Skip to main content

How Should Obesity be Measured and How Should Anesthetic Drug Dosage be Calculated?

  • Chapter
  • First Online:
Controversies in the Anesthetic Management of the Obese Surgical Patient

Abstract

The risks involved with being overweight or obese are related to the deposition of adipose tissue (adiposity). There are several ways to assess adiposity and body composition. Current medication dosage recommendations are usually based on weight alone and are intended for normal-weight individuals of varying size. Since drug dosage is based on total body weight, the changed body composition and pathophysiological alterations in obesity are likely to affect the pharmacokinetics and pharmacodynamics of anesthetic drugs. Rather than using weight-based measures of obesity, physicians need to look for methods of assessing adiposity that predict how dysmetabolic an obese individual actual is. Anesthesiologists need to use individualized dosing scalars to take into account these changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cornier MA, Despres JP, Davis N et al (2011) Assessing adiposity: a scientific statement from the American Heart Association. Circulation 124:1996–2019

    Article  PubMed  Google Scholar 

  2. De Lorenzo A, Del Gobbo V, Premrov MG et al (2007) Normal-weight obese syndrome: early inflammation? Am J Clin Nutr 85:40–45

    PubMed  Google Scholar 

  3. Romero-Corral A, Somers VK, Sierra-Johnson J et al (2010) Normal weight obesity: a risk factor for cardiometabolic dysregulation and cardiovascular mortality. Eur Heart J 31:737–746

    Article  PubMed  Google Scholar 

  4. Vague J (1947) Sexual differentiation. A factor affecting the forms of obesity. Presse Med 55:339

    PubMed  CAS  Google Scholar 

  5. Pischon T, Boeing H, Hoffmann K et al (2008) General and abdominal adiposity and risk of death in Europe. N Engl J Med 359:2105–2120

    Article  PubMed  CAS  Google Scholar 

  6. Fox CS, Massaro JM, Hoffmann U et al (2007) Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation 116:39–48

    Article  PubMed  Google Scholar 

  7. Bjorntorp P (1988) Abdominal obesity and the development of noninsulin-dependent diabetes mellitus. Diabetes Metab Rev 4:615–622

    Article  PubMed  CAS  Google Scholar 

  8. Larsson B, Svardsudd K, Welin L et al (1984) Abdominal adipose tissue distribution, obesity, and risk of cardiovascular disease and death: 13 year follow up of participants in the study of men born in 1913. Br Med J (Clin Res Ed) 288:1401–1404

    Article  CAS  Google Scholar 

  9. Kissebah AH, Peiris AN (1989) Biology of regional body fat distribution: relationship to non-insulin-dependent diabetes mellitus. Diabetes Metab Rev 5:83–109

    Article  PubMed  CAS  Google Scholar 

  10. Kissebah AH, Vydelingum N, Murray R et al (1982) Relation of body fat distribution to metabolic complications of obesity. J Clin Endocrinol Metab 54:254–260

    Article  PubMed  CAS  Google Scholar 

  11. Kelley DE, Thaete FL, Troost F, Huwe T, Goodpaster BH (2000) Subdivisions of subcutaneous abdominal adipose tissue and insulin resistance. Am J Physiol Endocrinol Metab 278:E941–E948

    PubMed  CAS  Google Scholar 

  12. Despres JP, Moorjani S, Lupien PJ et al (1990) Regional distribution of body fat, plasma lipoproteins, and cardiovascular disease. Arteriosclerosis 10:497–511

    Article  PubMed  CAS  Google Scholar 

  13. Guerrero R, Vega GL, Grundy SM, Browning JD (2009) Ethnic differences in hepatic steatosis: an insulin resistance paradox? Hepatology 49:791–801

    Article  PubMed  Google Scholar 

  14. Ross R, Bradshaw AJ (2009) The future of obesity reduction: beyond weight loss. Nat Rev Endocrinol 5:319–325

    Article  PubMed  Google Scholar 

  15. Despres JP, Couillard C, Gagnon J et al (2000) Race, visceral adipose tissue, plasma lipids, and lipoprotein lipase activity in men and women: the health, risk factors, exercise training, and genetics (HERITAGE) family study. Arterioscler Thromb Vasc Biol 20:1932–1938

    Article  PubMed  CAS  Google Scholar 

  16. Kadowaki T, Sekikawa A, Murata K et al (2006) Japanese men have larger areas of visceral adipose tissue than Caucasian men in the same levels of waist circumference in a population-based study. Int J Obes (Lond) 30:1163–1165

    Article  CAS  Google Scholar 

  17. Albu JB, Murphy L, Frager DH, Johnson JA, Pi-Sunyer FX (1997) Visceral fat and race-dependent health risks in obese nondiabetic premenopausal women. Diabetes 46:456–462

    Article  PubMed  CAS  Google Scholar 

  18. Bjorntorp P (1990) “Portal” adipose tissue as a generator of risk factors for cardiovascular disease and diabetes. Arteriosclerosis 10:493–496

    Article  PubMed  CAS  Google Scholar 

  19. Martin ML, Jensen MD (1991) Effects of body fat distribution on regional lipolysis in obesity. J Clin Invest 88:609–613

    Article  PubMed  CAS  Google Scholar 

  20. Nielsen S, Guo Z, Johnson CM, Hensrud DD, Jensen MD (2004) Splanchnic lipolysis in human obesity. J Clin Invest 113:1582–1588

    PubMed  CAS  Google Scholar 

  21. Flier JS (1995) The adipocyte: storage depot or node on the energy information superhighway? Cell 80:15–18

    Article  PubMed  CAS  Google Scholar 

  22. Hube F, Lietz U, Igel M et al (1996) Difference in leptin mRNA levels between omental and subcutaneous abdominal adipose tissue from obese humans. Horm Metab Res 28:690–693

    Article  PubMed  CAS  Google Scholar 

  23. Cote M, Mauriege P, Bergeron J et al (2005) Adiponectinemia in visceral obesity: impact on glucose tolerance and plasma lipoprotein and lipid levels in men. J Clin Endocrinol Metab 90:1434–1439

    Article  PubMed  CAS  Google Scholar 

  24. Cnop M, Havel PJ, Utzschneider KM et al (2003) Relationship of adiponectin to body fat distribution, insulin sensitivity and plasma lipoproteins: evidence for independent roles of age and sex. Diabetologia 46:459–469

    PubMed  CAS  Google Scholar 

  25. Weyer C, Pratley RE, Snitker S et al (2000) Ethnic differences in insulinemia and sympathetic tone as links between obesity and blood pressure. Hypertension 36:531–537

    Article  PubMed  CAS  Google Scholar 

  26. Rathmann W, Haastert B, Herder C et al (2007) Differential association of adiponectin with cardiovascular risk markers in men and women? The KORA survey 2000. Int J Obes (Lond) 31:770–776

    CAS  Google Scholar 

  27. Weisberg SP, McCann D, Desai M et al (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112:1796–1808

    PubMed  CAS  Google Scholar 

  28. Hotamisligil GS, Shargill NS, Spiegelman BM (1993) Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259:87–91

    Article  PubMed  CAS  Google Scholar 

  29. Baumann H, Gauldie J (1990) Regulation of hepatic acute phase plasma protein genes by hepatocyte stimulating factors and other mediators of inflammation. Mol Biol Med 7:147–159

    PubMed  CAS  Google Scholar 

  30. Ibrahim MM (2010) Subcutaneous and visceral adipose tissue: structural and functional differences. Obes Rev 11:11–18

    Article  PubMed  Google Scholar 

  31. Bluher M (2010) The distinction of metabolically ‘healthy’ from ‘unhealthy’ obese individuals. Curr Opin Lipidol 21:38–43

    Article  PubMed  Google Scholar 

  32. Wood IS, de Heredia FP, Wang B, Trayhurn P (2009) Cellular hypoxia and adipose tissue dysfunction in obesity. Proc Nutr Soc 68:370–377

    Article  PubMed  CAS  Google Scholar 

  33. Couillard C, Bergeron N, Prud’homme D et al (1999) Gender difference in postprandial lipemia: importance of visceral adipose tissue accumulation. Arterioscler Thromb Vasc Biol 19:2448–2455

    Article  PubMed  CAS  Google Scholar 

  34. Yki-Jarvinen H (2004) Thiazolidinediones. N Engl J Med 351:1106–1118

    Article  PubMed  Google Scholar 

  35. Fabbrini E, Magkos F, Mohammed BS et al (2009) Intrahepatic fat, not visceral fat, is linked with metabolic complications of obesity. Proc Natl Acad Sci USA 106:15430–15435

    Article  PubMed  CAS  Google Scholar 

  36. Del Gaudio A, Boschi L, Del Gaudio GA, Mastrangelo L, Munari D (2002) Liver damage in obese patients. Obes Surg 12:802–804

    Article  PubMed  Google Scholar 

  37. Davidson LE, Kuk JL, Church TS, Ross R (2006) Protocol for measurement of liver fat by computed tomography. J Appl Physiol 100:864–868

    Article  PubMed  Google Scholar 

  38. Quetelet LA (1994) A treatise on man and the development of his faculties. 1842. Obes Res 2:72–85

    PubMed  CAS  Google Scholar 

  39. Romero-Corral A, Somers VK, Sierra-Johnson J et al (2008) Accuracy of body mass index in diagnosing obesity in the adult general population. Int J Obes (Lond) 32:959–966

    Article  CAS  Google Scholar 

  40. Gallagher D, Visser M, Sepulveda D et al (1996) How useful is body mass index for comparison of body fatness across age, sex, and ethnic groups? Am J Epidemiol 143:228–239

    Article  PubMed  CAS  Google Scholar 

  41. WHO Expert Consultation (2004) Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 363:157–63

    Google Scholar 

  42. Pouliot MC, Despres JP, Lemieux S et al (1994) Waist circumference and abdominal sagittal diameter: best simple anthropometric indexes of abdominal visceral adipose tissue accumulation and related cardiovascular risk in men and women. Am J Cardiol 73:460–468

    Article  PubMed  CAS  Google Scholar 

  43. de Koning L, Merchant AT, Pogue J, Anand SS (2007) Waist circumference and waist-to-hip ratio as predictors of cardiovascular events: meta-regression analysis of prospective studies. Eur Heart J 28:850–856

    Article  PubMed  Google Scholar 

  44. Ross R, Berentzen T, Bradshaw AJ et al (2008) Does the relationship between waist circumference, morbidity and mortality depend on measurement protocol for waist circumference? Obes Rev 9:312–325

    Article  PubMed  CAS  Google Scholar 

  45. Mason C, Craig CL, Katzmarzyk PT (2008) Influence of central and extremity circumferences on all-cause mortality in men and women. Obesity (Silver Spring) 16:2690–2695

    Article  Google Scholar 

  46. Snijder MB, Zimmet PZ, Visser M et al (2004) Independent and opposite associations of waist and hip circumferences with diabetes, hypertension and dyslipidemia: the AusDiab Study. Int J Obes Relat Metab Disord 28:402–409

    Article  PubMed  CAS  Google Scholar 

  47. Preis SR, Massaro JM, Hoffmann U et al (2010) Neck circumference as a novel measure of cardiometabolic risk: the Framingham Heart study. J Clin Endocrinol Metab 95:3701–3710

    Article  PubMed  CAS  Google Scholar 

  48. Kawaguchi Y, Fukumoto S, Inaba M et al (2011) Different impacts of neck circumference and visceral obesity on the severity of obstructive sleep apnea syndrome. Obesity (Silver Spring) 19:276–282

    Article  Google Scholar 

  49. Meisinger C, Doring A, Thorand B, Heier M, Lowel H (2006) Body fat distribution and risk of type 2 diabetes in the general population: are there differences between men and women? The MONICA/KORA Augsburg cohort study. Am J Clin Nutr 84:483–489

    PubMed  CAS  Google Scholar 

  50. Taylor AE, Ebrahim S, Ben-Shlomo Y et al. (2010) Comparison of the associations of body mass index and measures of central adiposity and fat mass with coronary heart disease, diabetes, and all-cause mortality: a study using data from 4 UK cohorts. Am J Clin Nutr 91: 547–556

    Google Scholar 

  51. Page JH, Rexrode KM, Hu F et al (2009) Waist-height ratio as a predictor of coronary heart disease among women. Epidemiology 20:361–366

    Article  PubMed  Google Scholar 

  52. Gelber RP, Gaziano JM, Orav EJ et al (2008) Measures of obesity and cardiovascular risk among men and women. J Am Coll Cardiol 52:605–615

    Article  PubMed  Google Scholar 

  53. Dhaliwal SS, Welborn TA (2009) Measurement error and ethnic comparisons of measures of abdominal obesity. Prev Med 49:148–152

    Article  PubMed  Google Scholar 

  54. Iribarren C, Darbinian JA, Lo JC, Fireman BH, Go AS (2006) Value of the sagittal abdominal diameter in coronary heart disease risk assessment: cohort study in a large, multiethnic population. Am J Epidemiol 164:1150–1159

    Article  PubMed  Google Scholar 

  55. Sampaio LR, Simoes EJ, Assis AM, Ramos LR (2007) Validity and reliability of the sagittal abdominal diameter as a predictor of visceral abdominal fat. Arq Bras Endocrinol Metabol 51:980–986

    Article  PubMed  Google Scholar 

  56. Onat A, Avci GS, Barlan MM et al (2004) Measures of abdominal obesity assessed for visceral adiposity and relation to coronary risk. Int J Obes Relat Metab Disord 28:1018–1025

    Article  PubMed  CAS  Google Scholar 

  57. Mukuddem-Petersen J, Snijder MB, van Dam RM et al (2006) Sagittal abdominal diameter: no advantage compared with other anthropometric measures as a correlate of components of the metabolic syndrome in elderly from the Hoorn Study. Am J Clin Nutr 84:995–1002

    PubMed  CAS  Google Scholar 

  58. Ross R (2003) Advances in the application of imaging methods in applied and clinical physiology. Acta Diabetol 40(Suppl 1):S45–S50

    Article  PubMed  Google Scholar 

  59. Lee SY, Gallagher D (2008) Assessment methods in human body composition. Curr Opin Clin Nutr Metab Care 11:566–572

    Article  PubMed  Google Scholar 

  60. Kvist H, Sjostrom L, Tylen U (1986) Adipose tissue volume determinations in women by computed tomography: technical considerations. Int J Obes 10:53–67

    PubMed  CAS  Google Scholar 

  61. Shen W, Punyanitya M, Chen J et al (2007) Visceral adipose tissue: relationships between single slice areas at different locations and obesity-related health risks. Int J Obes (Lond) 31:763–769

    CAS  Google Scholar 

  62. Liu KH, Chan YL, Chan JC et al (2005) The preferred magnetic resonance imaging planes in quantifying visceral adipose tissue and evaluating cardiovascular risk. Diabetes Obes Metab 7:547–554

    Article  PubMed  CAS  Google Scholar 

  63. Hull HR, Thornton J, Wang J et al (2011) Fat-free mass index: changes and race/ethnic differences in adulthood. Int J Obes (Lond) 35(1):121–127

    Article  CAS  Google Scholar 

  64. Sebo P, Beer-Borst S, Haller DM, Bovier PA (2008) Reliability of doctors’ anthropometric measurements to detect obesity. Prev Med 47:389–393

    Article  PubMed  Google Scholar 

  65. Van Der Ploeg GE, Withers RT, Laforgia J (2003) Percent body fat via DEXA: comparison with a four-compartment model. J Appl Physiol 94:499–506

    Google Scholar 

  66. Glickman SG, Marn CS, Supiano MA, Dengel DR (2004) Validity and reliability of dual-energy X-ray absorptiometry for the assessment of abdominal adiposity. J Appl Physiol 97: 509–514

    Article  PubMed  Google Scholar 

  67. Kyle UG, Bosaeus I, De Lorenzo AD et al (2004) Bioelectrical impedance analysis–part I: review of principles and methods. Clin Nutr 23:1226–1243

    Article  PubMed  Google Scholar 

  68. Rush EC, Crowley J, Freitas IF, Luke A (2006) Validity of hand-to-foot measurement of bioimpedance: standing compared with lying position. Obesity (Silver Spring) 14:252–257

    Article  Google Scholar 

  69. Dehghan M, Merchant AT (2008) Is bioelectrical impedance accurate for use in large epidemiological studies? Nutr J 7:26

    Article  PubMed  Google Scholar 

  70. Heymsfield SB, Waki M (1991) Body composition in humans: advances in the development of multicompartment chemical models. Nutr Rev 49:97–108

    Article  PubMed  CAS  Google Scholar 

  71. Hanley MJ, Abernethy DR, Greenblatt DJ (2010) Effect of obesity on the pharmacokinetics of drugs in humans. Clin Pharmacokinet 49:71–87

    Article  PubMed  CAS  Google Scholar 

  72. Bouillon T, Shafer SL (1998) Does size matter? Anesthesiology 89:557–560

    Article  PubMed  CAS  Google Scholar 

  73. Ogunnaike BO, Jones SB, Jones DB, Provost D, Whitten CW (2002) Anesthetic considerations for bariatric surgery. Anesth Analg 95:1793–1805

    Article  PubMed  Google Scholar 

  74. Blouin RA, Kolpek JH, Mann HJ (1987) Influence of obesity on drug disposition. Clin Pharm 6:706–714

    PubMed  CAS  Google Scholar 

  75. Janmahasatian S, Duffull SB, Ash S et al (2005) Quantification of lean bodyweight. Clin Pharmacokinet 44:1051–1065

    Article  PubMed  Google Scholar 

  76. Ingrande J, Brodsky JB, Lemmens HJ (2011) Lean body weight scalar for the anesthetic induction dose of propofol in morbidly obese subjects. Anesth Analg 113:57–62

    Article  PubMed  CAS  Google Scholar 

  77. Pai MP, Paloucek FP (2000) The origin of the “ideal” body weight equations. Ann Pharmacother 34:1066–1069

    Article  PubMed  CAS  Google Scholar 

  78. Shibutani K, Inchiosa MA Jr, Sawada K, Bairamian M (2004) Accuracy of pharmacokinetic models for predicting plasma fentanyl concentrations in lean and obese surgical patients: derivation of dosing weight (“pharmacokinetic mass”). Anesthesiology 101:603–613

    Article  PubMed  CAS  Google Scholar 

  79. Raemer DB, Buschman A, Varvel JR et al (1990) The prospective use of population pharmacokinetics in a computer-driven infusion system for alfentanil. Anesthesiology 73:66–72

    Article  PubMed  CAS  Google Scholar 

  80. Scott JC, Stanski DR (1987) Decreased fentanyl and alfentanil dose requirements with age. A simultaneous pharmacokinetic and pharmacodynamic evaluation. J Pharmacol Exp Ther 240:159–166

    PubMed  CAS  Google Scholar 

  81. Mahmood I (2007) Prediction of drug clearance in children: impact of allometric exponents, body weight, and age. Ther Drug Monit 29:271–278

    Article  PubMed  Google Scholar 

  82. Cortinez LI, Anderson BJ, Penna A et al (2010) Influence of obesity on propofol pharmacokinetics: derivation of a pharmacokinetic model. Br J Anaesth 105:448–456

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc E. C. De Baerdemaeker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Italia

About this chapter

Cite this chapter

De Baerdemaeker, L.E.C., Van Limmen, J.G.M., Van Nieuwenhove, Y. (2013). How Should Obesity be Measured and How Should Anesthetic Drug Dosage be Calculated?. In: Leykin, Y., Brodsky, J. (eds) Controversies in the Anesthetic Management of the Obese Surgical Patient. Springer, Milano. https://doi.org/10.1007/978-88-470-2634-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2634-6_2

  • Published:

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2633-9

  • Online ISBN: 978-88-470-2634-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics