Skip to main content

Alendronate Liposomes for Antitumor Therapy: Activation of γδ T Cells and Inhibition of Tumor Growth

  • Chapter
  • First Online:
Nano-Biotechnology for Biomedical and Diagnostic Research

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 733))

Abstract

Circulating γδ T cells are cytotoxic lymphocytes that are unique to primates. Recent ­studies have shown that amino-bisphosphonates (nBP) activate γδ T cells to kill tumor cells in an indirect mechanism, which requires antigen presenting cells (APC). We hypothesized that selective targeting of nBP to monocytes would result in a more potent γδ T cells activation in circulation, and in tissue associated macrophages (TAM) following monocytes-laden drug extravasation and liposomes accumulation at the tumor site. In addition, inhibition of TAM by alendronate liposomes (ALN-L) is expected. ALN was targeted exclusively to monocytes, but not to lymphocytes, by encapsulating it in negatively-charged liposomes. The proportion of human γd-T cells in the CD3+ population following treatment with ALN-L or the free drug was increased, from 5.6 ± 0.4% to 50.9 ;± 12.2% and 49.5 ± 12.9%, respectively. ALN solution and liposomes treatments resulted in an increased, and in a dose dependent manner, TNFα secretion from h-PBMC. Preliminary results showed that ALN-L inhibited tumor growth in a nude mouse breast tumor model. It is suggested that enhanced activation of γδ T cells could be obtained due to interaction with circulating monocytes as well as by TAM endocytosing liposomal nBP leading to a potentiated anti-tumor effect of nBP. It should be noted that this could be validated only in primates/humans since γδ T cells are unique in these species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DSPC:

1,2-Distearoyl-sn-glycero-3-phosphocholine

ALN-L:

Alendronate liposomes

nBP:

Amino-bisphosphonate

APC:

Antigen presenting cells

BSA:

Bovine serum albumin

CLOD-L:

Clodronate liposomes

DCs:

Dendritic cells

DSPG:

Distearoyl-phosphatidylglycerol

MHC:

Histocompatibility complex

h-PBMCs:

Human peripheral blood mononuclear cells

imDC:

Immature DC

IPP:

Isopentenyl pyrophosphate

mAbs:

Monoclonal antibodies

MPS:

Mononuclear phagocytic system

TAM:

Tissue associated macrophages

References

  • Adami, S., Bhalla, A. K., Dorizzi, R., Montesanti, F., Rosini, S., Salvagno, G., & Locascio, V. (1987). The acute-phase response after bisphosphonate administration. Calcified Tissue International, 41, 326–331.

    Article  PubMed  CAS  Google Scholar 

  • Afergan, E., Epstein, H., Dahan, R., Koroukhov, N., Rohekar, K., Danenberg, H. D., & Golomb, G. (2008). Delivery of serotonin to the brain by monocytes following phagocytosis of liposomes. Journal of Controlled Release, 132, 84–90.

    Article  PubMed  CAS  Google Scholar 

  • Allen, T. M., & Hansen, C. (1991). Pharmacokinetics of stealth versus conventional liposomes: Effect of dose. Biochimica et Biophysica Acta, 1068, 133–141.

    Article  PubMed  CAS  Google Scholar 

  • Banciu, M., Schiffelers, R. M., & Storm, G. (2008). Investigation into the role of tumor-associated macrophages in the antitumor activity of Doxil. Pharmaceutical Research, 25, 1948–1955.

    Article  PubMed  CAS  Google Scholar 

  • Bartlett, G. R. (1959). Phosphorus assay in column chromatography. The Journal of Biological Chemistry, 234, 466–468.

    PubMed  CAS  Google Scholar 

  • Cabillic, F., Toutirais, O., Lavoue, V., de la Pintiere, C. T., Daniel, P., Rioux-Leclerc, N., Turlin, B., Monkkonen, H., Monkkonen, J., Boudjema, K., Catros, V., & Bouet-Toussaint, F. (2010). Aminobisphosphonate-pretreated dendritic cells trigger successful V gamma 9 V delta 2 T cell amplification for immunotherapy in advanced cancer patients. Cancer Immunology, Immunotherapy, 59, 1611–1619.

    Article  PubMed  CAS  Google Scholar 

  • Caccamo, N., Meraviglia, S., Cicero, G., Gulotta, G., Moschella, F., Cordova, A., Gulotta, E., Salerno, A., & Dieli, F. (2008). Aminobisphosphonates as new weapons for gamma delta T cell-based immunotherapy of cancer. Current Medicinal Chemistry, 15, 1147–1153.

    Article  PubMed  CAS  Google Scholar 

  • Caraglia, M., Marra, M., Naviglio, S., Botti, G., Addeo, R., & Abbruzzese, A. (2010). Zoledronic acid: An unending tale for an antiresorptive agent. Expert Opinion on Pharmacotherapy, 11, 141–154.

    Article  PubMed  CAS  Google Scholar 

  • Clezardin, P. (2010). Bisphosphonates’ antitumor activity: An unravelled side of a multifaceted drug class. Bone, 48, 71–79.

    Article  PubMed  Google Scholar 

  • Clezardin, P., & Massaia, M. (2010). Nitrogen-containing bisphosphonates and cancer immunotherapy. Current Pharmaceutical Design, 16, 3007–3014.

    Article  PubMed  CAS  Google Scholar 

  • Cui, Y. C., Kang, L., Cui, L. X., & He, W. (2009). Human gamma delta T cell recognition of lipid A is predominately presented by CD1b or CD1c on dendritic cells. Biology Direct, 4, 47.

    Article  PubMed  Google Scholar 

  • Danenberg, H. D., Fishbein, I., Gao, J., Monkkonen, J., Reich, R., Gati, I., Moerman, E., & Golomb, G. (2002). Macrophage depletion by clodronate-containing liposomes reduces neointimal formation after balloon injury in rats and rabbits. Circulation, 106, 599–605.

    Article  PubMed  CAS  Google Scholar 

  • Danenberg, H. D., Fishbein, I., Epstein, H., Waltenberger, J., Moerman, E., Monkkonen, J., Gao, J., Gathi, I., Reichi, R., & Golomb, G. (2003a). Systemic depletion of macrophages by liposomal bisphosphonates reduces neointimal formation following balloon-injury in the rat carotid artery. Journal of Cardiovascular Pharmacology, 42, 671–679.

    Article  PubMed  CAS  Google Scholar 

  • Danenberg, H. D., Golomb, G., Groothuis, A., Gao, J., Epstein, H., Swaminathan, R. V., Seifert, P., & Edelman, E. R. (2003b). Liposomal alendronate inhibits systemic innate immunity and reduces in-stent neointimal hyperplasia in rabbits. Circulation, 108, 2798–2804.

    Article  PubMed  CAS  Google Scholar 

  • Devilder, M. C., Maillet, S., Bouyge-Moreau, I., Donnadieu, E., Bonneville, M., & Scotet, E. (2006). Potentiation of antigen-stimulated V gamma 9 V delta 2 T cell cytokine production by immature dendritic cells (DC) and recpirocal effect on DC maturation. The Journal of Immunology, 176, 1386–1393.

    PubMed  CAS  Google Scholar 

  • Dieli, F., Vermijlen, D., Fulfaro, F., Caccamo, N., Meraviglia, S., Cicero, G., Roberts, A., Buccheri, S., D’Asaro, M., Gebbia, N., Salerno, A., Eberl, M., & Hayday, A. C. (2007). Targeting human gamma delta T cells with zoledronate and interleukin-2 for immunotherapy of hormone-refractory prostate cancer. Cancer Research, 67, 7450–7457.

    Article  PubMed  CAS  Google Scholar 

  • Eberl, M., Roberts, G. W., Meuter, S., Williams, J. D., Topley, N., & Moser, B. (2009). A rapid crosstalk of human gammadelta T cells and monocytes drives the acute inflammation in bacterial infections. PLoS Pathogens, 5, e1000308.

    Article  PubMed  Google Scholar 

  • Epstein, H., Berger, V., Levi, I., Eisenberg, G., Koroukhov, N., Gao, J., & Golomb, G. (2007). Nanosuspensions of alendronate with gallium or gadolinium attenuate neointimal hyperplasia in rats. Journal of Controlled Release, 117, 322–332.

    Article  PubMed  CAS  Google Scholar 

  • Epstein, H., Gutman, D., Cohen-Sela, E., Haber, E., Elmalak, O., Koroukhov, N., Danenberg, H., & Golomb, G. (2008). Preparation of alendronate liposomes for enhanced stability and bioactivity: In vitro and in vivo characterization. AAPSJ, 10, 505–515.

    Article  PubMed  CAS  Google Scholar 

  • Epstein-Barash, H., Gutman, D., Markovsky, E., Mishan-Eisenberg, G., Koroukhov, N., Szebeni, J., & Golomb, G. (2010). Physicochemical parameters affecting liposomal bisphosphonates bioactivity for restenosis therapy: Internalization, cell inhibition, activation of cytokines and complement, and mechanism of cell death. Journal of Controlled Release, 146, 182–195.

    Article  PubMed  CAS  Google Scholar 

  • Ferrarini, M., Ferrero, E., Dagna, L., Poggi, A., & Zocchi, M. R. (2002). Human gamma delta T cells: A nonredundant system in the immune-surveillance against cancer. Trends in Immunology, 23, 14–18.

    Article  PubMed  CAS  Google Scholar 

  • Fleisch, H. (1998). Bisphosphonates: Mechanisms of action. Endocrine Reviews, 19, 80–100.

    Article  PubMed  CAS  Google Scholar 

  • Geran, R. I., Schumach, A. M., Abbott, B. J., Greenber, N. H., & Macdonal, M. M. (1972). Protocols for screening chemical agents and natural-products against animal tumors and other biological-systems. Cancer Chemotherapy Reports. Part 3, 3, 1–103.

    Google Scholar 

  • Gnant, M., Mlineritsch, B., Schippinger, W., Luschin-Ebengreuth, G., Postlberger, S., Menzel, C., Jakesz, R., Seifert, M., Hubalek, M., Bjelic-Radisic, V., Samonigg, H., Tausch, C., Eidtmann, H., Steger, G., Kwasny, W., Dubsky, P., Fridrik, M., Fitzal, F., Stierer, M., Rucklinger, E., & Greil, R. (2009). Endocrine therapy plus zoledronic acid in premenopausal breast cancer. The New England Journal of Medicine, 360, 679–691.

    Article  PubMed  CAS  Google Scholar 

  • Haber, E., Danenberg, H. D., Koroukhov, N., Ron-El, R., Golomb, G., & Schachter, M. (2009). Peritoneal macrophage depletion by liposomal bisphosphonate attenuates endometriosis in the rat model. Human Reproduction, 24, 398–407.

    Article  PubMed  CAS  Google Scholar 

  • Haber, E., Afergan, E., Epstein, H., Gutman, D., Koroukhov, N., Ben-David, M., Schachter, M., & Golomb, G. (2010). Route of administration-dependent anti-inflammatory effect of liposomal alendronate. Journal of Controlled Release, 148, 226–233.

    Article  PubMed  CAS  Google Scholar 

  • Hava, D. L., Brigl, M., van den Elzen, P., Zajonc, D. M., Wilson, I. A., & Brenner, M. B. (2005). CD1 assembly and the formation of CD1-antigen complexes. Current Opinion in Immunology, 17, 88–94.

    Article  PubMed  CAS  Google Scholar 

  • Hayday, A. C. (2000). Gamma delta cells: A right time and a right place for a conserved third way of protection. Annual Review of Immunology, 18, 975–1026.

    Article  PubMed  CAS  Google Scholar 

  • Hewitt, R. E., Lissina, A., Green, A. E., Slay, E. S., Price, D. A., & Sewell, A. K. (2005). The bisphosphonate acute phase response: Rapid and copious production of proinflammatory cytokines by peripheral blood gd T cells in response to aminobisphosphonates is inhibited by statins. Clinical and Experimental Immunology, 139, 101–111.

    Article  PubMed  CAS  Google Scholar 

  • Hinz, T., Wesch, D., Halary, F., Marx, S., Choudhary, A., Arden, B., Janssen, O., Bonneville, M., & Kabelitz, D. (1997). Identification of the complete expressed human TCR V gamma repertoire by flow cytometry. International Immunology, 9, 1065–1072.

    Article  PubMed  CAS  Google Scholar 

  • Hiraoka, K., Zenmyo, M., Watari, K., Iguchi, H., Fotovati, A., Kimura, Y. N., Hosoi, F., Shoda, T., Nagata, K., Osada, H., Ono, M., & Kuwano, M. (2008). Inhibition of bone and muscle metastases of lung cancer cells by a decrease in the number of monocytes/macrophages. Cancer Science, 99, 1595–1602.

    Article  PubMed  CAS  Google Scholar 

  • Kirpotin, D. B., Drummond, D. C., Shao, Y., Shalaby, M. R., Hong, K. L., Nielsen, U. B., Marks, J. D., Benz, C. C., & Park, J. W. (2006). Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Research, 66, 6732–6740.

    Article  PubMed  CAS  Google Scholar 

  • Kunzmann, V., Bauer, E., Feurle, J., Weissinger, F., Tony, H. P., & Wilhelm, M. (2000). Stimulation of gamma delta T cells by aminobisphosphonates and induction of antiplasma cell activity in multiple myeloma. Blood, 96, 384–392.

    PubMed  CAS  Google Scholar 

  • Lang, J. K. (1990). Quantitative-determination of cholesterol in liposome drug products and raw-materials by high-performance liquid-chromatography. Journal of Chromatography, 507, 157–163.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, C. E., & Pollard, J. W. (2006). Distinct role of macrophages in different tumor microenvironments. Cancer Research, 66, 605–612.

    Article  PubMed  CAS  Google Scholar 

  • Li, J. Q., Herold, M. J., Kimmel, B., Muller, I., Rincon-Orozco, B., Kunzmann, V., & Herrmann, T. (2009). Reduced expression of the mevalonate pathway enzyme farnesyl pyrophosphate synthase unveils recognition of tumor cells by V gamma 9 V delta 2 T cells. The Journal of Immunology, 182, 8118–8124.

    Article  PubMed  CAS  Google Scholar 

  • Makkonen, N., Salminen, A., Rogers, M. J., Frith, J. C., Urtti, A., Azhayeva, E., & Monkkonen, J. (1999). Contrasting effects of alendronate and clodronate on RAW 264 macrophages: The role of a bisphosphonate metabolite. European Journal of Pharmaceutical Sciences, 8, 109–118.

    Article  PubMed  CAS  Google Scholar 

  • Mariani, S., Muraro, M., Pantaleoni, F., Fiore, F., Nuschak, B., Peola, S., Foglietta, M., Palumbo, A., Coscia, M., Castella, B., Bruno, B., Bertieri, R., Boano, L., Boccadoro, M., & Massaia, M. (2005). Effector gamma delta T cells and tumor cells as immune targets of zoledronic acid in multiple myeloma. Leukemia, 19, 664–670.

    PubMed  CAS  Google Scholar 

  • Mayer, L. D., Bally, M. B., Cullis, P. R., Wilson, S. L., & Emerman, J. T. (1990). Comparison of free and liposome encapsulated doxorubicin tumor drug uptake and antitumor efficacy in the SC115 murine mammary-tumor. Cancer Letters, 53, 183–190.

    Article  PubMed  CAS  Google Scholar 

  • Miyagawa, F., Tanaka, Y., Yamashita, S., & Minato, N. (2001). Essential requirement of antigen presentation by monocyte lineage cells for the activation of primary human gamma delta T cells by aminobisphosphonate antigen. The Journal of Immunology, 166, 5508–5514.

    PubMed  CAS  Google Scholar 

  • Monkkonen, J., & Heath, T. D. (1993). The effects of liposome-encapsulated and free clodronate on the growth of macrophage-like cells in vitro: The role of calcium and iron. Calcified Tissue International, 53, 139–146.

    Article  PubMed  CAS  Google Scholar 

  • Monkkonen, J., Taskinen, M., Auriola, S. O., & Urtti, A. (1994). Growth inhibition of macrophage-like and other cell types by liposome-encapsulated, calcium-bound, and free bisphosphonates in vitro. Journal of Drug Targeting, 2, 299–308.

    Article  PubMed  CAS  Google Scholar 

  • Patel, H. M. (1992). Serum opsonins and liposomes: Their interaction and opsonophagocytosis. Critical Reviews in Therapeutic Drug Carrier Systems, 9, 39–90.

    PubMed  CAS  Google Scholar 

  • Patel, H. M., & Moghimi, S. M. (1998). Serum-mediated recognition of liposomes by phagocytic cells of the reticuloendothelial system – the concept of tissue specificity. Advanced Drug Delivery Reviews, 32, 45–60.

    Article  PubMed  Google Scholar 

  • Richards, P. J., Williams, B. D., & Williams, A. S. (2001). Suppression of chronic streptococcal cell wall-induced ­arthritis in Lewis rats by liposomal clodronate. Rheumatology, 40, 978–987.

    Article  PubMed  CAS  Google Scholar 

  • Rodan, G. A. (1998a). Control of bone formation and resorption: Biological and clinical perspective. Journal of Cellular Biochemistry. Supplement, 30–31, 55–61.

    Article  PubMed  Google Scholar 

  • Rodan, G. A. (1998b). Mechanisms of action of bisphosphonates. Annual Review of Pharmacology and Toxicology, 38, 375–388.

    Article  PubMed  CAS  Google Scholar 

  • Rodrigueza, W. V., Pritchard, P. H., & Hope, M. J. (1993). The influence of size and composition on the cholesterol mobilizing properties of liposomes in vivo. Biochimica et Biophysica Acta, 1153, 9–19.

    Article  PubMed  CAS  Google Scholar 

  • Roelofs, A. J., Jauhiainen, M., Monkkonen, H., Rogers, M. J., Monkkonen, J., & Thompson, K. (2009). Peripheral blood monocytes are responsible for gamma delta T cell activation induced by zoledronic acid through accumulation of IPP/DMAPP. British Journal of Haematology, 144, 245–250.

    Article  PubMed  Google Scholar 

  • Sela, E., Chorny, M., Gutman, D., Komemi, S., Koroukhov, N., & Golomb, G. (2010). Characterization of monocytes-targeted nanocarriers biodistribution in leukocytes in ex-vivo and in-vivo models. Nano Biomedicine and Engineering, 2, 1–10.

    Google Scholar 

  • Shmeeda, H., Amitay, Y., Gorin, J., Tzemach, D., Mak, L., Ogorka, J., Kumar, S., Zhang, J. A., & Gabizon, A. (2010). Delivery of zoledronic acid encapsulated in folate-targeted liposome results in potent in vitro cytotoxic activity on tumor cells. Journal of Controlled Release, 146, 76–83.

    Article  PubMed  CAS  Google Scholar 

  • Slegers, T., van Rooijen, N., van Rij, G., & van der Gaag, R. (2000). Delayed graft rejection in pre-vascularised corneas after subconjunctival injection of clodronate liposomes. Current Eye Research, 20, 322–324.

    PubMed  CAS  Google Scholar 

  • Takahara, M., Miyai, M., Tomiyama, M., Mutou, M., Nicol, A. J., & Nieda, M. (2008). Copulsing tumor antigen-pulsed dendritic cells with zoledronate efficiently enhance the expansion of tumor antigen-specific CD8+ T cells via V gamma 9 gamma delta T cell activation. Journal of Leukocyte Biology, 83, 742–754.

    Article  PubMed  CAS  Google Scholar 

  • Torchilin, V. P. (2005). Recent advances with liposomes as pharmaceutical carriers. Nature Reviews. Drug Discovery, 4, 145–160.

    Article  PubMed  CAS  Google Scholar 

  • van Rooijen, N., & Van Kesteren-Hendrikx, E. (2003). “In vivo” depletion of macrophages by liposome-mediated “­suicide”. Methods in Enzymology, 373, 3–16.

    Article  PubMed  Google Scholar 

  • Veltman, J. D., Lambers, M. E. H., van Nimwegen, M., Hendriks, R. W., Hoogsteden, H. C., Hegmans, J., & Aerts, J. (2010). Zoledronic acid impairs myeloid differentiation to tumour-associated macrophages in mesothelioma. British Journal of Cancer, 103, 629–641.

    Article  PubMed  CAS  Google Scholar 

  • Wilhelm, M., Kunzmann, V., Eckstein, S., Reimer, P., Weissinger, F., Ruediger, T., & Tony, H. P. (2003). Gamma delta T cells for immune therapy of patients with lymphoid malignancies. Blood, 102, 200–206.

    Article  PubMed  CAS  Google Scholar 

  • Zeisberger, S. M., Odermatt, B., Marty, C., Zehnder-Fjallman, A. H., Ballmer-Hofer, K., & Schwendener, R. A. (2006). Clodronate-liposome-mediated depletion of tumour-associated macrophages: A new and highly effective antiangiogenic therapy approach. British Journal of Cancer, 95, 272–281.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y. H., Cao, R., Yin, F. L., Lin, F. Y., Wang, H., Krysiak, K., No, J. H., Mukkamala, D., Houlihan, K., Li, J. K., Morita, C. T., & Oldfield, E. (2010). Lipophilic Pyridinium Bisphosphonates: Potent gamma delta T Cell Stimulators. Angewandte Chemie-International Edition, 49, 1136–1138.

    Article  CAS  Google Scholar 

  • Zito, M. A., Koennecke, L. A., McAuliffe, M. J., McNally, B., van Rooijen, N., & Heyes, M. P. (2001). Depletion of systemic macrophages by liposome-encapsulated clodronate attenuates striatal macrophage invasion and neurodegeneration following local endotoxin infusion in gerbils. Brain Research, 892, 13–26.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dikla Gutman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Gutman, D., Epstein-Barash, H., Tsuriel, M., Golomb, G. (2012). Alendronate Liposomes for Antitumor Therapy: Activation of γδ T Cells and Inhibition of Tumor Growth. In: Zahavy, E., Ordentlich, A., Yitzhaki, S., Shafferman, A. (eds) Nano-Biotechnology for Biomedical and Diagnostic Research. Advances in Experimental Medicine and Biology, vol 733. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2555-3_16

Download citation

Publish with us

Policies and ethics