Skip to main content

Membrane Fusions During Mammalian Fertilization

  • Chapter
Cell Fusion in Health and Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 713))

Abstract

Successful completion of fertilization in mammals requires three different types of membrane fusion events. Firstly, the sperm cell will need to secrete its acrosome contents (acrosome exocytosis; also known as the acrosome reaction); this allows the sperm to penetrate the extracellular matrix of the oocyte (zona pellucida) and to reach the oocyte plasma membrane, the site of fertilization. Next the sperm cell will bind and fuse with the oocyte plasma membrane (also known as the oolemma), which is a different type of fusion in which two different cells fuse together. Finally, the fertilized oocyte needs to prevent polyspermic fertilization, or fertilization by more than one sperm. To this end, the oocyte secretes the contents of cortical granules by exocytotic fusions of these vesicles with the oocyte plasma membrane over the entire oocyte cell surface (also known as the cortical reaction or cortical granule exocytosis). The secreted cortical contents modify the zona pellucida, converting it to a state that is unreceptive to sperm, constituting a block to polyspermy. In addition, there is a block at the level of the oolemma (also known as the membrane block to polyspermy).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wassarman PM, Litscher ES (2008) Mammalian fertilization is dependent on multiple membrane fusion events. Methods Mol Biol 475:99–113

    PubMed  Google Scholar 

  2. Florman HM, Jungnickel MK, Sutton KA (2008) Regulating the acrosome reaction. Int J Dev Biol 52:503–510

    PubMed  CAS  Google Scholar 

  3. Chiu PC, Wong BS, Chung MK et al (2008) Effects of native human zona pellucida glycoproteins 3 and 4 on acrosome reaction and zona pellucida binding of human spermatozoa. Biol Reprod 79:869–877

    PubMed  CAS  Google Scholar 

  4. Buffone MG, Rodriguez-Miranda E, Storey BT et al (2009) Acrosomal exocytosis of mouse sperm progresses in a consistent direction in response to zona pellucida. J Cell Physiol 220:611–620

    PubMed  CAS  Google Scholar 

  5. Gupta SK, Bansal P, Ganguly A et al (2009) Human zona pellucida glycoproteins: functional relevance during fertilization. J Reprod Immunol 83:50–55

    PubMed  CAS  Google Scholar 

  6. Ganguly A, Bukovsky A, Sharma RK et al (2010) In humans, zona pellucida glycoprotein-1 binds to spermatozoa and induces acrosomal exocytosis. Hum Reprod 25:1643–1656

    PubMed  CAS  Google Scholar 

  7. Gadella BM (2010) Interaction of sperm with the zona pellucida. Soc Reprod Fertil 67:267–287

    Google Scholar 

  8. Zanetti N, Mayorga LS (2009) Acrosomal swelling and membrane docking are required for hybrid vesicle formation during the human sperm acrosome reaction. Biol Reprod 81:396–405

    PubMed  CAS  Google Scholar 

  9. Tsai PS, Garcia-Gil N, van Haeften T et al (2010) How pig sperm prepares to fertilize: stable acrosome docking to the plasma membrane. PLoS One 18:e11204

    Google Scholar 

  10. Kim KS, Gerton GL (2003) Differential release of soluble and matrix components: evidence for intermediate states of secretion during spontaneous acrosomal exocytosis in mouse sperm. Dev Biol 264:141–152

    PubMed  CAS  Google Scholar 

  11. Kim E, Yamashita M, Kimura M et al (2008) Sperm penetration through cumulus mass and zona pellucida. Int J Dev Biol 52:677–682

    PubMed  CAS  Google Scholar 

  12. Buffone MG, Foster JA, Gerton GL (2008) The role of the acrosomal matrix in fertilization. Int J Dev Biol 52:511–522

    PubMed  Google Scholar 

  13. Suarez SS (2008) Regulation of sperm storage and movement in the mammalian oviduct. Int J Dev Biol 52:455–462

    PubMed  Google Scholar 

  14. Primakoff P, Myles DG (2007) Cell-cell membrane fusion during mammalian fertilization. FEBS Lett 581:2174–2180

    PubMed  CAS  Google Scholar 

  15. Vjugina U, Evans JP (2008) New insights into the molecular basis of mammalian sperm-egg membrane interactions. Front Biosci 13:462–476

    PubMed  CAS  Google Scholar 

  16. Vigil P (1989) Gamete membrane fusion in hamster spermatozoa with reacted equatorial segment. Gamete Res 23:203–213

    PubMed  CAS  Google Scholar 

  17. Gardner AJ, Williams CJ, Evans JP (2007) Establishment of the mammalian membrane block to polyspermy: Evidence for calcium-dependent and -independent regulation. Reproduction 133:383–393

    PubMed  CAS  Google Scholar 

  18. McAvey BA, Wortzman GB, Williams CJ et al (2002) Involvement of calcium signaling and the actin cytoskeleton in the membrane block to polyspermy in mouse eggs. Biol Reprod 67:1342–1352

    PubMed  CAS  Google Scholar 

  19. Gardner AJ, Evans JP (2006) Mammalian membrane block to polyspermy: new insights into how mammalian eggs prevent fertilisation by multiple sperm. Reprod Fertil Dev 18:53–61

    PubMed  CAS  Google Scholar 

  20. Bleil JD, Wassarman PM (1983) Sperm-egg interactions in the mouse: sequence of events and induction of the acrosome reaction by a zona pellucida glycoprotein. Dev Biol 95:317–324

    PubMed  CAS  Google Scholar 

  21. Schroeder AC, Schultz RM, Kopf GS et al (1990) Fetuin inhibits zona pellucida hardening and conversion of ZP2 to ZP2f during spontaneous mouse oocyte maturation in vitro in the absence of serum. Biol Reprod 43:891–897

    PubMed  CAS  Google Scholar 

  22. Kalab P, Kopf GS, Schultz RM (1991) Modifications of the mouse zona pellucida during oocyte maturation and egg activation: effects of newborn calf serum and fetuin. Biol Reprod 45:783–787

    PubMed  CAS  Google Scholar 

  23. Gahlay G, Gauthier L, Baibakov B et al (2010) Gamete recognition in mice depends on the cleavage status of an egg’s zona pellucida protein. Science 329:216–219

    PubMed  CAS  Google Scholar 

  24. Coy P, Gadea J, Romar R et al (2002) Effect of in vitrofertilization medium on the acrosome reaction, cortical reaction, zona pellucida hardening and in vitro development in pigs. Reproduction 124:279–288

    PubMed  CAS  Google Scholar 

  25. Coy P, Avilés M (2010) What controls polyspermy in mammals, the oviduct or the oocyte? Biol Rev Camb Philos Soc 85:593–605

    PubMed  Google Scholar 

  26. Papi M, Brunelli R, Sylla L et al (2010) Mechanical properties of zona pellucida hardening. Eur Biophys J 39:987–92

    PubMed  Google Scholar 

  27. Wassarman PM, Litscher ES (2009) The multifunctional zona pellucida and mammalian fertilization. J Reprod Immunol 83:45–49

    PubMed  CAS  Google Scholar 

  28. Canovas S, Romar R, Grullon LA et al (2009) Pre-fertilization zona pellucida hardening by different cross-linkers affects IVF in pigs and cattle and improves embryo production in pigs. Reproduction 137:803–812

    PubMed  CAS  Google Scholar 

  29. Avilés M, Gutiérrez-Adán A, Coy P (2010) Oviductal secretions: Will they be key factors for the future ARTs? Mol Hum Reprod 16:896–906

    Google Scholar 

  30. Tsai PS, Gadella BM (2009) Molecular kinetics of proteins at the surface of porcine sperm before and during fertilization. Soc Reprod Fertil Suppl 66:23–36

    PubMed  CAS  Google Scholar 

  31. Boerke A, Dieleman SJ, Gadella BM (2007) A possible role for sperm RNA in early embryo development. Theriogenology 68:S147–S155

    PubMed  CAS  Google Scholar 

  32. Cho C, Ge H, Branciforte D et al (2000) Analysis of mouse fertilin in wild-type and fertilin beta(-/-) sperm: evidence for C-terminal modification, alpha/beta dimerization, and lack of essential role of fertilin alpha in sperm-egg fusion. Dev Biol 222:289–295

    PubMed  CAS  Google Scholar 

  33. Ghosh I, Datta K (2003)Sperm surface hyaluronan binding protein (HABP1) interacts with zona pellucida of water buffalo (Bubalus bubalis) through its clustered mannose residues. Mol Reprod Dev 64:235–244

    PubMed  CAS  Google Scholar 

  34. Rodeheffer C, Shur BD (2004) Sperm from beta1,4-galactosyltransferase I-null mice exhibit precocious capacitation. Development 131:491–501

    PubMed  CAS  Google Scholar 

  35. van Gestel RA, Brewis IA, Ashton PR et al (2007) Multiple proteins present in purified porcine sperm apical plasma membranes interact with the zona pellucida of the oocyte. Mol Hum Reprod 13:445–454

    PubMed  Google Scholar 

  36. Montfort L, Frenette G, Sullivan R (2002) Sperm-zona pellucida interaction involves a carbonyl reductase activity in the hamster. Mol Reprod Dev 61:113–119

    PubMed  CAS  Google Scholar 

  37. Shur BD, Rodeheffer C, Ensslin MA et al (2006) Identification of novel gamete receptors that mediate sperm adhesion to the egg coat. Mol Cell Endocrinol 250:137–148

    PubMed  CAS  Google Scholar 

  38. Busso D, Cohen DJ, Maldera JA et al (2007) A novel function for CRISP1 in rodent fertilization: involvement in sperm-zona pellucida interaction. Biol Reprod 77:848–854

    PubMed  CAS  Google Scholar 

  39. Copland SD, Murphy AA, Shur BD (2009) The mouse gamete adhesin, SED1, is expressed on the surface of acrosome-intact human sperm. Fertil Steril 92:2014–2019

    PubMed  CAS  Google Scholar 

  40. Marín-Briggiler CI, González-Echeverría MF, Munuce MJ et al (2010) Glucose-regulated protein 78 (Grp78/BiP) is secreted by human oviduct epithelial cells and the recombinant protein modulates sperm-zona pellucida binding. Fertil Steril 93:1574–1584

    PubMed  Google Scholar 

  41. Ensslin M, Calvete JJ, Thole HH et al (1995) Identification by affinity chromatography of boar sperm membrane-associated proteins bound to immobilized porcine zona pellucida. Mapping of the phosphorylethanolamine-binding region of spermadhesin AWN. Biol Chem Hoppe Seyler 376:733–738

    PubMed  CAS  Google Scholar 

  42. Caballero I, Vázquez JM, Rodríguez-Martínez H et al (2005) Influence of seminal plasma PSP-I/PSP-II spermadhesin on pig gamete interaction. Zygote 13:11–16

    PubMed  CAS  Google Scholar 

  43. Nixon B, MacIntyre DA, Mitchell LA et al (2006) The identification of mouse sperm-surface-associated proteins and characterization of their ability to act as decapacitation factors. Biol Reprod 74:275–287

    PubMed  CAS  Google Scholar 

  44. Manjunath P, Bergeron A, Lefebvre J et al (2007) Seminal plasma proteins: functions and interaction with protective agents during semen preservation. Soc Reprod Fertil Suppl 65:217–228

    PubMed  CAS  Google Scholar 

  45. Vadnais ML, Roberts KP 2010 Seminal plasma proteins inhibit in vitro- and cooling-induced capacitation in boar spermatozoa. Reprod Fertil Dev 22:893–900

    PubMed  CAS  Google Scholar 

  46. Gadella BM, Tsai PS, Boerke A et al (2008) Sperm head membrane reorganisation during capacitation. Int J Dev Biol 52:473–480

    PubMed  CAS  Google Scholar 

  47. Gadella BM, Visconti PE (2006) Regulation of capacitation. In: de Jonge C, Barrett C (eds) The sperm cell, production maturation fertilization regeneration. Cambridge University Press, Cambridge

    Google Scholar 

  48. Parrish JJ, Susko-Parrish J, Winer MA et al (1988) Capacitation of bovine sperm by heparin. Biol Reprod 38:1171–1180

    PubMed  CAS  Google Scholar 

  49. Hung PH, Miller MG, Meyers SA et al (2008) Sperm mitochondrial integrity is not required for hyperactivated motility, zona binding, or acrosome reaction in the rhesus macaque. Biol Reprod 79:367–375

    PubMed  CAS  Google Scholar 

  50. Kumar V, Kota V, Shivaji S (2008) Hamster sperm capacitation: role of pyruvate dehydrogenase A and dihydrolipoamide dehydrogenase. Biol Reprod 79:190–199

    PubMed  CAS  Google Scholar 

  51. Eddy EM (2006) The spermatozoon. In: Knobil E, Neill JD (eds) Physiology of reproduction, (3rd edn). Elsevier, Amsterdam, The Netherlands

    Google Scholar 

  52. van Gestel RA, Brewis IA, Ashton PR et al (2005) Capacitation-dependent concentration of lipid rafts in the apical ridge head area of porcine sperm cells. Mol Hum Reprod 11:583–590

    PubMed  Google Scholar 

  53. Thaler CD, Thomas M, Ramalie JR (2006) Reorganization of mouse sperm lipid rafts by capacitation. Mol Reprod Dev 73:1541–1549

    PubMed  CAS  Google Scholar 

  54. Selvaraj V, Buttke DE, Asano A et al (2007) GM1 dynamics as a marker for membrane changes associated with the process of capacitation in murine and bovine spermatozoa. J Androl 28:588–599

    PubMed  CAS  Google Scholar 

  55. Wassarman PM (1988) Zona pellucida glycoproteins. Ann Rev Biochem 57:415–442

    PubMed  CAS  Google Scholar 

  56. Benoff S, Chu CC, Marmar JL et al (2007) Voltage-dependent calcium channels in mammalian spermatozoa revisited. Front Biosci 12:1420–1449

    PubMed  CAS  Google Scholar 

  57. Ramalho-Santos J, Moreno RD, Sutovsky P et al (2000) SNAREs in mammalian sperm: possible implications for fertilization. Dev Biol 223:54–69

    PubMed  CAS  Google Scholar 

  58. De Blas GA, Roggero CM, Tomes CN et al (2005) Dynamics of SNARE assembly and disassembly during sperm acrosomal exocytosis. PLoS Biol 3:e323

    PubMed  Google Scholar 

  59. Roggero CM, De Blas GA, Dai H et al (2007) Complexin/synaptotagmin interplay controls acrosomal exocytosis. J Biol Chem 282:26335–26343

    PubMed  CAS  Google Scholar 

  60. Zhao L, Burkin HR, Shi X et al (2007) Complexin I is required for mammalian sperm acrosomal exocytosis. Dev Biol 309:236–244

    PubMed  CAS  Google Scholar 

  61. Zhao L, Shi X, Li L, Miller DJ (2007) Dynamin 2 associates with complexins and is found in the acrosomal region of mammalian sperm. Mol Reprod Dev 74:750–757

    PubMed  CAS  Google Scholar 

  62. Lopez CI, Belmonte SA, De Blas GA et al (2007) Membrane-permeant Rab3A triggers acrosomal exocytosis in living human sperm. FASEB J 21:4121–4130

    PubMed  CAS  Google Scholar 

  63. Castillo Bennett J, Roggero CM, Mancifesta FE et al (2010) Calcineurin-mediated dephosphorylation of synaptotagmin VI is necessary for acrosomal exocytosis. J Biol Chem 285:26269–26278

    PubMed  CAS  Google Scholar 

  64. Ackermann F, Zitranski N, Heydecke D et al (2008) The Multi-PDZ domain protein MUPP1 as a lipid raft-associated scaffolding protein controlling the acrosome reaction in mammalian spermatozoa. J Cell Physiol 214:757–768

    PubMed  CAS  Google Scholar 

  65. Ackermann F, Zitranski N, Borth H et al (2009) CaMKIIalpha interacts with multi-PDZ domain protein MUPP1 in spermatozoa and prevents spontaneous acrosomal exocytosis. J Cell Sci 122:4547–4557

    PubMed  Google Scholar 

  66. Dunbar BS, Dudkiewicz AB, Bundman DS (1985) Proteolysis of specific porcine zona pellucida glycoproteins by boar acrosin. Biol Reprod 32:619–630

    PubMed  CAS  Google Scholar 

  67. Bleil JD, Greve JM, Wassarman PM (1988) Identification of a secondary sperm receptor in the mouse egg zona pellucida: role in maintenance of binding of acrosome-reacted sperm to eggs. Dev Biol 128:376–385

    PubMed  CAS  Google Scholar 

  68. Howes E, Pascall JC, Engel W, Jones R (2001) Interactions between mouse ZP2 glycoprotein and proacrosin; a mechanism for secondary binding of sperm to the zona pellucida during fertilization. J Cell Sci 114:4127–4136

    PubMed  CAS  Google Scholar 

  69. Miller DJ, Gong X, Shur BD (1993) Sperm require beta-N-acetylglucosaminidase to penetrate through the egg zona pellucida. Development 118:1279–1289

    PubMed  CAS  Google Scholar 

  70. Hao Z, Wolkowicz MJ, Shetty J et al (2002) SAMP32, a testis-specific, isoantigenic sperm acrosomal membrane-associated protein. Biol Reprod 66:735–744

    PubMed  CAS  Google Scholar 

  71. Bi M, Hickox JR, Winfrey VP et al (2003) Processing, localization and binding activity of zonadhesin suggest a function in sperm adhesion to the zona pellucida during exocytosis of the acrosome. Biochem J 375:477–488

    PubMed  CAS  Google Scholar 

  72. Shetty J, Wolkowicz MJ, Digilio LC et al (2003) SAMP14, a novel, acrosomal membrane-associated, glycosylphosphatidylinositol-anchored member of the Ly-6/urokinase-type plasminogen activator receptor superfamily with a role in sperm-egg interaction. J Biol Chem 278:30506–30515

    PubMed  CAS  Google Scholar 

  73. Hayashi M, Yonezawa N, Katsumata T et al (2004) Activity of exoglycosidases in ejaculated spermatozoa of boar and bull. Zygote12:105–109

    PubMed  CAS  Google Scholar 

  74. Jagadish N, Rana R, Selvi R et al (2005) Characterization of a novel human sperm-associated antigen 9 (SPAG9) having structural homology with c-Jun N-terminal kinase-interacting protein. Biochem J 389:73–82

    PubMed  CAS  Google Scholar 

  75. Yu Y, Xu W, Yi YJ et al (2006) The extracellular protein coat of the inner acrosomal membrane is involved in zona pellucida binding and penetration during fertilization: characterization of its most prominent polypeptide (IAM38) Dev Bio 290:32–43

    CAS  Google Scholar 

  76. Ziyyat A, Rubinstein E, Monier-Gavelle F et al (2006) CD9 controls the formation of clusters that contain tetraspanins and the integrin a6b1, which are involved in human and mouse gamete fusion. J Cell Sci 119:416–424

    PubMed  CAS  Google Scholar 

  77. Fujihara Y, Murakami M, Inoue N et al (2010) Sperm equatorial segment protein 1, SPESP1, is required for fully fertile sperm in the mouse. J Cell Si 123:531–1536

    Google Scholar 

  78. Kaji K, Oda S, Shikano T et al (2000) The gamete fusion process is defective in eggs of CD9-deficient mice. Nat Genet 24:279–282

    PubMed  CAS  Google Scholar 

  79. Le Naour F, Rubinstein E, Jasmin C et al (2000) Severely reduced female fertility in CD9-deficient mice. Science 287:319–321

    PubMed  Google Scholar 

  80. Maleszewski M, Kimura Y, Yanagimachi R (1996) Sperm membrane incorporation into oolemma contributes to the oolemma block to sperm penetration: evidence based on intracytoplasmic sperm injection experiments in the mouse. Mol Reprod Dev 44:256–259

    PubMed  CAS  Google Scholar 

  81. Okabe M, Yagasaki M, Oda H et al (1988) Effect of a monoclonal anti-mouse sperm antibody (OBF13) on the interaction of mouse sperm with zona-free mouse and hamster eggs. J Reprod Immunol 13:211–219

    PubMed  CAS  Google Scholar 

  82. Inoue N, Kasahara T, Ikawa M et al (2010) Identification and disruption of sperm-specific angiotensin converting enzyme-3 (ACE3) in mouse. PLoS ONE 5: e10301

    PubMed  Google Scholar 

  83. Yáñez-Mó M, Barreiro O, Gordon-Alonso M et al (2009) Tetraspanin-enriched microdomains; a functional unit in cell plasma membranes. Trends Cell Biol 19:434–446

    PubMed  Google Scholar 

  84. Rubinstein E, Ziyyat A, Prenant M et al (2006) Reduced fertility of female mice lacking CD81. Dev Biol 290:351–358

    PubMed  CAS  Google Scholar 

  85. Tiede A, Nischan C, Schubert J et al (2000) Characterisation of the enzymatic complex for the first step in glycosylphosphatidylinositol biosynthesis. Int J Biochem Cell Biol 32:339–350

    PubMed  CAS  Google Scholar 

  86. Alfieri JA, Martin AD, Takeda J et al (2003) Infertility in female mice with an oocyte-specific knockout of GPI-anchored proteins. J Cell Sci 116:2149–2155

    PubMed  CAS  Google Scholar 

  87. Ellerman DA, Pei J, Gupta S et al (2009) Izumo is part of a multiprotein family whose members form large complexes on mammalian sperm. Mol Reprod Dev 76:1188–1199

    PubMed  CAS  Google Scholar 

  88. Inoue N, Ikawa M, Isotani A et al (2005) The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs. Nature 434:234–238

    PubMed  CAS  Google Scholar 

  89. Han C, Choi E, Park I et al (2009) Comprehensive analysis of reproductive ADAMs: Relationship of ADAM4 and ADAM6 with an ADAM complex required for fertilization in mice. Biol Reprod 80:1001–1008

    PubMed  CAS  Google Scholar 

  90. Stein KK, Go JC, Primakoff P et al (2005) Defects in secretory pathway trafficking during sperm development in Adam2 knockout mice. Biol Reprod 73:1032–1038

    PubMed  CAS  Google Scholar 

  91. Sosnik J, Miranda PV, Spiridonov NA et al (2009) Tssk6 is required for Izumo relocalization and gamete fusion in the mouse. J Cell Sci 122:2741–2749

    PubMed  CAS  Google Scholar 

  92. Lewis WH, Wright ES (1935) On the early development of the mouse egg. Carnegie Inst Contrib Embryol 25:113–143

    Google Scholar 

  93. Odor DL, Blandau RJ (1949) The frequency of supernumerary sperm in rat ova. Anat Rec 104:1–11

    PubMed  CAS  Google Scholar 

  94. Austin CR (1961) The mammalian egg. Charles C. Thomas, Springfield, IL

    Google Scholar 

  95. Hunter RH (1990) Fertilization of pig eggs in vivo and in vitro. J Reprod Fertil Suppl 40:211–226

    PubMed  CAS  Google Scholar 

  96. Sengoku K, Tamate K, Horikawa M et al (1995) Plasma membrane block to polyspermy in human oocytes and preimplantation embryos. J Reprod Fertil 105:85–90

    PubMed  CAS  Google Scholar 

  97. Hunter RH, Vajta G, Hyttel P (1998) Long-term stability of the bovine block to polyspermy. J Exp Zool 280:182–188

    PubMed  CAS  Google Scholar 

  98. Wolf DE, Edidin M, Handyside AH (1981) Changes in the organization of the mouse egg plasma membrane upon fertilization and first cleavage: Indications from the lateral diffusion rates of fluorescent lipid analogues. Dev Biol 85:195–198

    PubMed  CAS  Google Scholar 

  99. Wolf DE, Ziomek CA (1983) Regionalization and lateral diffusion of membrane proteins in unfertilized and fertilized mouse eggs. J Cell Biol 96:1786–1790

    PubMed  CAS  Google Scholar 

  100. Larson SM, Lee HJ, Hung PH et al (2010) Cortical mechanics and meiosis II completion in mammalian oocytes are mediated by myosin-II and Ezrin-Radixin-Moesin (ERM) proteins. Mol Biol Cell 21:3182–3192

    Google Scholar 

  101. Wolf DP, Nicosia SV, Hamada M (1979) Premature cortical granule loss does not prevent sperm penetration of mouse eggs. Dev Biol 71:22–32

    PubMed  CAS  Google Scholar 

  102. Horvath PM, Kellom T, Caulfield J et al (1993) Mechanistic studies of the plasma membrane block to polyspermy in mouse eggs. Mol Reprod Dev 34:65–72

    PubMed  CAS  Google Scholar 

  103. Maleszewski M, Kimura Y, Yanagimachi R (1996) Sperm membrane incorporation into oolemma contributes to the oolemma block to sperm penetration: evidence based on intracytoplasmic sperm injection experiments in the mouse. Mol Reprod Dev 44:256–259

    PubMed  CAS  Google Scholar 

  104. Wortzman-Show GB, Kurokawa M et al (2007) Calcium and sperm components in the establishment of the membrane block to polyspermy: studies of ICSI and activation with sperm factor. Mol Human Reprod 13:557–565

    CAS  Google Scholar 

  105. Dale B, Wilding M, Coppola G, Tosti E (2010) How do spermatozoa activate oocytes? Reprod Biomed Online 21:1–3

    PubMed  Google Scholar 

  106. Hoodbhoy T, Talbot P (2001) Characterization, fate, and function of hamster cortical granule components. Mol Reprod Dev 58:223–235

    PubMed  CAS  Google Scholar 

  107. Tsai PS, van Haeften T, Gadella BM (2010) Preparation of the cortical reaction: maturation depdent migration of SNARE proteins, clathrin and complexin to the porcine oocyte’s surface blocks membrane traffic until fertilization. Biol Reprod doi: 10.1095/biolreprod.110.085647

    Google Scholar 

  108. Gwatkin RB, Williams DT, Hartmann JF et al (1973) The zona reaction of hamster and mouse eggs: production in vitro by a trypsin-like protease from cortical granules. J Reprod Fertil 32:259–265

    PubMed  CAS  Google Scholar 

  109. Wolf DP, Hamada M (1977) Induction of zonal and egg plasma membrane blocks to sperm penetration in mouse eggs with cortical granule exudate. Biol Reprod 17:350–354

    PubMed  CAS  Google Scholar 

  110. Ducibella T (1996) The cortical reaction and development of activation competence in mammalian oocytes. Hum Reprod Update 2:29–42

    PubMed  CAS  Google Scholar 

  111. Hoodbhoy T, Talbot P (1994) Mammalian cortical granules: contents, fate, and function. Mol Reprod Dev 39:439–448

    PubMed  CAS  Google Scholar 

  112. Izadyar F, Hage WJ, Colenbrander B et al (1988) The promotory effect of growth hormone on the developmental competence of in vitro matured bovine oocytes is due to improved cytoplasmic maturation. Mol Reprod Dev 49:444–453

    Google Scholar 

  113. Abbott AL, Fissore RA, Ducibella T (2001) Identification of a translocation deficiency in cortical granule secretion in preovulatory mouse oocytes. Biol Reprod 65:1640–1647

    PubMed  CAS  Google Scholar 

  114. Tae JC, Kim EY, Jeon K et al (2008) A MAPK pathway is involved in the control of cortical granule reaction and mitosis during bovine fertilization. Mol Reprod Dev 75:1300–1306

    PubMed  CAS  Google Scholar 

  115. Sun QY (2003) Cellular and molecular mechanisms leading to cortical reaction and polyspermy block in mammalian eggs. Microsc Res Tech 61:342–348

    PubMed  CAS  Google Scholar 

  116. Florman HM, Ducibella T (2006) Fertilization in mammals. In: Knobil E, Neill JD (eds) Physiology of reproduction, 3rd edn. Elsevier, Amsterdam, The Netherlands

    Google Scholar 

  117. Zarelli VE, Ruete MC, Roggero CM et al (2009) PTP1B dephosphorylates N-ethylmaleimide-sensitive factor and elicits SNARE complex disassembly during human sperm exocytosis. J Biol Chem 284:10491–10503

    PubMed  CAS  Google Scholar 

  118. Miyado K, Yamada G, Yamada S et al (2000) Requirement of CD9 on the egg plasma membrane for fertilization. Science 287:321–324

    PubMed  CAS  Google Scholar 

  119. He ZY, Brakebusch C, Fassler R et al (2003) None of the integrins known to be present on the mouse egg or to be ADAM receptors are essential for sperm–egg binding and fusion. Dev Biol 254:226–237

    PubMed  CAS  Google Scholar 

  120. Miller BJ, Georges-Labouesse E, Primakoff P et al (2000) Normal fertilization occurs with eggs lacking the integrin alpha6beta1 and is CD9-dependent. J Cell Biol 149:1289–1295

    PubMed  CAS  Google Scholar 

  121. Baessler K, Lee Y, Sampson N (2009) Beta1 integrin is an adhesion protein for sperm binding to eggs. ACS Chem Biol 4:357–366

    PubMed  CAS  Google Scholar 

  122. Evans JP (2009) Egg integrins: back in the game of mammalian fertilization. ACS Chem Biol 4:321–323

    PubMed  CAS  Google Scholar 

  123. Vjugina U, Zhu X, Oh E et al (2009) Reduction of mouse egg surface integrin alpha9 subunit (ITGA9) reduces the egg’s ability to support sperm-egg binding and fusion. Biol Reprod 80:833–841

    PubMed  CAS  Google Scholar 

  124. Eto K, Huet C, Tarui T et al (2002) Functional classification of ADAMs based on a conserved motif for binding to integrin alpha9beta1: implications for sperm-egg binding and other cell interactions. J Biol Chem 277:17804–17810

    PubMed  CAS  Google Scholar 

  125. Inoue N, Ikawa M, Isotani A et al (2005) The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs. Nature 434:234–238

    PubMed  CAS  Google Scholar 

  126. Bigler D, Takahashi Y, Chen MS et al (2000) Sequence-specific interaction between the disintegrin domain of mouse ADAM2 (fertilin b) and murine eggs: Role of the a6 integrin subunit. J Biol Chem 275:11576–11584

    PubMed  CAS  Google Scholar 

  127. Takahashi Y, Bigler D, Ito Y et al (2001) Sequence-specific interaction between the disintegrin domain of mouse ADAM3 and murine eggs: Role of the beta1 integrin-associated proteins CD9, CD81, and CD98. Mol Biol Cell 12:809–820

    PubMed  CAS  Google Scholar 

  128. Zhu X, Bansal NP, Evans JP (2000) Identification of key functional amino acids of the mouse fertilin beta (ADAM2) disintegrin loop for cell-cell adhesion during fertilization. J Biol Chem 275:7677–7683

    PubMed  CAS  Google Scholar 

  129. Cuasnicu PS, Conesa D, Rochwerger L (1990) Potential contraceptive use of an epididymal protein that participates in fertilization. In: Alexander NJ, Griffin D, Speiler JM, Waites GMH (eds) Gamete Interaction: Prospects for Immunocontraception. Wiley-Liss, New York, NY, pp. 143–153

    Google Scholar 

  130. Cuasnicu, PS, Gonzalez-Echeverria MF, Piazza AD et al (1984) Antibody against epididymal glycoprotein blocks fertilizing ability in rats. J Reprod Fert 72:467–471

    CAS  Google Scholar 

  131. Da Ros VG, Maldera JA, Willis WD et al (2008) Impaired sperm fertilizing ability in mice lacking Cysteine-RIch Secretory Protein 1 (CRISP1). Dev Biol 320:12–8

    PubMed  Google Scholar 

  132. Wolkowicz MJ, Shetty J, Westbrook A (2003) Equatorial segment protein defines a discrete acrosomal subcompartment persisting throughout acrosomeal biogenesis. Biol Reprod 69:735–745

    PubMed  CAS  Google Scholar 

  133. Toshimori K, Saxena DK, Tanii I et al (1998) An MN9 antigenic molecule, equatorin, is required for successful sperm-oocyte fusion in mice. Biol Reprod 59:22–29

    PubMed  CAS  Google Scholar 

  134. Yamatoya K, Yoshida K, Ito C et al (2009) Equatorin: identification and characterization of the epitope of the MN9 antibody in mouse. Biol Reprod 81:889–897

    PubMed  CAS  Google Scholar 

  135. Herrero MB, Mandal A, Digilio LC et al (2005) Mouse SLLP1, a sperm lysozyme-like protein involved in sperm-egg binding and fertilization. Dev Biol 284:126–42

    PubMed  CAS  Google Scholar 

  136. Mandal A, Klotz KL, Shetty J et al (2003) SLLP1, A unique, intra-acrosomal, non-bacteriolytic, c lysozyme-like protein of human spermatozoa. Biol Reprod 68:1525–1537

    PubMed  CAS  Google Scholar 

  137. Shetty J, Wolkowicz MJ, Digilio LC et al (2003) SAMP14, a novel, acrosomal membrane-associated, glycosylphosphatidylinositol-anchored member of the Ly-6/urokinase-type plasminogen activator receptor superfamily with a role in sperm-egg interaction. J Biol Chem 278:30506–30515

    PubMed  CAS  Google Scholar 

  138. Correa LM, Cho C, Myles DG et al (2000) A role for a TIMP-3-sensitive Zn2+-dependent metalloprotease in mammalian gamete membrane fusion. Dev Biol 225:124–134

    PubMed  CAS  Google Scholar 

  139. Ellerman DA, Myles DG, Primakoff P (2006) A role for sperm surface protein disulfide isomerase activity in gamete fusion: evidence for the participation of ERp57. Dev Cell 10:831–837

    PubMed  CAS  Google Scholar 

  140. Mammoto A, Masumoto N, Tahara M et al (1997) Involvement of a sperm protein sensitive to sulfhydry-depleting reagents in mouse sperm-egg fusion. J Exp Zool 278:178–188

    PubMed  CAS  Google Scholar 

  141. Wilson DW, Wilcox CA, Flynn GC (1989) A fusion protein required for vesicle-mediated transport in both mammalian cells and yeast. Nature 339:355–359

    PubMed  CAS  Google Scholar 

  142. Fenouillet E, Barbouche R, Courageot J et al (2001) The catalytic activity of protein disulfide isomerase is involved in human immunodeficiency virus envelope-mediated membrane fusion after CD4 cell binding. J Infect Dis 183:744–752

    PubMed  CAS  Google Scholar 

  143. Ou W, Silver J (2006) Role of protein disulfide isomerase and other thiol-reactive proteins in HIV-1 envelope protein-mediated fusion. Virology 350:406–417

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bart M. Gadella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Gadella, B.M., Evans, J.P. (2011). Membrane Fusions During Mammalian Fertilization. In: Dittmar, T., Zänker, K.S. (eds) Cell Fusion in Health and Disease. Advances in Experimental Medicine and Biology, vol 713. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0763-4_5

Download citation

Publish with us

Policies and ethics