Skip to main content

Calcium and Endothelium-Mediated Vasodilator Signaling

  • Chapter
  • First Online:
Calcium Signaling

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 740))

Abstract

Vascular tone refers to the balance between arterial constrictor and dilator activity. The mechanisms that underlie tone are critical for the control of haemodynamics and matching circulatory needs with metabolism, and thus alterations in tone are a primary factor for vascular disease etiology. The dynamic spatiotemporal control of intracellular Ca2+ levels in arterial endothelial and smooth muscle cells facilitates the modulation of multiple vascular signaling pathways. Thus, control of Ca2+ levels in these cells is integral for the maintenance of tone and blood flow, and intimately associated with both physiological and pathophysiological states. Hence, understanding the mechanisms that underlie the modulation of vascular Ca2+ activity is critical for both fundamental knowledge of artery function, and for the development of targeted therapies. This brief review highlights the role of Ca2+ signaling in vascular endothelial function, with a focus on contact-mediated vasodilator mechanisms associated with endothelium-derived hyperpolarization and the longitudinal conduction of responses over distance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sandow SL, Hill CE (2000) The incidence of myoendothelial gap junctions in the proximal and distal mesenteric arteries of the rat is suggestive of a role in EDHF-mediated responses. Circ Res 86:341–346

    PubMed  CAS  Google Scholar 

  2. Becker BF, Chappell D, Jacob M (2010) Endothelial glycocalyx and coronary vascular permeability: the fringe benefit. Basic Res Cardiol 105:687–701

    Article  PubMed  CAS  Google Scholar 

  3. Potter DR, Damiano ER (2008) The hydrodynamically relevant endothelial cell glycocalyx observed in vivo is absent in vitro. Circ Res 102:770–776

    Article  PubMed  CAS  Google Scholar 

  4. Reitsma S, Slaaf DW, Vink H, van Zandvoort MA, oude Egbrink MG (2007) The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch 454:345–359

    Article  PubMed  CAS  Google Scholar 

  5. Wise SG, Weiss AS (2009) Tropoelastin. Int J Biochem Cell Biol 41:494–497

    Article  PubMed  CAS  Google Scholar 

  6. Sandow SL, Gzik DJ, Lee RMKW (2009) Arterial internal elastic lamina holes: relationship to function? J Anat 214:258–266

    Article  PubMed  Google Scholar 

  7. Aiello VD, Gutierrez PS, Chaves MJ, Lopes AA, Higuchi ML, Ramires JA (2003) Morphology of the internal elastic lamina in arteries from pulmonary hypertensive patients: a confocal laser microscopy study. Mod Pathol 16:411–416

    Article  PubMed  Google Scholar 

  8. Hassler O (1962) The windows of the internal elastic lamella of the cerebral arteries. Virchows Arch Pathol Anat Physiol Klin Med 335:127–132

    Article  PubMed  CAS  Google Scholar 

  9. Smith EB, Staples EM (1980) Distribution of plasma proteins across the human aortic wall–barrier functions of endothelium and internal elastic lamina. Atherosclerosis 37:579–590

    Article  PubMed  CAS  Google Scholar 

  10. Svendsen E, Tindall AR (1988) The internal elastic membrane and intimal folds in arteries: important but neglected structures? Acta Physiol Scand 133(S572):1–71

    Google Scholar 

  11. Sims FH (1989) The internal elastic lamina in normal and abnormal human arteries. A barrier to the diffusion of macromolecules from the lumen. Artery 16:159–173

    PubMed  CAS  Google Scholar 

  12. Tada S, Tarbell JM (2004) Internal elastic lamina affects the distribution of macromolecules in the arterial wall: a computational study. Am J Physiol 287:H905–H913

    CAS  Google Scholar 

  13. Griffith TM (2004) Endothelium-dependent smooth muscle hyperpolarization: do gap junctions provide a unifying hypothesis? Br J Pharmacol 141:881–903

    Article  PubMed  CAS  Google Scholar 

  14. Sandow SL (2004) Factors, fiction and endothelium-derived hyperpolarizing factor. Clin Exp Pharmacol Physiol 31:563–570

    Article  PubMed  CAS  Google Scholar 

  15. Sandow SL, Tare M (2007) C-type natriuretic peptide: a new endothelium-derived hyperpolarizing factor? Trends Pharmacol Sci 28:61–67

    Article  PubMed  CAS  Google Scholar 

  16. Sandow SL, Haddock RE, Hill CE, Chadha PE, Kerr PM, Welsh DG, Plane F (2009) What’s where and why at a vascular myoendothelial microdomain signaling complex? Clin Exp Pharmacol Physiol 36:67–76

    Article  PubMed  CAS  Google Scholar 

  17. Kwan HY, Huang Y, Yao X (2007) Cyclic nucleotides and Ca2+ influx pathways in vascular endothelial cells. Clin Hemorheol Microcirc 37:63–70

    PubMed  CAS  Google Scholar 

  18. Burnstock G (1990) Local mechanisms of blood flow control by perivascular nerves and endothelium. J Hypertens 8:S95–S106

    Article  CAS  Google Scholar 

  19. Fisslthaler B, Dimmeler S, Hermann C, Busse R, Fleming I (2000) Phosphorylation and activation of the endothelial nitric oxide synthase by fluid shear stress. Acta Physiol Scand 168:81–88

    Article  PubMed  CAS  Google Scholar 

  20. Dietrich A, Kalwa H, Gudermann T (2010) TRPC channels in vascular cell function. Thromb Haemost 103:262–270

    Article  PubMed  CAS  Google Scholar 

  21. Hill CE, Phillips JK, Sandow SL (2001) Heterogeneous control of blood flow amongst different vascular beds. Med Res Rev 21:1–60

    Article  PubMed  CAS  Google Scholar 

  22. Severs NJ (1999) Cardiovascular disease. Novartis Found Symp 219:188–211

    PubMed  CAS  Google Scholar 

  23. de Wit C, Griffith TM (2010) Connexins and gap junctions in the EDHF phenomenon and conducted vasomotor responses. Pflugers Arch 459:897–914

    Article  PubMed  CAS  Google Scholar 

  24. Johnstone S, Isakson B, Locke D (2009) Biological and biophysical properties of vascular connexin channels. Int Rev Cell Mol Biol 278:69–118

    Article  PubMed  CAS  Google Scholar 

  25. Aird WC (2006) Mechanisms of endothelial cell heterogeneity in health and disease. Circ Res 98:159–162

    Article  PubMed  CAS  Google Scholar 

  26. Aird WC (2007) Phenotypic heterogeneity of the endothelium: II Representative vascular beds. Circ Res 100:174–190

    Article  PubMed  CAS  Google Scholar 

  27. Aird WC (2007) Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res 100:158–173

    Article  PubMed  CAS  Google Scholar 

  28. Shimokawa H (1999) A novel therapeutic target Primary endothelial dysfunction: atherosclerosis. J Mol Cell Cardiol 31:23–37

    Article  PubMed  CAS  Google Scholar 

  29. McGuire JJ, Ding H, Triggle CR (2001) Endothelium-derived relaxing factors: a focus on endothelium-derived hyperpolarizing factor(s). Can J Physiol Pharmacol 79:443–470

    Article  PubMed  CAS  Google Scholar 

  30. Feletou M, Kohler R, Vanhoutte PM (2010) Endothelium-derived vasoactive factors and hypertension: possible roles in pathogenesis and as treatment targets. Curr Hypertens Rep 12:267–275

    Article  PubMed  CAS  Google Scholar 

  31. Triggle CR, Ding H (2011) The endothelium in compliance and resistance vessels. Front Biosci 3:730–744

    Article  Google Scholar 

  32. Boegehold MA (2010) Endothelium-dependent control of vascular tone during early postnatal and juvenile growth. Microcirculation 17:394–406

    PubMed  CAS  Google Scholar 

  33. Davies PF (2009) Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat Clin Pract Cardiovasc Med 6:16–26

    Article  PubMed  CAS  Google Scholar 

  34. Kuo L, Davis MJ, Chilian WM (1990) Endothelium-dependent, flow-induced dilation of isolated coronary arterioles. Am J Physiol 259:H1063–H1070

    PubMed  CAS  Google Scholar 

  35. Davies PF (1995) Flow-mediated endothelial mechanotransduction. Physiol Rev 75:519–560

    PubMed  CAS  Google Scholar 

  36. Ando J, Ohtsuka A, Korenaga R, Kawamura T, Kamiya A (1993) Wall shear stress rather than shear rate regulates cytoplasmic Ca2+ responses to flow in vascular endothelial cells. Biochem Biophys Res Commun 190:716–723

    Article  PubMed  CAS  Google Scholar 

  37. Ando J, Komatsuda T, Kamiya A (1988) Cytoplasmic calcium response to fluid shear stress in cultured vascular endothelial cells. In Vitro Cell Dev Biol 24:871–877

    Article  PubMed  CAS  Google Scholar 

  38. Kwan HY, Leung PC, Huang Y, Yao X (2003) Depletion of intracellular Ca2+ stores sensitizes the flow-induced Ca2+ influx in rat endothelial cells. Circ Res 92:286–292

    Article  PubMed  CAS  Google Scholar 

  39. Liu C, Ngai CY, Huang Y, Ko WH, Wu M, He GW, Garland CJ, Dora KA, Yao X (2006) Depletion of intracellular Ca2+ stores enhances flow-induced vascular dilatation in rat small mesenteric artery. Br J Pharmacol 147:506–515

    Article  PubMed  CAS  Google Scholar 

  40. Mendoza SA, Fang J, Gutterman DD, Wilcox DA, Bubolz AH, Li R, Suzuki M, Zhang DX (2010) TRPV4-mediated endothelial Ca2+ influx and vasodilation in response to shear stress. Am J Physiol 298:H466–H476

    CAS  Google Scholar 

  41. Inoue R, Jian Z, Kawarabayashi Y (2009) Mechanosensitive TRP channels in cardiovascular pathophysiology. Pharmacol Ther 123:371–385

    Article  PubMed  CAS  Google Scholar 

  42. Hartmannsgruber V, Heyken WT, Kacik M, Kaistha A, Grgic I, Harteneck C, Liedtke W, Hoyer J, Kohler R (2007) Arterial response to shear stress critically depends on endothelial TRPV4 expression. PLoS One 2:e827

    Article  PubMed  CAS  Google Scholar 

  43. Koyama T, Oike M, Ito Y (2001) Involvement of Rho-kinase and tyrosine kinase in hypotonic stress-induced ATP release in bovine aortic endothelial cells. J Physiol 532:759–769

    Article  PubMed  CAS  Google Scholar 

  44. Yamamoto K, Sokabe T, Matsumoto T, Yoshimura K, Shibata M, Ohura N, Fukuda T, Sato T, Sekine K, Kato S, Isshiki M, Fujita T, Kobayashi M, Kawamura K, Masuda H, Kamiya A, Ando J (2006) Impaired flow-dependent control of vascular tone and remodeling in P2X4-deficient mice. Nat Med 12:133–137

    Article  PubMed  CAS  Google Scholar 

  45. Parnavelas JG, Kelly W, Burnstock G (1985) Ultrastructural localization of choline acetyltransferase in vascular endothelial cells in rat brain. Nature 316:724–725

    Article  PubMed  CAS  Google Scholar 

  46. Muller JM, Davis MJ, Kuo L, Chilian WM (1999) Changes in coronary endothelial cell Ca2+ concentration during shear stress- and agonist-induced vasodilation. Am J Physiol 276:H1706–H1714

    PubMed  CAS  Google Scholar 

  47. Fleming I, Busse R (2003) Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase. Am J Physiol 284:R1–R12

    CAS  Google Scholar 

  48. Beech DJ (2009) Harmony and discord in endothelial calcium entry. Circ Res 104:e22–e23

    Article  PubMed  CAS  Google Scholar 

  49. Freichel M, Suh SH, Pfeifer A, Schweig U, Trost C, Weissgerber P, Biel M, Philipp S, Freise D, Droogmans G, Hofmann F, Flockerzi V, Nilius B (2001) Lack of an endothelial store-operated Ca2+ current impairs agonist-dependent vasorelaxation in TRP4−/− mice. Nat Cell Biol 3:121–127

    Article  PubMed  CAS  Google Scholar 

  50. Paria BC, Vogel SM, Ahmmed GU, Alamgir S, Shroff J, Malik AB, Tiruppathi C (2004) Tumor necrosis factor-alpha-induced TRPC1 expression amplifies store-operated Ca2+ influx and endothelial permeability. Am J Physiol 287:L1303–L1313

    CAS  Google Scholar 

  51. Cioffi DL, Wu S, Alexeyev M, Goodman SR, Zhu MX, Stevens T (2005) Activation of the endothelial store-operated ISOC Ca2+ channel requires interaction of protein 4.1 with TRPC4. Circ Res 97:1164–1172

    Article  PubMed  CAS  Google Scholar 

  52. Antoniotti S, Fiorio Pla A, Barral S, Scalabrino O, Munaron L, Lovisolo D (2006) Interaction between TRPC channel subunits in endothelial cells. J Recept Signal Transduct Res 26:225–240

    Article  PubMed  CAS  Google Scholar 

  53. Abdullaev IF, Bisaillon JM, Potier M, Gonzalez JC, Motiani RK, Trebak M (2008) STIM1 and Orai1 mediate CRAC currents and store-operated calcium entry important for endothelial cell proliferation. Circ Res 103:1289–1299

    Article  PubMed  CAS  Google Scholar 

  54. Hirano K, Hirano M, Hanada A (2009) Involvement of STIM1 in the proteinase-activated receptor 1-mediated Ca2+ influx in vascular endothelial cells. J Cell Biochem 108:499–507

    Article  PubMed  CAS  Google Scholar 

  55. Antigny F, Jousset H, Konig S, Frieden M (2011) Thapsigargin activates Ca2+ entry both by store-dependent, STIM1/Orai1-mediated, and store-independent, TRPC3/PLC/PKC-mediated pathways in human endothelial cells. Cell Calcium 49:115–127

    Article  PubMed  CAS  Google Scholar 

  56. Mizuno O, Kobayashi S, Hirano K, Nishimura J, Kubo C, Kanaide H (2000) Stimulus-specific alteration of the relationship between cytosolic Ca2+ transients and nitric oxide production in endothelial cells ex vivo. Br J Pharmacol 130:1140–1146

    Article  PubMed  CAS  Google Scholar 

  57. Budel S, Schuster A, Stergiopoulos N, Meister JJ, Beny JL (2001) Role of smooth muscle cells on endothelial cell cytosolic free calcium in porcine coronary arteries. Am J Physiol 281:H1156–H1162

    CAS  Google Scholar 

  58. Marie I, Beny JL (2002) Calcium imaging of murine thoracic aorta endothelium by confocal microscopy reveals inhomogeneous distribution of endothelial cells responding to vasodilator agents. J Vasc Res 39:260–267

    Article  PubMed  CAS  Google Scholar 

  59. Sandow SL, Grayson TH (2009) Limits of isolation and culture: intact vascular endothelium and BKCa. Am J Physiol H 297:H1–H7

    Article  CAS  Google Scholar 

  60. Gericke A, Sniatecki JJ, Mayer VG, Goloborodko E, Patzak A, Wess J, Pfeiffer N (2011) Role of M1, M3, and M5 muscarinic acetylcholine receptors in cholinergic dilation of small arteries studied with gene-targeted mice. Am J Physiol 300:H1602–H1608

    CAS  Google Scholar 

  61. Elhusseiny A, Hamel E (2000) Muscarinic- but not nicotinic- acetylcholine receptors mediate a nitric oxide-dependent dilation in brain cortical arterioles: a possible role for the M5 receptor subtype. J Cereb Blood Flow Metab 20:298–305

    Article  PubMed  CAS  Google Scholar 

  62. Yamada M, Lamping KG, Duttaroy A, Zhang W, Cui Y, Bymaster FP, McKinzie DL, Felder CC, Deng CX, Faraci FM, Wess J (2001) Cholinergic dilation of cerebral blood vessels is abolished in M5 muscarinic acetylcholine receptor knockout mice. Proc Natl Acad Sci 98:14096–14101

    Article  PubMed  CAS  Google Scholar 

  63. Tracey WR, Peach MJ (1992) Differential muscarinic receptor mRNA expression by freshly isolated and cultured bovine aortic endothelial cells. Circ Res 70:234–240

    PubMed  CAS  Google Scholar 

  64. Fukao M, Hattori Y, Kanno M, Sakuma I, Kitabatake A (1997) Sources of Ca2+ in relation to generation of acetylcholine-induced endothelium-dependent hyperpolarization in rat mesenteric artery. Br J Pharmacol 120:1328–1334

    Article  PubMed  CAS  Google Scholar 

  65. Fukuta H, Hashitani H, Yamamoto Y, Suzuki H (1999) Calcium responses induced by acetylcholine in submucosal arterioles of the guinea-pig small intestine. J Physiol 515:489–499

    Article  PubMed  CAS  Google Scholar 

  66. Burger NZ, Kuzina OY, Osol G, Gokina NI (2009) Estrogen replacement enhances EDHF-mediated vasodilation of mesenteric and uterine resistance arteries: role of endothelial cell Ca2+. Am J Physiol 296:E503–E512

    CAS  Google Scholar 

  67. Mumtaz S, Burdyga G, Borisova L, Wray S, Burdyga T (2011) The mechanism of agonist induced Ca2+ signalling in intact endothelial cells studied confocally in in situ arteries. Cell Calcium 49:66–77

    Article  PubMed  CAS  Google Scholar 

  68. Earley S, Pauyo T, Drapp R, Tavares MJ, Liedtke W, Brayden JE (2009) TRPV4-dependent dilation of peripheral resistance arteries influences arterial pressure. Am J Physiol 297:H1096–H1102

    CAS  Google Scholar 

  69. Zhang DX, Mendoza SA, Bubolz AH, Mizuno A, Ge ZD, Li R, Warltier DC, Suzuki M, Gutterman DD (2009) Transient receptor potential vanilloid type 4-deficient mice exhibit impaired endothelium-dependent relaxation induced by acetylcholine in vitro and in vivo. Hypertension 53:532–538

    Article  PubMed  CAS  Google Scholar 

  70. Wang L, Karlsson L, Moses S, Hultgardh-Nilsson A, Andersson M, Borna C, Gudbjartsson T, Jern S, Erlinge D (2002) P2 Receptor expression profiles in human vascular smooth muscle and endothelial cells. J Cardiovasc Pharmacol 40:841–853

    Article  PubMed  CAS  Google Scholar 

  71. Chi JT, Chang HY, Haraldsen G, Jahnsen FL, Troyanskaya OG, Chang DS, Wang Z, Rockson SG, van de Rijn M, Botstein D, Brown PO (2003) Endothelial cell diversity revealed by global expression profiling. Proc Natl Acad Sci 100:10623–10628

    Article  PubMed  CAS  Google Scholar 

  72. Burnstock G (2007) Purine and pyrimidine receptors. Cell Mol Life Sci 64:1471–1483

    Article  PubMed  CAS  Google Scholar 

  73. Lyubchenko T, Woodward H, Veo KD, Burns N, Nijmeh H, Liubchenko GA, Stenmark KR, Gerasimovskaya EV (2011) P2Y1 and P2Y13 purinergic receptors mediate Ca2+ signaling and proliferative responses in pulmonary artery vasa vasorum endothelial cells. Am J Physiol 300:C266–C275

    Article  CAS  Google Scholar 

  74. Lynch M, Gillespie JI, Greenwell JR, Johnson C (1992) Intracellular calcium ‘signatures’ evoked by different agonists in isolated bovine aortic endothelial cells. Cell Calcium 13:227–233

    Article  PubMed  CAS  Google Scholar 

  75. Bishara NB, Murphy TV, Hill MA (2002) Capacitative Ca2+ entry in vascular endothelial cells is mediated via pathways sensitive to 2 aminoethoxydiphenyl borate and xestospongin C. Br J Pharmacol 135:119–128

    Article  PubMed  CAS  Google Scholar 

  76. Kwan HY, Cheng KT, Ma Y, Huang Y, Tang NL, Yu S, Yao X (2010) CNGA2 contributes to ATP-induced noncapacitative Ca2+ influx in vascular endothelial cells. J Vasc Res 47:148–156

    Article  PubMed  CAS  Google Scholar 

  77. Brough GH, Wu S, Cioffi D, Moore TM, Li M, Dean N, Stevens T (2001) Contribution of endogenously expressed Trp1 to a Ca2+-selective, store-operated Ca2+ entry pathway. FASEB J 15:1727–1738

    Article  PubMed  CAS  Google Scholar 

  78. Kamouchi M, Philipp S, Flockerzi V, Wissenbach U, Mamin A, Raeymaekers L, Eggermont J, Droogmans G, Nilius B (1999) Properties of heterologously expressed hTRP3 channels in bovine pulmonary artery endothelial cells. J Physiol 518:345–358

    Article  PubMed  CAS  Google Scholar 

  79. Morgan-Boyd R, Stewart JM, Vavrek RJ, Hassid A (1987) Effects of bradykinin and angiotensin II on intracellular Ca2+ dynamics in endothelial cells. Am J Physiol 253:C588–C598

    PubMed  CAS  Google Scholar 

  80. Stewart DE, Kirby ML, Aronstam RS (1986) Regulation of beta-adrenergic density in the non-innervated and denervated embryonic chick heart. J Mol Cell Cardiol 18:469–475

    Article  PubMed  CAS  Google Scholar 

  81. Bovenzi V, Savard M, Morin J, Cuerrier CM, Grandbois M, Gobeil F Jr (2010) Bradykinin protects against brain microvascular endothelial cell death induced by pathophysiological stimuli. J Cell Physiol 222:168–176

    Article  PubMed  CAS  Google Scholar 

  82. Paltauf-Doburzynska J, Frieden M, Graier WF (1999) Mechanisms of Ca2+ store depletion in single endothelial cells in a Ca2+-free environment. Cell Calcium 25:345–353

    Article  PubMed  CAS  Google Scholar 

  83. Ihara E, Derkach DN, Hirano K, Nishimura J, Nawata H, Kanaide H (2001) Ca2+ influx in the endothelial cells is required for the bradykinin-induced endothelium-dependent contraction in the porcine interlobar renal artery. J Physiol 534:701–711

    Article  PubMed  CAS  Google Scholar 

  84. Sharma NR, Davis MJ (1995) Substance P-induced calcium entry in endothelial cells is secondary to depletion of intracellular stores. Am J Physiol 268:H962–H973

    PubMed  CAS  Google Scholar 

  85. Frieden M, Sollini M, Beny J (1999) Substance P and bradykinin activate different types of KCa currents to hyperpolarize cultured porcine coronary artery endothelial cells. J Physiol 519:361–371

    Article  PubMed  CAS  Google Scholar 

  86. Uchida H, Tanaka Y, Ishii K, Nakayama K (1999) L-type Ca2+ channels are not involved in coronary endothelial Ca2+ influx mechanism responsible for endothelium-dependent relaxation. Res Commun Mol Pathol Pharmacol 104:127–144

    PubMed  CAS  Google Scholar 

  87. Bartha K, Domotor E, Lanza F, Adam-Vizi V, Machovich R (2000) Identification of thrombin receptors in rat brain capillary endothelial cells. J Cereb Blood Flow Metab 20:175–182

    Article  PubMed  CAS  Google Scholar 

  88. Hirano K (2007) The roles of proteinase-activated receptors in the vascular physiology and pathophysiology. Arterioscler Thromb Vasc Biol 27:27–36

    Article  PubMed  CAS  Google Scholar 

  89. Ahmmed GU, Mehta D, Vogel S, Holinstat M, Paria BC, Tiruppathi C, Malik AB (2004) Protein kinase Calpha phosphorylates the TRPC1 channel and regulates store-operated Ca2+ entry in endothelial cells. J Biol Chem 279:20941–20949

    Article  PubMed  CAS  Google Scholar 

  90. Kwiatek AM, Minshall RD, Cool DR, Skidgel RA, Malik AB, Tiruppathi C (2006) Caveolin-1 regulates store-operated Ca2+ influx by binding of its scaffolding domain to transient receptor potential channel-1 in endothelial cells. Mol Pharmacol 70:1174–1183

    Article  PubMed  CAS  Google Scholar 

  91. Singh I, Knezevic N, Ahmmed GU, Kini V, Malik AB, Mehta D (2007) Galphaq-TRPC6-mediated Ca2+ entry induces RhoA activation and resultant endothelial cell shape change in response to thrombin. J Biol Chem 282:7833–7843

    Article  PubMed  CAS  Google Scholar 

  92. Sandow SL, Tare M, Coleman HA, Hill CE, Parkington HC (2002) Involvement of myoendothelial gap junctions in the actions of endothelium-derived hyperpolarizing factor. Circ Res 90:1108–1113

    Article  PubMed  CAS  Google Scholar 

  93. Mather S, Dora KA, Sandow SL, Winter P, Garland CJ (2005) Rapid endothelial cell-selective loading of connexin 40 antibody blocks endothelium-derived hyperpolarizing factor dilation in rat small mesenteric arteries. Circ Res 97:399–407

    Article  PubMed  CAS  Google Scholar 

  94. Dora KA, Gallagher NT, McNeish A, Garland CJ (2008) Modulation of endothelial cell KCa3.1 channels during endothelium-derived hyperpolarizing factor signaling in mesenteric resistance arteries. Circ Res 102:1247–1255

    Article  PubMed  CAS  Google Scholar 

  95. Cao YX, Zheng JP, He JY, Li J, Xu CB, Edvinsson L (2005) Induces vasodilatation of rat mesenteric artery in vitro mainly by inhibiting receptor-mediated Ca2+-influx and Ca2+-release. Arch Pharm Res 28:709–715

    Article  PubMed  CAS  Google Scholar 

  96. Weston AH, Absi M, Harno E, Geraghty AR, Ward DT, Ruat M, Dodd RH, Dauban P, Edwards G (2008) The expression and function of Ca2+-sensing receptors in rat mesenteric artery; comparative studies using a model of type II diabetes. Br J Pharmacol 154:652–662

    Article  PubMed  CAS  Google Scholar 

  97. Weston AH, Richards GR, Burnham MP, Feletou M, Vanhoutte PM, Edwards G (2002) K+-induced hyperpolarization in rat mesenteric artery: identification, localization and role of Na+/K+-ATPases. Br J Pharmacol 136:918–926

    Article  PubMed  CAS  Google Scholar 

  98. Busse R, Edwards G, Feletou M, Fleming I, Vanhoutte PM, Weston AH (2002) EDHF: bringing the concepts together. Trends Pharmacol Sci 23:374–380

    Article  PubMed  CAS  Google Scholar 

  99. Campbell WB, Gauthier KM (2002) What is new in endothelium-derived hyperpolarizing factors? Curr Opin Nephrol Hypertens Res 11:177–183

    Article  Google Scholar 

  100. Popp R, Brandes RP, Ott G, Busse R, Fleming I (2002) Dynamic modulation of interendothelial gap junctional communication by 11,12-epoxyeicosatrienoic acid. Circ Res 90:800–806

    Article  PubMed  CAS  Google Scholar 

  101. Sandow SL, Neylon CB, Chen MX, Garland CJ (2006) Spatial separation of endothelial small- and intermediate-conductance calcium-activated potassium channels (KCa) and connexins: possible relationship to vasodilator function? J Anat 209:689–698

    Article  PubMed  CAS  Google Scholar 

  102. Haddock RE, Grayson TH, Morris MJ, Howitt L, Chadha PS, Sandow SL (2011) Diet-induced obesity impairs endothelium-derived hyperpolarization via altered potassium channel signaling mechanisms. PLoS One 6:e16423

    Article  PubMed  CAS  Google Scholar 

  103. Chadha PS, Haddock RE, Howitt L, Morris MJ, Murphy TV, Grayson TH, Sandow SL (2010) Obesity upregulates IKCa and myoendothelial gap junctions to maintain endothelial vasodilator function. J Pharmacol Exp Ther 335:284–293

    Article  PubMed  CAS  Google Scholar 

  104. Feletou M (2009) Calcium-activated potassium channels and endothelial dysfunction: therapeutic options? Br J Pharmacol 156:545–562

    Article  PubMed  CAS  Google Scholar 

  105. Chadha PS, Lu L, Rikard-Bell M, Senadheera S, Howitt L, Bertrand RL, Grayson TH, Murphy TV, Sandow SL (2011) Endothelium-dependent vasodilation in human mesenteric artery is primarily mediated by myoendothelial gap junctions, IKCa and NO. J Pharmacol Exp Ther 336:701–708

    Article  PubMed  CAS  Google Scholar 

  106. Itoh T, Seki N, Suzuki S, Ito S, Kajikuri J, Kuriyama H (1992) Membrane hyperpolarization inhibits agonist-induced synthesis of inositol 1,4,5-trisphosphate in rabbit mesenteric artery. J Physiol 451:307–328

    PubMed  CAS  Google Scholar 

  107. Abramowitz J, Birnbaumer L (2009) Physiology and pathophysiology of canonical transient receptor potential channels. FASEB J 23:297–328

    Article  PubMed  CAS  Google Scholar 

  108. Earley S, Brayden JE (2010) Transient receptor potential channels and vascular function. Clin Sci 119:19–36

    Article  PubMed  CAS  Google Scholar 

  109. Wong CO, Yao X (2011) TRP channels in vascular endothelial cells. Adv Exp Med Biol 704:759–780

    Article  PubMed  Google Scholar 

  110. Isakson BE, Duling BR (2006) Organization of IP3-R1 and TRPC3 at the myoendothelial junction may influence polarized calcium signaling. Exp Biol (Late Breaking Abstracts) 786.783

    Google Scholar 

  111. Gifford SM, Yi FX, Bird IM (2006) Pregnancy-enhanced store-operated Ca2+ channel function in uterine artery endothelial cells is associated with enhanced agonist-specific transient receptor potential channel 3-inositol 1,4,5-trisphosphate receptor 2 interaction. J Endocrinol 190:385–395

    Article  PubMed  CAS  Google Scholar 

  112. Earley S, Gonzales AL, Garcia ZI (2010) A dietary agonist of TRPV3 elicits endothelium-dependent vasodilation. Mol Pharmacol 77:612–620

    Article  PubMed  CAS  Google Scholar 

  113. Marrelli SP, O’Neil RG, Brown RC, Bryan RM Jr (2007) PLA2 and TRPV4 channels regulate endothelial calcium in cerebral arteries. Am J Physiol 292:H1390–H1397

    Article  CAS  Google Scholar 

  114. Kohler R, Heyken WT, Heinau P, Schubert R, Si H, Kacik M, Busch C, Grgic I, Maier T, Hoyer J (2006) Evidence for a functional role of endothelial transient receptor potential V4 in shear stress-induced vasodilatation. Arterioscler Thromb Vasc Biol 26:1495–1502

    Article  PubMed  CAS  Google Scholar 

  115. Earley S, Gonzales AL, Crnich R (2009) Endothelium-dependent cerebral artery dilation mediated by TRPA1 and Ca2+-Activated K+ channels. Circ Res 104:987–994

    Article  PubMed  CAS  Google Scholar 

  116. Boulay G, Brown DM, Qin N, Jiang M, Dietrich A, Zhu MX, Chen Z, Birnbaumer M, Mikoshiba K, Birnbaumer L (1999) Modulation of Ca2+ entry by polypeptides of the inositol 1,4, 5-trisphosphate receptor (IP3R) that bind transient receptor potential (TRP): evidence for roles of TRP and IP3R in store depletion-activated Ca2+ entry. Proc Natl Acad Sci 96:14955–14960

    Article  PubMed  CAS  Google Scholar 

  117. Adebiyi A, Zhao G, Narayanan D, Thomas CM, Bannister JP, Jaggar JH (2010) Isoform-selective physical coupling of TRPC3 channels to IP3 receptors in smooth muscle cells regulates arterial contractility. Circ Res 106:1603–1612

    Article  PubMed  CAS  Google Scholar 

  118. Peppiatt-Wildman CM, Albert AP, Saleh SN, Large WA (2007) Endothelin-1 activates a Ca2  +  −permeable cation channel with TRPC3 and TRPC7 properties in rabbit coronary artery myocytes. J Physiol 580:755–764

    Article  PubMed  CAS  Google Scholar 

  119. Kim CJ, Weir BK, Macdonald RL, Zhang H (1998) Erythrocyte lysate releases Ca2+ from IP3-sensitive stores and activates Ca2+-dependent K+ channels in rat basilar smooth muscle cells. Neurol Res 20:23–30

    PubMed  CAS  Google Scholar 

  120. Yang M, Li XL, Xu HY, Sun JB, Mei B, Zheng HF, Piao LH, Xing DG, Li ZL, Xu WX (2005) Role of arachidonic acid in hyposmotic membrane stretch-induced increase in calcium-activated potassium currents in gastric myocytes. Acta Pharmacol Sin 26:1233–1242

    Article  PubMed  CAS  Google Scholar 

  121. Segal SS, Jacobs TL (2001) Role for endothelial cell conduction in ascending vasodilatation and exercise hyperaemia in hamster skeletal muscle. J Physiol 536:937–946

    Article  PubMed  CAS  Google Scholar 

  122. Segal SS, Duling BR (1987) Propagation of vasodilation in resistance vessels of the hamster: development and review of working hypothesis. Circ Res 50:260–287

    Google Scholar 

  123. Segal SS, Duling BR (1986) Flow control among microvessels coordinated by intercellular conduction. Science 234:868–870

    Article  PubMed  CAS  Google Scholar 

  124. Ledoux J, Taylor MS, Bonev AD, Hannah RM, Solodushko V, Shui B, Tallini Y, Kotlikoff MI, Nelson MT (2008) Functional architecture of inositol 1,4,5-trisphosphate signaling in restricted spaces of myoendothelial projections. Proc Natl Acad Sci 105:9627–9632

    Article  PubMed  CAS  Google Scholar 

  125. McSherry IN, Spitaler MM, Takano H, Dora KA (2005) Endothelial cell Ca2+ increases are independent of membrane potential in pressurized rat mesenteric arteries. Cell Calcium 38:23–33

    Article  PubMed  CAS  Google Scholar 

  126. Segal SS, Welsh DG, Kurjiaka DT (1999) Spread of vasodilatation and vasoconstriction along feed arteries and arterioles of hamster skeletal muscle. J Physiol 516:283–291

    Article  PubMed  CAS  Google Scholar 

  127. Dora KA, Xia J, Duling BR (2003) Endothelial cell signaling during conducted vasomotor responses. Am J Physiol 285:H119–H126

    CAS  Google Scholar 

  128. Welsh DG, Segal SS (1998) Endothelial and smooth muscle cell conduction in arterioles controlling blood flow. Am J Physiol 274:H178–H186

    PubMed  CAS  Google Scholar 

  129. Diep HK, Vigmond EJ, Segal SS, Welsh DG (2005) Defining electrical communication in skeletal muscle resistance arteries: a computational approach. J Physiol 568:267–281

    Article  PubMed  CAS  Google Scholar 

  130. Emerson GG, Segal SS (2000) Endothelial cell pathway for conduction of hyperpolarization and vasodilation along hamster feed arteries. Circ Res 86:94–100

    PubMed  CAS  Google Scholar 

  131. Tran CH, Vigmond EJ, Plane F, Welsh DG (2009) Mechanistic basis of differential conduction in skeletal muscle arteries. J Physiol 587:1301–1318

    Article  PubMed  CAS  Google Scholar 

  132. Sandow SL, Looft-Wilson RC, Grayson TH, Segal SS, Hill CE (2003) Expression of homocellular and heterocellular gap junctions in hamster arterioles and feed arteries. Cardiovasc Res 60:643–653

    Article  PubMed  CAS  Google Scholar 

  133. Sandow SL, Goto K, Rummery N, Hill CE (2004) Developmental changes in myoendothelial gap junction mediated vasodilator activity in the rat saphenous artery. J Physiol 556:875–886

    Article  PubMed  CAS  Google Scholar 

  134. Wolfle SE, Chaston DJ, Goto K, Sandow SL, Edwards FR, Hill CE (2011) Non-linear relationship between hyperpolarisation and relaxation enables long distance propagation of vasodilatation. J Physiol 589:2607–2623

    Article  PubMed  CAS  Google Scholar 

  135. Xia J, Duling BR (1998) Patterns of excitation-contraction coupling in arterioles: dependence on time and concentration. Am J Physiol 274:323–330

    Google Scholar 

  136. Xia J, Little TL, Duling BR (1995) Cellular pathways of the conducted electrical response in arterioles of hamster cheek pouch in vitro. Am J Physiol 269:H2031–H2038

    PubMed  CAS  Google Scholar 

  137. Jantzi MC, Brett SE, Jackson WF, Corteling R, Vigmond EJ, Welsh DG (2006) Inward rectifying potassium channels facilitate cell-to-cell communication in hamster retractor muscle feed arteries. Am J Physiol 291:H1319–H1328

    CAS  Google Scholar 

  138. de Wit C, Roos F, Bolz SS, Kirchhoff S, Kruger O, Willecke K, Pohl U (2000) Impaired conduction of vasodilation along arterioles in connexin40-deficient mice. Circ Res 86:649–655

    PubMed  Google Scholar 

  139. Tallini YN, Brekke JF, Shui B, Doran R, Hwang SM, Nakai J, Salama G, Segal SS, Kotlikoff MI (2007) Propagated endothelial Ca2+ waves and arteriolar dilation in vivo: measurements in Cx40BAC GCaMP2 transgenic mice. Circ Res 101:1300–1309

    Article  PubMed  CAS  Google Scholar 

  140. Kurjiaka DT, Bender SB, Nye DD, Wiehler WB, Welsh DG (2005) Hypertension attenuates cell-to-cell communication in hamster retractor muscle feed arteries. Am J Physiol 288:H861–H870

    CAS  Google Scholar 

  141. Figueroa XF, Isakson BE, Duling BR (2006) Vascular gap junctions in hypertension. Hypertension 48:804–811

    Article  PubMed  CAS  Google Scholar 

  142. Wolfle SE, de Wit C (2005) Intact endothelium-dependent dilation and conducted responses in resistance vessels of hypercholesterolemic mice in vivo. J Vasc Res 42:475–482

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaun L. Sandow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sandow, S.L., Senadheera, S., Grayson, T.H., Welsh, D.G., Murphy, T.V. (2012). Calcium and Endothelium-Mediated Vasodilator Signaling. In: Islam, M. (eds) Calcium Signaling. Advances in Experimental Medicine and Biology, vol 740. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2888-2_36

Download citation

Publish with us

Policies and ethics