivo imaging of breast cancer. Clin Cancer Res 15(14):4722–4732

    CAS  Google Scholar 

  65. Copland JA, Eghtedari M, Popov VL, Kotov N, Mamedova N, Motamedi M et al (2004) Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography. Mol Imaging Biol 6(5):341–349

    Google Scholar 

  66. Sakamoto JH, Smith BR, Xie B, Rokhlin SI, Lee SC, Ferrari M (2005) The molecular analysis of breast cancer utilizing targeted nanoparticle based ultrasound contrast agents. Technol Cancer Res Treat. 4(6):627–636

    CAS  Google Scholar 

  67. Rapoport N, Gao Z, Kennedy A (2007) Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy. J Natl Cancer Inst 99(14):1095–1106

    CAS  Google Scholar 

  68. Prost AC, Menegaux F, Langlois P, Vidal JM, Koulibaly M, Jost JL et al (1998) Differential transferrin receptor density in human colorectal cancer: A potential probe for diagnosis and therapy. Int J Oncol 13(4):871–875

    CAS  Google Scholar 

  69. Li JL, Wang L, Liu XY, Zhang ZP, Guo HC, Liu WM et al (2009) In vitro cancer cell imaging and therapy using transferrin-conjugated gold nanoparticles. Cancer Lett 274(2):319–326

    CAS  Google Scholar 

  70. Lowery AR, Gobin AM, Day ES, Halas NJ, West JL (2006) Immunonanoshells for targeted photothermal ablation of tumor cells. Int J Nanomed 1(2):149–154

    CAS  Google Scholar 

  71. Rockall AG, Sohaib SA, Harisinghani MG, Babar SA, Singh N, Jeyarajah AR et al (2005) Diagnostic performance of nanoparticle-enhanced magnetic resonance imaging in the diagnosis of lymph node metastases in patients with endometrial and cervical cancer. J Clin Oncol 23(12):2813–2821

    Google Scholar 

  72. Jakub JW, Pendas S, Reintgen DS (2003) Current status of sentinel lymph node mapping and biopsy: facts and controversies. Oncologist 8(1):59–68

    Google Scholar 

  73. Chen SL, Iddings DM, Scheri RP, Bilchik AJ (2006) Lymphatic mapping and sentinel node analysis: current concepts and applications. CA Cancer J Clin 56(5):292–309; quiz 316-7

    Google Scholar 

  74. Khullar O, Frangioni JV, Grinstaff M, Colson YL (2009) Image-guided sentinel lymph node mapping and nanotechnology-based nodal treatment in lung cancer using invisible near-infrared fluorescent light. Semin Thorac Cardiovasc Surg 21(4):309–315

    Google Scholar 

  75. Hama Y, Koyama Y, Urano Y, Choyke PL, Kobayashi H (2007) Simultaneous two-color spectral fluorescence lymphangiography with near infrared quantum dots to map two lymphatic flows from the breast and the upper extremity. Breast Cancer Res Treat 103(1):23–28

    Google Scholar 

  76. Ballou B, Ernst LA, Andreko S, Harper T, Fitzpatrick JA, Waggoner AS et al (2007) Sentinel lymph node imaging using quantum dots in mouse tumor models. Bioconjug Chem 18(2):389–396

    Google Scholar 

  77. Takeda M, Tada H, Higuchi H, Kobayashi Y, Kobayashi M, Sakurai Y et al (2008) In vivo single molecular imaging and sentinel node navigation by nanotechnology for molecular targeting drug-delivery systems and tailor-made medicine. Breast Cancer 15(2):145–152

    Google Scholar 

  78. Robe A, Pic E, Lassalle HP, Bezdetnaya L, Guillemin F, Marchal F (2008) Quantum dots in axillary lymph node mapping: biodistribution study in healthy mice. BMC Cancer 8:111. doi: 10.1186/1471-2407-8-111

    Google Scholar 

  79. Song KH, Kim C, Cobley CM, Xia Y, Wang LV (2009) Near-infrared gold nanocages as a new class of tracers for photoacoustic sentinel lymph node mapping on a rat model. Nano Lett 9(1):183–188

    CAS  Google Scholar 

  80. Snyder EL, Bailey D, Shipitsin M, Polyak K, Loda M (2009) Identification of CD44v6(+)/CD24- breast carcinoma cells in primary human tumors by quantum dot-conjugated antibodies. Lab Invest 89(8):857–866

    CAS  Google Scholar 

  81. Talanov VS, Regino CA, Kobayashi H, Bernardo M, Choyke PL, Brechbiel MW (2006) Dendrimer-based nanoprobe for dual modality magnetic resonance and fluorescence imaging. Nano Lett 6(7):1459–1463

    CAS  Google Scholar 

  82. Koyama Y, Talanov VS, Bernardo M, Hama Y, Regino CA, Brechbiel MW et al (2007) A dendrimer-based nanosized contrast agent dual-labeled for magnetic resonance and optical fluorescence imaging to localize the sentinel lymph node in mice. J Magn Reson Imaging 25(4):866–871

    Google Scholar 

  83. Lee H, Yoon TJ, Figueiredo JL, Swirski FK, Weissleder R (2009) Rapid detection and profiling of cancer cells in fine-needle aspirates. Proc Natl Acad Sci USA. 106(30):12459–12464

    CAS  Google Scholar 

  84. Ali S, Coombes RC (2000) Estrogen receptor alpha in human breast cancer: Occurrence and significance. J Mammary Gland Biol Neoplasia 5(3):271–281

    CAS  Google Scholar 

  85. Patolsky F, Zheng G, Lieber CM (2006) Nanowire-based biosensors. Anal Chem 78(13):4260–4269

    CAS  Google Scholar 

  86. Shao N, Wickstrom E, Panchapakesan B (2008) Nanotube-antibody biosensor arrays for the detection of circulating breast cancer cells. Nanotechnology 19(46):465101. doi: 10.1088/0957-4484/19/46/465101. Epub 2008 Oct 21

    Google Scholar 

  87. Liu Z, Chen K, Davis C, Sherlock S, Cao Q, Chen X et al (2008) Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res 68(16):6652–6660

    CAS  Google Scholar 

  88. Dhar S, Liu Z, Thomale J, Dai H, Lippard SJ (2008) Targeted single-wall carbon nanotube-mediated pt(IV) prodrug delivery using folate as a homing device. J Am Chem Soc 130(34):11467–11476

    CAS  Google Scholar 

  89. Chen H, Han J, Li J, Meyyappan M (2004) Microelectronic DNA assay for the detection of BRCA1 gene mutations. Biomed Microdevices 6(1):55–60

    CAS  Google Scholar 

  90. Yang F, Jin C, Subedi S, Lee CL, Wang Q, Jiang Y et al (2012) Emerging inorganic nanomaterials for pancreatic cancer diagnosis and treatment. Cancer Treat Rev 38(6):566–579

    CAS  Google Scholar 

  91. Baxter NN, Whitson BA, Tuttle TM (2007) Trends in the treatment and outcome of pancreatic cancer in the United States. Ann Surg Oncol 14(4):1320–1326

    Google Scholar 

  92. Kumagai M, Kano MR, Morishita Y, Ota M, Imai Y, Nishiyama N et al (2009) Enhanced magnetic resonance imaging of experimental pancreatic tumor in vivo by block copolymer-coated magnetite nanoparticles with TGF-beta inhibitor. J Control Release 140(3):306–311

    CAS  Google Scholar 

  93. Yang L, Mao H, Cao Z, Wang YA, Peng X, Wang X et al (2009) Molecular imaging of pancreatic cancer in an animal model using targeted multifunctional nanoparticles. Gastroenterology 136(5):1514–1525.e2

    Google Scholar 

  94. Liong M, Lu J, Kovochich M, Xia T, Ruehm SG, Nel AE et al (2008) Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2(5):889–896

    CAS  Google Scholar 

  95. Yang L, Mao H, Wang YA, Cao Z, Peng X, Wang X et al (2009) Single chain epidermal growth factor receptor antibody conjugated nanoparticles for in vivo tumor targeting and imaging. Small 5(2):235–243

    CAS  Google Scholar 

  96. Gu B, Xu C, Yang C, Liu S, Wang M (2011) ZnO quantum dot labeled immunosensor for carbohydrate antigen 19–9. Biosens Bioelectron 26(5):2720–2723

    CAS  Google Scholar 

  97. Kumar R, Roy I, Ohulchanskyy TY, Goswami LN, Bonoiu AC, Bergey EJ et al (2008) Covalently dye-linked, surface-controlled, and bioconjugated organically modified silica nanoparticles as targeted probes for optical imaging. ACS Nano 2(3):449–456

    CAS  Google Scholar 

  98. Vivero-Escoto JL, Taylor-Pashow KM, Huxford RC, Della Rocca J, Okoruwa C, An H et al (2011) Multifunctional mesoporous silica nanospheres with cleavable gd(III) chelates as MRI contrast agents: synthesis, characterization, target-specificity, and renal clearance. Small 7(24):3519–3528

    Google Scholar 

  99. Yong KT, Ding H, Roy I, Law WC, Bergey EJ, Maitra A et al (2009) Imaging pancreatic cancer using bioconjugated InP quantum dots. ACS Nano 3(3):502–510

    CAS  Google Scholar 

  100. Ding H, Yong KT, Law WC, Roy I, Hu R, Wu F et al (2011) Non-invasive tumor detection in small animals using novel functional pluronic nanomicelles conjugated with anti-mesothelin antibody. Nanoscale 3(4):1813–1822

    CAS  Google Scholar 

  101. Zaman MB, Baral TN, Jakubek ZJ, Zhang J, Wu X, Lai E et al (2011) Single-domain antibody bioconjugated near-IR quantum dots for targeted cellular imaging of pancreatic cancer. J Nanosci Nanotechnol 11(5):3757–3763

    CAS  Google Scholar 

  102. Law WC, Yong KT, Roy I, Ding H, Hu R, Zhao W et al (2009) Aqueous-phase synthesis of highly luminescent CdTe/ZnTe core/shell quantum dots optimized for targeted bioimaging. Small 5(11):1302–1310

    CAS  Google Scholar 

  103. Qian J, Yong KT, Roy I, Ohulchanskyy TY, Bergey EJ, Lee HH et al (2007) Imaging pancreatic cancer using surface-functionalized quantum dots. J Phys Chem B 111(25):6969–6972

    CAS  Google Scholar 

  104. Yong KT (2009) Mn-doped near-infrared quantum dots as multimodal targeted probes for pancreatic cancer imaging. Nanotechnology 20(1):015102. doi: 10.1088/0957-4484/20/1/015102. Epub 2008 Dec 5

    Google Scholar 

  105. Erogbogbo F, Tien CA, Chang CW, Yong KT, Law WC, Ding H et al (2011) Bioconjugation of luminescent silicon quantum dots for selective uptake by cancer cells. Bioconjug Chem. 22(6):1081–1088

    CAS  Google Scholar 

  106. Chang SQ, Dai YD, Kang B, Han W, Chen D (2009) Gamma-radiation synthesis of silk fibroin coated CdSe quantum dots and their biocompatibility and photostability in living cells. J Nanosci Nanotechnol 9(10):5693–5700

    CAS  Google Scholar 

  107. Yong KT (2010) Biophotonics and biotechnology in pancreatic cancer: cyclic RGD-peptide-conjugated type II quantum dots for in vivo imaging. Pancreatology 10(5):553–564

    CAS  Google Scholar 

  108. Yanez-Sedeno P, Pingarron JM (2005) Gold nanoparticle-based electrochemical biosensors. Anal Bioanal Chem 382(4):884–886

    CAS  Google Scholar 

  109. Khan JA, Kudgus RA, Szabolcs A, Dutta S, Wang E, Cao S et al (2011) Designing nanoconjugates to effectively target pancreatic cancer cells in vitro and in vivo. PLoS ONE 6(6):e20347

    CAS  Google Scholar 

  110. Eck W, Craig G, Sigdel A, Ritter G, Old LJ, Tang L et al (2008) PEGylated gold nanoparticles conjugated to monoclonal F19 antibodies as targeted labeling agents for human pancreatic carcinoma tissue. ACS Nano 2(11):2263–2272

    CAS  Google Scholar 

  111. Hu R, Yong KT, Roy I, Ding H, He S, Prasad PN (2009) Metallic nanostructures as localized plasmon resonance enhanced scattering probes for multiplex dark field targeted imaging of cancer cells. J Phys Chem C Nanomater Interfaces 113(7):2676–2684

    CAS  Google Scholar 

  112. Montet X, Weissleder R, Josephson L (2006) Imaging pancreatic cancer with a peptide-nanoparticle conjugate targeted to normal pancreas. Bioconjug Chem 17(4):905–911

    Google Scholar 

  113. Zhuo Y, Yuan R, Chai YQ, Hong CL (2010) Functionalized SiO2 labeled CA19-9 antibodies: a new strategy for signal amplification of antigen-antibody sensing processes. Analyst 135(8):2036–2042

    CAS  Google Scholar 

  114. Liu Q, Liu A, Gao F, Weng S, Zhong G, Liu J et al (2011) Coupling technique of random amplified polymorphic DNA and nanoelectrochemical sensor for mapping pancreatic cancer genetic fingerprint. Int J Nanomedicine 6:2933–2939

    CAS  Google Scholar 

  115. Sienel W, Dango S, Ehrhardt P, Eggeling S, Kirschbaum A, Passlick B (2006) The future in diagnosis and staging of lung cancer. Molecular techniques. Respiration 73(5):575–580

    Google Scholar 

  116. Barash O, Peled N, Tisch U, Bunn PA Jr, Hirsch FR, Haick H (2012) Classification of lung cancer histology by gold nanoparticle sensors. Nanomedicine 8(5):580–589

    CAS  Google Scholar 

  117. Peng G, Hakim M, Broza YY, Billan S, Abdah-Bortnyak R, Kuten A et al (2010) Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors. Br J Cancer 103(4):542–551

    CAS  Google Scholar 

  118. Gordon SM, Szidon JP, Krotoszynski BK, Gibbons RD, O’Neill HJ (1985) Volatile organic compounds in exhaled air from patients with lung cancer. Clin Chem 31(8):1278–1282

    CAS  Google Scholar 

  119. Ramgir N, Zajac A, Sekhar P, Lee L, Zhukov T, Bhansali S (2007) Voltammetric detection of cancer biomarkers exemplified by interleukin-10 and osteopontin with silica. J Phys Chem C 111:13981–13987

    CAS  Google Scholar 

  120. Peng G, Trock E, Haick H (2008) Detecting simulated patterns of lung cancer biomarkers by random network of single-walled carbon nanotubes coated with nonpolymeric organic materials. Nano Lett 8(11):3631–3635

    CAS  Google Scholar 

  121. Paul SP, Debono R, Walker D (2013) Clinical update: recognising brain tumours early in children. Community Pract 86(4):42–45

    Google Scholar 

  122. Bradbury M, Begley D, Kreuter J (2000) The blood-brain barrier and drug delivery to the CNS. Informa healthcare, Montgomery

    Google Scholar 

  123. Meyers JD, Doane T, Burda C, Basilion JP (2013) Nanoparticles for imaging and treating brain cancer. Nanomedicine 8(1):123–143

    CAS  Google Scholar 

  124. Reddy GR, Bhojani MS, McConville P, Moody J, Moffat BA, Hall DE et al (2006) Vascular targeted nanoparticles for imaging and treatment of brain tumors. Clin Cancer Res 12(22):6677–6686

    CAS  Google Scholar 

  125. Dilnawaz F, Singh A, Mewar S, Sharma U, Jagannathan NR, Sahoo SK (2012) The transport of non-surfactant based paclitaxel loaded magnetic nanoparticles across the blood brain barrier in a rat model. Biomaterials 33(10):2936–2951

    CAS  Google Scholar 

  126. Hua MY, Liu HL, Yang HW, Chen PY, Tsai RY, Huang CY et al (2011) The effectiveness of a magnetic nanoparticle-based delivery system for BCNU in the treatment of gliomas. Biomaterials 32(2):516–527

    CAS  Google Scholar 

  127. Kievit FM, Veiseh O, Fang C, Bhattarai N, Lee D, Ellenbogen RG et al (2010) Chlorotoxin labeled magnetic nanovectors for targeted gene delivery to glioma. ACS Nano 4(8):4587–4594

    CAS  Google Scholar 

  128. Bhaskar S, Tian F, Stoeger T, Kreyling W, de la Fuente JM, Grazu V et al (2010) Multifunctional nanocarriers for diagnostics, drug delivery and targeted treatment across blood-brain barrier: perspectives on tracking and neuroimaging. Part Fibre Toxicol 7:3. doi: 10.1186/1743-8977-7-3

  129. Achilefu S, Dorshow RB, Bugaj JE, Rajagopalan R (2000) Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging. Invest Radiol 35(8):479–485

    CAS  Google Scholar 

  130. Llinás R, Walton K, Nakao M, Hunter I, Anquetil P (2005) Neuro-vascular central nervous recording/stimulating system: using nanotechnology probes. J Nanopart Res 7(2–3):111–127

    Google Scholar 

  131. Elder JB, Liu CY, Apuzzo ML (2008) Neurosurgery in the realm of 10(-9), part 2: applications of nanotechnology to neurosurgery–present and future. Neurosurgery 62(2):269–284. discussion 284-5

    Google Scholar 

  132. Liu HL, Hua MY, Yang HW, Huang CY, Chu PC, Wu JS et al (2010) Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain. Proc Natl Acad Sci U S A 107(34):15205–15210

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamboor K. Vishwanatha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this paper

Cite this paper

Gdowski, A., Ranjan, A.P., Mukerjee, A., Vishwanatha, J.K. (2014). Nanobiosensors: Role in Cancer Detection and Diagnosis. In: Adhikari, R., Thapa, S. (eds) Infectious Diseases and Nanomedicine I. Advances in Experimental Medicine and Biology, vol 807. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1777-0_4

Download citation

Publish with us

Policies and ethics