Skip to main content

Space–Time Geostatistics for Precision Agriculture: A Case Study of NDVI Mapping for a Dutch Potato Field

  • Chapter
  • First Online:
Geostatistical Applications for Precision Agriculture

Abstract

Many environmental variables that are relevant to precision agriculture, such as crop and soil properties and climate, vary both in time and space. Farmers can often benefit greatly from accurate information about the status of these variables at any particular point in time and space to aid their management decisions on irrigation, fertilizer and pesticide applications, and so on. Practically, however, it is not feasible to measure a variable exhaustively in space and time. Space–time geostatistics can be useful to fill in the gaps. This chapter explains the basic elements of space–time geostatistics and uses a case study on space–time interpolation of the normalized difference vegetation index (NDVI) as an indicator of biomass in a Dutch potato field. Space–time geostatistics proves to be a useful extension to spatial geostatistics for precision agriculture, although theoretical as well as practical advances are required to mature this subject area and make it ready to be used for within-season, within-field decision making by farmers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Actueel Hoogtebestand Nederland. (9 July 2009).http://www.ahn.nl/index.php.

  • Baret, F., & Guyot, G. (1991). Potentials and limits of vegetation indices for LAI and APAR assessment.Remote Sensing of Environment, 35, 161–173.

    Article  Google Scholar 

  • Bilonick, R. A. (1988). Monthly hydrogen in deposition maps for the northeastern U.S. from July 1982 to September 1984.Atmospheric Environment,22, 1909–1924.

    Google Scholar 

  • Bivand, R. S., Pebesma, E. J., & Gómez-Rubio, V. (2008).Applied spatial data analysis with R. New York, USA: Springer.

    Google Scholar 

  • Byrd, R. H., Lu, P., Nocedal, J., & Zhu, C. (1995). A limited memory algorithm for bound constrained optimization.SIAM Journal of Scientific Computing, 16, 1190–1208.

    Article  Google Scholar 

  • Carlson, T. N., & Ripley, D. A. (1997). On the relation between NDVI, fractional vegetation cover, and leaf area index.Remote Sensing of Environment, 62, 241–252.

    Article  Google Scholar 

  • Cressie, N., & Huang, H. C. (1999). Classes of nonseperable, spatio-temporal stationary covariance functions.Journal of the American Statistical Association, 94, 1–53.

    Article  Google Scholar 

  • De Cesare, L., Myers, D. E., & Posa, D. (2001). Product-sum covariance for space–time modeling: An environmental application.Environmetrics, 12, 11–23.

    Article  Google Scholar 

  • De Cesare, L., Myers, D. E., & Posa, D. (2002). FORTRAN programs for space–time modeling.Computers and Geosciences, 28, 205–212.

    Article  Google Scholar 

  • Deutsch, C. V., & Journel, A. G. (1998).GSLIB: Geostatistical software library and user’s guide (2nd ed.). New York: Oxford University Press.

    Google Scholar 

  • Diggle, P. J., & Ribeiro Jr., P. J. (2007).Model-based geostatistics. New York: Springer.

    Google Scholar 

  • Dimitrakopoulos, R. & Luo, X. (1994) Spatiotemporal modeling: Covariances and ordinary kriging systems In R. Dimitrakopoulos (Ed.),Geostatistics for the next century (pp. 88–93). Dordrecht: Kluwer.

    Google Scholar 

  • Fischer, A. (1994). A model for the seasonal variations of vegetation indices in coarse resolution data and its inversion to extract crop parameters.Remote Sensing of Environment, 48, 220–230.

    Article  Google Scholar 

  • Fuentes, M., Chen, L. & Davis, J. M. (2008). A class of nonseparable and nonstationary spatial temporal covariance functions.Environmetrics, 19, 487–507.

    Article  CAS  Google Scholar 

  • Gneiting, T. (2002). Nonseparable, stationary covariance functions for space–time data.Journal of the American Statistical Association, 97, 590–600.

    Article  Google Scholar 

  • Hengl, T., Heuvelink, G. B. M., & Stein, A. (2004). A generic framework for spatial prediction of soil properties based on regression-kriging.Geoderma, 120, 75–93.

    Article  Google Scholar 

  • Heuvelink, G. B. M., Schoorl, J. M., Veldkamp, A., & Pennock, D. J. (2006). Space–time Kalman filtering of soil redistribution.Geoderma, 133, 124–137.

    Article  Google Scholar 

  • Hoeben, R. & Troch, P. A. (2000). Assimilation of active microwave observation data for soil moisture profile estimation.Water Resources Research, 36, 2805–2819.

    Article  Google Scholar 

  • Holland Scientific (27 November 2008).http://www.hollandscientific.com.

  • Huang, H.-C., Martinez, F., Mateu, J, & Nontes, F. (2007). Model comparison and selection for stationary space–time models.Computational Statistics & Data Analysis, 51, 4577–4596.

    Article  Google Scholar 

  • Ma, C. (2008). Recent developments on the construction of spatio-temporal covariance models.Stochastic Environment Research and Risk Assessment, 22, S39–S47.

    Article  Google Scholar 

  • Montgomery, D. C., Peck, E. A, & Vining, G. G. (2006).Introduction to linear regression analysis (4th ed). New York: Wiley.

    Google Scholar 

  • Snepvangers, J. J. J. C., Heuvelink, G. B. M., & Huisman, J. A. (2003). Soil water content interpolation using spatio-temporal kriging with external drift.Geoderma, 112, 253–271.

    Article  Google Scholar 

  • Webster, R. (2000). Is soil variation random?Geoderma, 97, 149–163.

    Article  Google Scholar 

  • Wösten, J. H. M., Veerman, G. J., De Groot, W. J. M., & Stolte, J. (2001).Waterretentie- en doorlatendheidskarakteristieken van boven- en ondergronden in Nederland: de Staringreeks. Vernieuwde uitgave 2001. Wageningen, The Netherlands: Alterra, Report 153.

    Google Scholar 

  • Wu, J., Wang, D., & Bauer, M. E. (2007). Assessing broadband vegetation indices and QuickBird data in estimating leaf area index of corn and potato canopies.Field Crops Research, 102, 33–42.

    Article  Google Scholar 

  • Yu, H.-W., Kolovos, A., Christakos, G., Chen, J.-C., Warmerdam, S., & Dev, B. (2007). Interactive spatiotemporal modelling of health systems: the SEKS–GUI framework.Stochastic Environment Research and Risk Assessment, 21, 555–572.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Mr. Claassen for use of the Lauwersmeer farm data. We thank Allard de Wit (Alterra) for his suggestion to use the double logistic function and assistance with fitting it to the NDVI data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. B. M. Heuvelink .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Heuvelink, G.B.M., van Egmond, F.M. (2010). Space–Time Geostatistics for Precision Agriculture: A Case Study of NDVI Mapping for a Dutch Potato Field. In: Oliver, M. (eds) Geostatistical Applications for Precision Agriculture. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9133-8_5

Download citation

Publish with us

Policies and ethics