Skip to main content

Oncothermia – A New Kind of Oncologic Hyperthermia

  • Chapter
  • First Online:
Oncothermia: Principles and Practices

Abstract

The very first oncothermia application was electrochemotherapy (ECT) which we showed basically works on the effect of charges pumped into the target by an external electrode. This charge causes special cellular distortion in the target. Its selection was regulated by the invasive insertion of the electrodes. The target tissue in ECT is a part of the closed electric circuit, so it could be directly controlled by the circuit parameters! Neither magnetic nor antenna radiation applications have such possibilities; in those cases the target is independent from the generating electromagnetic source. So in our concept the conduction (as clear as possible) has a central role in treatment control. This was the starting point for electrohyperthermia, the root of the complex oncothermia method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  2. Douwes F, Douwes O, Migeod F, Grote C, Bogovic J (2006) Hyperthermia in combination with ACNU chemotherapy in the treatment of recurrent glioblastoma

    Google Scholar 

  3. Experiments were performed by Lorus Inc, Toronto, Canada, (Courtesy Dr. Yoon Lee and Mr. RC Perralta (DVM) unpublished results

    Google Scholar 

  4. Horvath I, Multhoff G, Sonnleitner A et al (2008) Membrane-associated stress proteins: More than simply chaperones. Biochimica et Biophysica Acta 1778(7–8):1653–1664

    Article  CAS  PubMed  Google Scholar 

  5. Sahinbas H., Grönemeyer D.H.W., Böcher E., Lange S.: Hyperthermia treatment of advanced relapsed gliomas and astrocytoma, The 9th International Congress on hyperthermic oncology, St. Louis, Missouri, ICHO, April 24–27, 2004

    Google Scholar 

  6. Vujaskovic Z et al (2004) A Randomized trial of Hyperthermia and Radiation for Superficial Tumors. Presentation and Abstracts for The Kadota Fund International Forum, Awaji Yumebutai, Japan, 15–18 June 2004

    Google Scholar 

  7. Lupis CHP (1983) Chemical Thermodynamics of Materials. John Wiley & Sons Ltd, North Holland, New York, Amsterdam, Oxford

    Google Scholar 

  8. Blad B, Wendel P, Jönsson M et al (1999) An electrical impedance index to distinguish between normal and cancerous tissues. Journal of Medical Engineering & Technology 23(2):57–62

    Article  CAS  Google Scholar 

  9. Iskander M, Olson S, MacCalmont J (1987) Near-field absorption characteristics of models in the resonance frequency range. IEEE Trans On Microwave Theory and Techniques 35(8):776–779

    Article  Google Scholar 

  10. Szasz A, Vincze Gy, Szasz O et al (2003) An energy analysis of extracellular hyperthermia. Magneto- and electro-biology 22(2)103–115

    Article  Google Scholar 

  11. Weaver JC, Astumian RD (1990) The response of living cells to very week electric fields: The thermal noise limit. Science 247(4941):459–462

    Article  CAS  PubMed  Google Scholar 

  12. Smith , S.R., Foster, K.R.: Dielectric properties of low-water-content tissues. Phys. Med. Biol. 30, 965–970 (1985)

    Article  CAS  PubMed  Google Scholar 

  13. Stupp R, Dietrich P-Y, Kraljevic SO et al (2002) Promising survival for patients with newly diagnosed clioblastoma multiforme treated with concomitant radiation plus temiozolomide followed by adjuvant temozolomide. J Clin Oncol 20:1375–1382

    Article  CAS  PubMed  Google Scholar 

  14. Siemens Impedance Tomograph TRANS-SCAN (commercially available)

    Google Scholar 

  15. Katchalsky A, Curran PF (1967) Non-equilibrium thermodynamics in biophysics. Harvard University Press, Cambridge, MA, USA

    Google Scholar 

  16. Scott CB, Scarantino C, Urtasun R, et al: Validation and predictive power of Radiation Therapy Oncology Group (RTOG) recursive partitioning analysis classes for malignant glioma patients: A report using RTOG 90-06. Int J Radiat Oncol Biol Phys 40:51–55, 1998

    Article  CAS  PubMed  Google Scholar 

  17. Brunner G (2007) Elektrohyperthermie von Hautkrebbszellen: Neue Ergebnisse zu potentiellen molekularen Wirkungsmechanismen. Hyperthermie Symposium, Cologne, Germany, 19–20 October 2007

    Google Scholar 

  18. Fujita, S.; Tamazawa, M.; Kuroda, K. (1998) Effects of blood perfusion rate on the optimization of RF-capacitive hyperthermia. IEEE Transactions on Biomedical Engineering, 45:1182–1186

    Article  CAS  PubMed  Google Scholar 

  19. Vigvary Z, Mako E, Dank M. (2002) Combined radiological and interventional treatment of non-operable rectal tumors and their liver metastases, Regional Radiology Conference, Maribor, Sept. 19–20, Slovenia

    Google Scholar 

  20. Kodama K, Doi O, Tatsuta M et al (1989) Development of postoperative intrathoracic chemo-thermotherapy of lung cancer with objective of improving local cure. Cancer 64(7):1422–1428

    Article  CAS  PubMed  Google Scholar 

  21. Sahinbas H.: EHT bei Kindern mit Hirntumoren und nicht-invasive Messverfahren am beispiel von Hirntumoren, Symposium Hyperthermie, Cologne, 15–16 October 2004

    Google Scholar 

  22. Sahinbas H, Szasz A: Electrohyperthermia in brain tumors, Retrospective clinical study, Annual Meeting of Hungarian Oncology Society, Budapest, November 3–5, 2005

    Google Scholar 

  23. Binggeli R, Weinstein RC (1986) Membrane potentials and sodium channels: hypotheses for growth regulation and cancer formation based on changes in sodium channels and gap junctions. J Theor Biol 123(4):377–401

    Article  CAS  PubMed  Google Scholar 

  24. Szasz A (2009) Brain glioma results by oncothermia, a review. Expanding the Frontiers of Thermal Biology, Medicine and Physics Annual Meeting of Society of Thermal Medicine, Tucson, USA, 3–7 April 2009

    Google Scholar 

  25. Pennes, H.H.: Analysis of tissue and arterial blood temperatures in the resting human forearm. J. Appl. Phys. 1, 93–122 (1948)

    CAS  Google Scholar 

  26. Fisher PG, Buffler PA: Malignant gliomas in 2005. Where to GO from here?, Editorials, JAMA 293:615–617, 2005

    Article  CAS  PubMed  Google Scholar 

  27. Huang, K.: Lectures on statistical physics and protein folding. World Scientific Publ. Co, New Jersey, London, Singapore (2005)

    Book  Google Scholar 

  28. Szasz A (2003) Elektromagnetische Hyperthermieverfahren: die kapazitive Kopplung. Forum Komplementare Onkologie Hyperthermie, 4:III–IX

    Google Scholar 

  29. Andocs G (2005) Electro-hyperthermia in the veterinary practice. Hyperthermie Symposium, Cologne, Germany, 14–16 October 2005

    Google Scholar 

  30. Hasted JB (1973) Aqueous Dielectrics. Chapman and Hall, London, p 222

    Google Scholar 

  31. Bell GI (1978) Models for the specific adhesion of cells to cells. Science 200:618–627

    Article  CAS  PubMed  Google Scholar 

  32. Renner H. (2006) Radio-(Chemo)-Thermo-Therapie. Kasuistische Erfahrungen bei lokal fortgeschrittenen Kopf-Hals Tumoren. Hyperthermia Symposium, Cologne, September 22–23

    Google Scholar 

  33. Pappercorn JM, Weeks JC, Cook EF et al (2004) Comparison of outcomes in cancer patients treated within and outside clinical trials: conceptual framework and structured review. The Lancet 363:263–270

    Article  Google Scholar 

  34. Durney CM (1987) Electromagnetic regional heating. In: Field SB, Franconi C (eds) Physics and Technology of Hyperthermia, NATO ASI Series, Martinus Nijhoff Publ., Dordrecht, Boston, pp 241–249

    Google Scholar 

  35. Yap AS, Brieher WM, Gumbiner BM (1997) Molecular and functional analysis of cadherin-based adherens junctions. Ann Rev Cell Dev Biol 13:119–146

    Article  CAS  Google Scholar 

  36. Overgaard J (1978) Effect of Local Hyperthermia Alone, and in Combination with Radiation, on Solid Tumors. In: Streffer C, vanBeuningen D, Dietzel F et al (eds) Cancer Therapy by Hyperthermia and Radiation, Urban & Schwarzenberg, Baltimore, Munich

    Google Scholar 

  37. Sahinbas H et al (2006) Retrospective clinical study of adjuvant electro-hyperthermia treatment for advanced brain-gliomas. Deutsche Zeitschrift fuer Onkologie 39:154–160

    Article  Google Scholar 

  38. Robert J, Escanye JM, Brunotte F et al (1986) Physical basis of hyperthermia. In: Anghileri LJ, Robert J (eds) Hyperthermia in cancer treatment, CRC Press Inc., Boca Raton, Florida, USA, 2:2–16

    Google Scholar 

  39. Parolini I, Federici C, Raggi C, Lugini L, Palleschi S, De Milito A, Coscia C, Iessi E, Logozzi M, Molinari A, Colone M, Tatti M, Sargiacomo M, Fais S (2009) Microenvironmental pH Is a Key Factor for Exosome Traffic in Tumor Cells, The Journal of Biol. Chem. 284:34211–34222

    Article  CAS  Google Scholar 

  40. Szendro P, Vincze G, Szasz A (2001) Pink noise behaviour of the bio-systems. Eur Biophys J 30(3):227–231

    Article  CAS  PubMed  Google Scholar 

  41. Chen JW, Lin J, Madamanchi N, Trier TT, Campbell G: Apoptosis occurs in a new model of thermal brain injury, J. Biomed. Sci. 7:459–465, 2000

    Article  CAS  PubMed  Google Scholar 

  42. Renner H. (2003) Simultane RadioThermoTherapie bzw. RadioChemoThermoTherapie, Hyperthermia Symposium, Cologne, Germany, October

    Google Scholar 

  43. Andocs G (2007) Recent results on oncothermia. Hyperthermie Symposium, Cologne, Germany, 19–20 October 2007

    Google Scholar 

  44. Fiorentini G, deGiorgi U, Turrisi G et al (2006) Deep electro-hyperthermia with radiofrequencies combined with thermoactive drugs in patients with liver metastases from colorectal cancer (CRC): a Phase II clinical study. ICACT 17th, Paris, France, Jan 30–Feb 2 2006

    Google Scholar 

  45. Ganong WF (1997) Review of medical physiology. Appleton & Lange, Stamford, Connecticut

    Google Scholar 

  46. Musha, T., Sawada, Y. (eds.): Physics of the living state. IOS Press, Amsterdam (1994)

    Google Scholar 

  47. Scott JN, Rewcastle NB, Brasher PMA, Fulton D, Hagen NA, MacKinnon JA, Sutherland G, Cairncross JG, Forsyth P: Long-term glioblastoma multiforme survivors: a population-based study, Can. J. Neurol. Sci. 25:197–201, 1998

    CAS  PubMed  Google Scholar 

  48. Szasz A (2006) What is against the acceptance of hyperthermia? Die Naturheilkunde Forum-Medizine 83:3–7

    Google Scholar 

  49. Pauling L. (1989) Biostatistical analysis of mortality data for cohorts of cancer patients. Proc Natl. Acad. Sci. USA 86:3466–3468

    Article  CAS  PubMed  Google Scholar 

  50. Hober, R.: Eine Methode die elektrische Leitfahigkeit im innern von Zellen zu messen, Pflugers Arch. Gesamte Physiol 133, 237–238 (1910); 148, 189–191 (1912)

    Article  CAS  Google Scholar 

  51. Chatterjee I, Hagmann M, Gandhi O (1981) An empirical relationship for electromagnetic energy absorption in man for near-field exposure condition. IEEE Trans On Microwave Theory and Techniques 29(11):1235–1238

    Article  Google Scholar 

  52. Dewhirst, M.W.: Thermal dosimetry. In: Seegenschmiedt MH, Fessenden P, Vernon CC (eds), Thermo-radiotherapy and thermo-chemotherapy, vol. 1. Biology, Physiology and Physics, Springer Verlag, Berlin Heidelberg, pp 123–136 (1995)

    Google Scholar 

  53. Andocs G, Szasz A, Somossy Z (2006) Change of adherent connections after heat-treatment on HepG2 hepato-cellular carcinoma in vitro. 36th Membrane Transport Conference, Sumeg, Hungary, 24 June 2006

    Google Scholar 

  54. Weiss TF (1996) Cellular Biophysics. Bradford Book, MIT Press, Cambridge, MA, USA

    Google Scholar 

  55. WeibullSopo, Case LD, Morgan (2003) Design on Phase II cancer trials evaluating survival probabilities. BMC Medical Research Methodology, 3:6–18

    Article  Google Scholar 

  56. Szasz A, Szasz N, Szasz O (2004) Hyperthermia in der oncology: eine aktuell beforschte behandlungsmethode. Integrative Onkologie 1:19–27

    Google Scholar 

  57. VeraMed Clinic, Meshede, Germany; Dr. M. Kalden, unpublished data, private information

    Google Scholar 

  58. Bogovic J et al. (2001) Posttreatment Histology and Microcirculation Status of Osteogenic Sarcoma after a Neoadjuvant Chemo- and Radiotherapy in Combination with Local Electromagnetic Hyperthermia; Onkologie 24:55—68

    Article  CAS  PubMed  Google Scholar 

  59. Herzog A. (2008) Oncothermia applications, Presentation, Baden Baden October 31.

    Google Scholar 

  60. Esrick, M.A., McRae, D.A.: The effect of hyperthermia induced tissue conductivity changes on electrical impedance temperature mapping. Phys. Med. Biol. 39, 133–144 (1994)

    Article  CAS  PubMed  Google Scholar 

  61. Renner H, Albrecht I, (2007) Analyse der Überlebenszeiten von Patienten mit Pankreastumoren mit erfolgter kapazitativer Hyperthermiebehandlung, (Erstellt: Mr. Mirko Friedrich; May 2007) & STM

    Google Scholar 

  62. Work of two Hungarian institutions are involved: HTT Med Day-clinic, Budapest, Hungary (investigators: A. Dani and A. Varkonyi). Referred to in the text as HTT. And Peterfy Hospital, Budapest, Hungary, (investigator: T. Magyar). Referred to in the text as PFY.

    Google Scholar 

  63. Kaune WT (2002) Thermal Noises Limit on the Sensitivity of Cellular Membranes to Power Frequency Electric and Magnetic Fields. Bioelectromagnetics 23(8):622–628

    Article  CAS  PubMed  Google Scholar 

  64. Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. The New England J. of Med (352)987–996

    Google Scholar 

  65. Szasz A (2006) Physical background and technical realization of hyperthermia. In: Baronzio GF, Hager ED (eds) Locoregional Radiofrequency-Perfusional- and Wholebody- Hyperthermia in Cancer Treatment: New clinical aspects, Ch. 3., Springer Science, New York, pp 27–59

    Google Scholar 

  66. EUROCARE-3 European Cancer Database. http://www.eurocare.org/profiles/index.html

  67. Karatsu J, Ushio Y: Epidemiological study of primary intracranial tumors in elderly people, Journal of Neurology, Neurosurgery and Psychiatry, 63:116–118, 1977

    Article  Google Scholar 

  68. Greig NH, Ries LG, Yancik R , et al: Natl. Canc. Inst. 82:1621–1624, 1990

    Article  CAS  Google Scholar 

  69. Gardner MJ, Altman DG (1989) Statistics with Confidence, British Medical Journals Book, British Medical Journal, London

    Google Scholar 

  70. Vander AJ, Sherman JH, Luciano DS (1994) Human Physiology: The mechanisms of body function. McGraw-Hill, New York

    Google Scholar 

  71. Park HG, Han SI, Oh SY et al (2005) Cellular responses to mild heat stress. Cell Mol Life Sci 62:10–23

    Article  CAS  PubMed  Google Scholar 

  72. Ferrari VD, De Ponti S, Valcamonico F et al (2007) Deep electro-hyperthermia (EHY) with or without thermo-active agents in patients with advanced hepatic cell carcinoma: phase II study. Journal of Clinical Oncology 25:18S, 15168

    Article  Google Scholar 

  73. Hager ED et al (2008) Prospective phase II trial for recurrent high-grade malignant gliomas with capacitive coupled low radiofrequency (LRF) deep hyperthermia. ASCO, Journal of Clinical Oncology, Annual Meeting Proceedings (Post-Meeting Edition) 26:2047

    Google Scholar 

  74. McRae, D.A., Esrick, M.A., Mueller, S.C.: Changes in the non-invasive, in vivo electrical impedance of the xenografts during the necrotic cell-response sequence. Int. J. Radiat. Oncol. Biol. Phys. 43, 849–857 (1999)

    Article  CAS  PubMed  Google Scholar 

  75. Lang I, Piko B, Juhos E, Hitre E, Szucs M, Zsalek J, Csejtey A: Case report on heavily pre-treated advanced breast tumor, Symposium Cologne, 2005

    Google Scholar 

  76. Aydin H, et al. (2003) Strahlen-Hyperthermie bei Lebermetastasen und bei therapieresistenten Knochenmetastasen; Hyperthermia Symposium, Cologne, Germany, 25–26. October,

    Google Scholar 

  77. Szasz A, Dani A, Varkonyi A (2004) Az elektro-hipertermia eredményei nagyszámú beteg retrospektív kiértékelésének tükrében Magyarországon. Magyar Klinikai Onkológiai Társaság III. Kongresszusa, Budapest, Hungary, 17–20 November 2004

    Google Scholar 

  78. Andocs G, Szasz O, Szasz A (2008) Oncothermia treatment of cancer: from the laboratory to clinic. Symposium on Biophysical Aspects of Cancer, Electromagnetic mechanisms (in memoriam H. Froelich), Prague, 1–3 July 2008, submitted to Electrom Bio Med

    Google Scholar 

  79. Murata T, Akagi K, Ostapenko VV et al (1998) Relevance of a new impedance matching, or Substrap, method for the reduction of pain during hyperthermia. Acta Oncologica 37:485–488

    Article  CAS  PubMed  Google Scholar 

  80. Perez CA, Brady LW, Halperin EC et al (2004) Principles and Practice of Radiation Oncology. 4th edition, Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  81. Vincze Gy, Szász A, Szasz N (2005) On the thermal noise limit of cellular membranes. Bioelectromagnetics 26(1):28–35

    Article  PubMed  Google Scholar 

  82. Kotnik T, Miklavcic D (2000) Theoretical evaluation of the distributed power dissipation in biological cells exposed to electric field. Bioelectromagnetics 21:385–394

    Article  CAS  PubMed  Google Scholar 

  83. Dani A, Varkonyi A: Electro-hyperthermia treatment of malignant brain tumors, Results of hyperthermia, Seminar, St. Istvan University, Aug. 26–27., 2003. (in Hungarian)

    Google Scholar 

  84. Xin Y, Xue F, Ge B et al (1997) Electrochemical treatment of lung cancer. Bioelectromagnetics 18(1):8–13

    Article  CAS  PubMed  Google Scholar 

  85. Szasz A (2009) Clinical studies evidences of modulated rf-conductive heating (mEHT) method. Paper presented at the 25th Annual Meeting of the European Society for Hyperthermic Oncology, ESHO, Verona, Italy, 4–6 June

    Google Scholar 

  86. Bodoky Gy (2003) Experiences with the treatment of advanced pancreatic cancer in Hungary, in Hungarian. , Hungarian Oncology 47:10–13

    Google Scholar 

  87. Sahinbas H, Grönemeyer D (2002) Local and regional deep-hyperthermia in combination with radiation- and chemotherapy for advanced tumors. 20th European Society for hyperthermic oncology, Bergen, Norway, 23–25 May

    Google Scholar 

  88. Andocs G, Szasz O. Szasz A. (2009) In vitro and in vivo evidences of effects of modulated rf-conducting heating. 25th Annual Meeting of the European Society for Hyperthermic Oncology, ESHO, Verona, June 4–6.

    Google Scholar 

  89. Dani A, Varkonyi A, Magyar T, Szasz A (2010) A retrospective study of 1180 cancer patients treated by oncothermia. Forum Hyperthermia accepted (pp. 1–11).

    Google Scholar 

  90. Szasz A, Vincze Gy (2006) Dose concept of oncological hyperthermia: Heat-equation considering the cell destruction. Journal of Cancer Research and Therapeutics 2(4):171–181

    Article  CAS  PubMed  Google Scholar 

  91. Warburg O (1996) Oxygen, The Creator of Differentiation, Biochemical Energetics. Academic Press, New York In: Warburg O (1996) The Prime Cause and Prevention of Cancer. Revised lecture at the meeting of the Nobel-Laureates on June 30 1966, Lindau, Lake Constance, Germany

    Google Scholar 

  92. van Gijn ME, Snel F, Cleutjens JP et al (2001), Overexpression of Components of the Frizzled-Dishevelled Cascade Results in Apoptotic Cell Death, Mediated by b-Catenin. Exp Cell Res 265(1):46–53

    Article  PubMed  CAS  Google Scholar 

  93. Gershing E (1999) Monitoring temperature-induced changes in tissue during hyperthermia by impedance methods. In: Riu PJ, Rosell J, Bragos R et al (eds) Electrical Bioimpedance Methods, Ann New York Acad Sci 873:13–20

    Google Scholar 

  94. Stelfox HT, Chua G, O’Rourke K et al (1998) Conflict of interests in the debate over calcium-channel antagonists. NEJM 338(2):101–106

    Article  CAS  PubMed  Google Scholar 

  95. Surveillance, Epidemiology, and End Results (SEER), National Cancer Institute. http://www.seer.cancer.gov. 2000

  96. Urano M, Douple E (eds) (1988–1994) Hyperthermia and Oncology – Vol.1. Thermal effects on cells and tissues. VSP BV Utrecht, The Netherlands (1988), Hyperthermia and Oncology – Vol.2. Biology of thermal potentiation of radiotherapy. VSP BV Utrecht, The Netherlands (1992, 1989); Hyperthermia and Oncology – Vol.3. Interstitial Hyperthermia: Physics, biology and clinical aspects, VSP BV Utrecht, The Netherlands (1992) Hyperthermia and Oncology – Vol.4. Chemopotentiation by hyperthermia VSP BV Utrecht, The Netherlands (1994)

    Google Scholar 

  97. Song CW, Lokshina A, Rhee JG et al (1984) Implication of blood-flow in hyperthermic treatment of tumors. IEEE Trans Biomed Eng 31(1):9–16

    Article  CAS  PubMed  Google Scholar 

  98. Hager ED, et al. (1999) Deep hyperthermia with radiofrequencies in patients with liver metastases from colorectal cancer. Anticancer Research 19(4C):3403–3408

    CAS  PubMed  Google Scholar 

  99. Guyton AC, Hall JE (2000) Textbook of Medical Physiology. W.B. Saunders Co., Philadelphia, London

    Google Scholar 

  100. Medical Research Council Brain Tumor Working Party: Randomized Trial of Procarbazine, Lomustine, and Vincristine in the Adjuvant treatment of High-grade Astrocytoma: A Medical Research Council Trial, J. Clin. Oncol. 19:509–518, 2001

    Google Scholar 

  101. Alba A. Brandes, Francesca Vastola, et.al.: A prospective study on glioblastoma in the elderly, Am. Cancer Society, Vol. 97:3 February 1, 2003

    Google Scholar 

  102. Wismeth C. Dudel C. Pascher C. Ramm P. Pietsch T. Hirschmann B. Reinert C. Proescholdt M. Rümmele P. Schuierer G. Bogdahn U. HauP. (2010) Transcranial electro-hyperthermia combined with alkylating chemotherapy in patients with relapsed high-grade gliomas – Phase I clinical results, accepted Journal of Neuro-Oncology

    Google Scholar 

  103. All the values have frequency dispersion. We consider only the values at 13.56 MHz. The muscular data depend on the orientation (parallel or perpendicular to the field) of the fibres

    Google Scholar 

  104. McRae DA, Esrick MA, Mueller SC (1997) Non-invasive, in-vivo electrical impedance of EMT-6 tumors during hyperthermia: correlation with morphology and tumor-growth delay. Int J Hyperthermia 13(1):1–20

    Article  CAS  PubMed  Google Scholar 

  105. Brown JH, West GB (eds) (2000) Scaling in Biology. Oxford University Press, Oxford

    Google Scholar 

  106. Andocs G, Renner H, Balogh L et al (2009) Strong synergy of heat and modulated electromagnetic field in tumor cell killing, Study of HT29 xenograft tumors in a nude mice model. Strahlentherapie und Onkologie 185:120–126

    Article  PubMed  Google Scholar 

  107. Liu LM, Cleary SF (1995) Absorbed Energy Distribution From Radio frequency Electromagnetic Radiation in- a Mammalian Cell Model: Effect of Membrane-Bound Water. Bioelectromagnetics 16(3):160–171

    Article  CAS  PubMed  Google Scholar 

  108. Dickson JA, Calderwood SK (1980) Temperature range and selective sensitivity of tumors by hyperthermia: a critical review. Ann New York Acad Sci 335:180–205

    Article  CAS  Google Scholar 

  109. Fiorentini G, Giovanis P, Rossi S, Dentico P, Paola R, Turrisi G, Bernardeschi P: A phase II clinical study on relapsed malignant gliomas treated with electro-hyperthermia, In Vivo. 20:721–724, 2006

    PubMed  Google Scholar 

  110. Hager ED et al (2003) The treatment of patients with high-grade malignant gliomas with RF-hyperthermia. Proc ASCO 22:118, #47;Proc Am Soc Clin Oncol 22: 2003

    Google Scholar 

  111. Szasz A., Sahinbas H., Dani A.: Electro- hyperthermia for anaplastic astrocytoma and glioblastoma multiforme ICACT 2004, Paris, 9–12. February, 2004

    Google Scholar 

  112. Leckband D (2008) Beyond structure: mechanism and dynamics of intercellular adhesion. Biochem Soc Trans 36(Pt 2):213–220

    Article  CAS  PubMed  Google Scholar 

  113. Matay G, Zombory L (2000) Physiological effects of radiofrequency radiation and their application for medical biology. Muegyetemi Kiado, Budapest, p 80

    Google Scholar 

  114. Feyerabend T, Wioedeman GJ, Jaeger B et al (2001) Local hyperthermia, radiation, and chemotherapy in recurrent breast cancer is feasible and effective except for inflammatory disease, Int. J. Radiation Oncology Biol. Phys. 49:1317–1325

    Article  CAS  Google Scholar 

  115. Szendro P, Vincze G, Szasz A (2001) Bio-response on white-noise excitation. Electromagnetic Biology and Medicine 20(2):215–229

    Article  CAS  Google Scholar 

  116. Szasz A et al (2005) Retrospective analysis of 1180 oncological patients treated by electro-hyperthermia in Hungary. Jahreskongress der Deutschen Gesellschaft für Radioonkologie, DEGRO 11, Karlsruhe, 26–29 May 2005

    Google Scholar 

  117. Gabriel S, Lau RW, Gabriel C: The dielectric properties of biological tissue: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. 41:2251–2269 (1996)

    Article  CAS  PubMed  Google Scholar 

  118. Sahinbas H (2004) EHT bei Kindern mit Hirntumoren und nicht-invasive Messverfahren am beispiel von Hirntumoren. Symposium Hyperthermie, Cologne, 15–16 October 2004

    Google Scholar 

  119. Kongsgaard UE, Werner MU (2009) Evidence-Based Medicine Works Best When There is Evidence: Challenges in Palliative Medicine When Randomized Controlled Trials are not Possible. Journal of pain and Palliative Care Pharmacotherapy 23:48–50

    Article  PubMed  Google Scholar 

  120. Dani A, Varkonyi A, Magyar T, Szász A (2008) Clinical study for advanced pancreas cancer treated by oncothermia. Forum Hyperthermie, 1:13–20

    Google Scholar 

  121. Damadian R (1971) Tumor detection by nuclear magnetic resonance. Science 171(3976):1151–1153

    Article  CAS  PubMed  Google Scholar 

  122. Szasz A, Vincze Gy (2007) Hyperthermia, a modality in the wings. Journal of Cancer Research and Therapeutics 3(1):56–66

    Article  CAS  PubMed  Google Scholar 

  123. Cloude S (1995) An introduction to electromagnetic wave propagation & antennas. UCL Press Ltd, Univ. College London

    Google Scholar 

  124. Jackson JD (1999) Classical Electrodynamics. John Wiley & Sons Inc, New York

    Google Scholar 

  125. Oleson JR. Calderwood SK. Coughlin CT. Dewhirst MW. Gerweck LE. Gibbs FA. Jr. Kapp DS. (1988) Biological and Clinical Aspects of Hyperthermia in Cancer Therapy. American Journal of Clinical Oncology 11:368–380

    Article  CAS  PubMed  Google Scholar 

  126. Panagiotou P, Sosada M, Schering S, Kirchner H. (2005) Irinotecan plus Capecitabine with regional electrohyperthermia of the liver as second line therapy in patients with metastatic colorectal cancer; ESHO, Jun.8–11, Graz, Austria,

    Google Scholar 

  127. Shinitzky M. (1984). Membrane fluidity in malignancy: adversative and recuperative. Biochem Biophys Acta 738:251–261

    CAS  PubMed  Google Scholar 

  128. Roazzi P, Capocaccia R, Santaquilani M, Carrani E; (2003) EUROCARE Working Group; Electronic availability of EUROCARE-3 data: a tool for further analysis, Ann Oncol.;14 Suppl 5:v150–v155.

    Article  PubMed  Google Scholar 

  129. Sahinbas H, Baier JE, Groenemeyer DHW, Boecher E, Szasz A. (2006) Retrospective clinical study for advanced brain-gliomas by adjuvant oncothermia (electro-hyperthermia) treatment. http://www.gimt-online.de/uploads/media/Therapieergebnisse_Giloma_Studie_01.pdf

  130. Adair RK (2003) Biophysical limits on athermal effects of RF and microwave radiation. Bioelectromagnetics 24(1):39–48

    Article  PubMed  Google Scholar 

  131. Henle KJ, RotiRoti JL (1988) Response of cultured mammalian cells to hyperthermia. In: Urano M, Douple E (eds) Hyperthermia and Oncology, Vol. 1, VSP, Utrecht, Tokyo, pp 57–82

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andras Szasz .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Szasz, A., Szasz, N., Szasz, O. (2010). Oncothermia – A New Kind of Oncologic Hyperthermia. In: Oncothermia: Principles and Practices. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9498-8_4

Download citation

Publish with us

Policies and ethics