Skip to main content

The Dynamics of Neuronal Migration

  • Chapter
  • First Online:
Cellular and Molecular Control of Neuronal Migration

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 800))

Abstract

Proper lamination of the cerebral cortex is precisely orchestrated, especially when neurons migrate from their place of birth to their final destination. The consequences of failure or delay in neuronal migration cause a wide range of disorders, such as lissencephaly, schizophrenia, autism and mental retardation. Neuronal migration is a dynamic process, which requires dynamic remodeling of the cytoskeleton. In this context microtubules and microtubule-related proteins have been suggested to play important roles in the regulation of neuronal migration. Here, we will review the dynamic aspects of neuronal migration and brain development, describe the molecular and cellular mechanisms of neuronal migration and elaborate on neuronal migration diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ables JL, Breunig JJ, Eisch AJ, Rakic P (2011) Not(ch) just development: Notch signalling in the adult brain. Nat Rev Neurosci 12(5):269–283. doi:10.1038/nrn3024

    Article  PubMed  CAS  Google Scholar 

  • Anderson SA, Eisenstat DD, Shi L, Rubenstein JL (1997) Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science 278(5337):474–476

    Article  PubMed  CAS  Google Scholar 

  • Ang ES Jr, Haydar TF, Gluncic V, Rakic P (2003) Four-dimensional migratory coordinates of GABAergic interneurons in the developing mouse cortex. J Neurosci 23(13):5805–5815

    PubMed  CAS  Google Scholar 

  • Asensio VC, Campbell IL (1999) Chemokines in the CNS: plurifunctional mediators in diverse states. Trends Neurosci 22(11):504–512

    Article  PubMed  CAS  Google Scholar 

  • Attardo A, Calegari F, Haubensak W, Wilsch-Brauninger M, Huttner WB (2008) Live imaging at the onset of cortical neurogenesis reveals differential appearance of the neuronal phenotype in apical versus basal progenitor progeny. PloS One 3(6):e2388. doi:10.1371/journal.pone.0002388

    Article  PubMed  Google Scholar 

  • Ayala R, Shu T, Tsai LH (2007) Trekking across the brain: the journey of neuronal migration. Cell 128(1):29–43. doi:10.1016/j.cell.2006.12.021

    Article  PubMed  CAS  Google Scholar 

  • Bantubungi K, Blum D, Cuvelier L, Wislet-Gendebien S, Rogister B, Brouillet E, Schiffmann SN (2008) Stem cell factor and mesenchymal and neural stem cell transplantation in a rat model of Huntington’s disease. Mol Cell Neurosci 37(3):454–470. doi:10.1016/j.mcn.2007.11.001

    Article  PubMed  CAS  Google Scholar 

  • Barros CS, Franco SJ, Muller U (2011) Extracellular matrix: functions in the nervous system. Cold Spring Harb Perspect Biol 3(1):a005108. doi:10.1101/cshperspect.a005108

    Article  PubMed  Google Scholar 

  • Beffert U, Weeber EJ, Morfini G, Ko J, Brady ST, Tsai LH, Sweatt JD, Herz J (2004) Reelin and cyclin-dependent kinase 5-dependent signals cooperate in regulating neuronal migration and synaptic transmission. J Neurosci 24(8):1897–1906. doi:10.1523/JNEUROSCI.4084-03.2004

    Article  PubMed  CAS  Google Scholar 

  • Bellion A, Baudoin JP, Alvarez C, Bornens M, Metin C (2005) Nucleokinesis in tangentially migrating neurons comprises two alternating phases: forward migration of the Golgi/centrosome associated with centrosome splitting and myosin contraction at the rear. J Neurosci 25(24):5691–5699. doi:10.1523/JNEUROSCI.1030-05.2005

    Article  PubMed  CAS  Google Scholar 

  • Belvindrah R, Hankel S, Walker J, Patton BL, Muller U (2007) Beta1 integrins control the formation of cell chains in the adult rostral migratory stream. J Neurosci 27(10):2704–2717. doi:10.1523/JNEUROSCI.2991-06.2007

    Article  PubMed  CAS  Google Scholar 

  • Bhide PG (2009) Dopamine, cocaine and the development of cerebral cortical cytoarchitecture: a review of current concepts. Semin Cell Dev Biol 20(4):395–402. doi:10.1016/j.semcdb.2009.01.006

    Article  PubMed  CAS  Google Scholar 

  • Blurton-Jones M, Kitazawa M, Martinez-Coria H, Castello NA, Muller FJ, Loring JF, Yamasaki TR, Poon WW, Green KN, LaFerla FM (2009) Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proc Natl Acad Sci U S A 106(32):13594–13599. doi:10.1073/pnas.0901402106

    Article  PubMed  CAS  Google Scholar 

  • Botella-Lopez A, Burgaya F, Gavin R, Garcia-Ayllon MS, Gomez-Tortosa E, Pena-Casanova J, Urena JM, Del Rio JA, Blesa R, Soriano E, Saez-Valero J (2006) Reelin expression and glycosylation patterns are altered in Alzheimer’s disease. Proc Natl Acad Sci U S A 103(14):5573–5578. doi:10.1073/pnas.0601279103

    Article  PubMed  CAS  Google Scholar 

  • Bradford D, Cole SJ, Cooper HM (2009) Netrin-1: diversity in development. Int J Biochem Cell Biol 41(3):487–493. doi:10.1016/j.biocel.2008.03.014

    Article  PubMed  CAS  Google Scholar 

  • Calabria LK, da Cruz GC, Nascimento R, Carvalho WJ, de Gouveia NM, Alves FV, Furtado FB, Ishikawa-Ankerhold HC, de Sousa MV, Goulart LR, Espindola FS (2011) Overexpression of myosin-IIB in the brain of a rat model of streptozotocin-induced diabetes. J Neurol Sci 303(1–2):43–49. doi:10.1016/j.jns.2011.01.017

    Article  PubMed  CAS  Google Scholar 

  • Chansard M, Hong JH, Park YU, Park SK, Nguyen MD (2011) Ndel1, Nudel (Noodle): flexible in the cell? Cytoskeleton 68(10):540–554. doi:10.1002/cm.20532

    Article  PubMed  CAS  Google Scholar 

  • Chen ZL, Haegeli V, Yu H, Strickland S (2009) Cortical deficiency of laminin gamma1 impairs the AKT/GSK-3beta signaling pathway and leads to defects in neurite outgrowth and neuronal migration. Dev Biol 327(1):158–168. doi:10.1016/j.ydbio.2008.12.006

    Article  PubMed  CAS  Google Scholar 

  • Cheung AF, Pollen AA, Tavare A, DeProto J, Molnar Z (2007) Comparative aspects of cortical neurogenesis in vertebrates. J Anat 211(2):164–176. doi:10.1111/j.1469-7580.2007.00769.x

    Article  PubMed  Google Scholar 

  • Chin J, Massaro CM, Palop JJ, Thwin MT, Yu GQ, Bien-Ly N, Bender A, Mucke L (2007) Reelin depletion in the entorhinal cortex of human amyloid precursor protein transgenic mice and humans with Alzheimer’s disease. J Neurosci 27(11):2727–2733. doi:10.1523/JNEUROSCI.3758-06.2007

    Article  PubMed  CAS  Google Scholar 

  • D’Arcangelo G, Homayouni R, Keshvara L, Rice DS, Sheldon M, Curran T (1999) Reelin is a ligand for lipoprotein receptors. Neuron 24(2):471–479

    Article  PubMed  Google Scholar 

  • Darsalia V, Kallur T, Kokaia Z (2007) Survival, migration and neuronal differentiation of human fetal striatal and cortical neural stem cells grafted in stroke-damaged rat striatum. Eur J Neurosci 26(3):605–614. doi:10.1111/j.1460-9568.2007.05702.x

    Article  PubMed  Google Scholar 

  • de Carlos JA, Lopez-Mascaraque L, Valverde F (1996) Dynamics of cell migration from the lateral ganglionic eminence in the rat. J Neurosci 16(19):6146–6156

    PubMed  Google Scholar 

  • Elias LA, Wang DD, Kriegstein AR (2007) Gap junction adhesion is necessary for radial migration in the neocortex. Nature 448(7156):901–907. doi:10.1038/nature06063

    Article  PubMed  CAS  Google Scholar 

  • Elias LA, Turmaine M, Parnavelas JG, Kriegstein AR (2010) Connexin 43 mediates the tangential to radial migratory switch in ventrally derived cortical interneurons. J Neurosci 30(20):7072–7077. doi:10.1523/JNEUROSCI.5728-09.2010

    Article  PubMed  CAS  Google Scholar 

  • Falnikar A, Tole S, Baas PW (2011) Kinesin-5, a mitotic microtubule-associated motor protein, modulates neuronal migration. Mol Biol Cell 22(9):1561–1574. doi:10.1091/mbc.E10-11-0905

    Article  PubMed  CAS  Google Scholar 

  • Franco SJ, Muller U (2011) Extracellular matrix functions during neuronal migration and lamination in the mammalian central nervous system. Dev Neurobiol 71(11):889–900. doi:10.1002/dneu.20946

    Article  PubMed  CAS  Google Scholar 

  • Franco SJ, Muller U (2013) Shaping our minds: stem and progenitor cell diversity in the mammalian neocortex. Neuron 77(1):19–34. doi:10.1016/j.neuron.2012.12.022

    Article  PubMed  CAS  Google Scholar 

  • Franco SJ, Martinez-Garay I, Gil-Sanz C, Harkins-Perry SR, Muller U (2011) Reelin regulates cadherin function via Dab1/Rap1 to control neuronal migration and lamination in the neocortex. Neuron 69(3):482–497. doi:10.1016/j.neuron.2011.01.003

    Article  PubMed  CAS  Google Scholar 

  • Godin JD, Thomas N, Laguesse S, Malinouskaya L, Close P, Malaise O, Purnelle A, Raineteau O, Campbell K, Fero M, Moonen G, Malgrange B, Chariot A, Metin C, Besson A, Nguyen L (2012) p27(Kip1) is a microtubule-associated protein that promotes microtubule polymerization during neuron migration. Dev Cell 23(4):729–744. doi:10.1016/j.devcel.2012.08.006

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Billault C, Del Rio JA, Urena JM, Jimenez-Mateos EM, Barallobre MJ, Pascual M, Pujadas L, Simo S, Torre AL, Gavin R, Wandosell F, Soriano E, Avila J (2005) A role of MAP1B in Reelin-dependent neuronal migration. Cereb Cortex 15(8):1134–1145. doi:10.1093/cercor/bhh213

    Article  PubMed  Google Scholar 

  • Gotz M, Huttner WB (2005) The cell biology of neurogenesis. Nat Rev Mol Cell Biol 6(10):777–788. doi:10.1038/nrm1739

    Article  PubMed  Google Scholar 

  • Gupta A, Sanada K, Miyamoto DT, Rovelstad S, Nadarajah B, Pearlman AL, Brunstrom J, Tsai LH (2003) Layering defect in p35 deficiency is linked to improper neuronal-glial interaction in radial migration. Nat Neurosci 6(12):1284–1291. doi:10.1038/nn1151

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto-Torii K, Torii M, Sarkisian MR, Bartley CM, Shen J, Radtke F, Gridley T, Sestan N, Rakic P (2008) Interaction between Reelin and Notch signaling regulates neuronal migration in the cerebral cortex. Neuron 60(2):273–284. doi:10.1016/j.neuron.2008.09.026

    Article  PubMed  CAS  Google Scholar 

  • Hatten ME (2002) New directions in neuronal migration. Science 297(5587):1660–1663. doi:10.1126/science.1074572

    Article  PubMed  CAS  Google Scholar 

  • Haubensak W, Attardo A, Denk W, Huttner WB (2004) Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. Proc Natl Acad Sci U S A 101(9):3196–3201. doi:10.1073/pnas.0308600100

    Article  PubMed  CAS  Google Scholar 

  • Heng JI, Moonen G, Nguyen L (2007) Neurotransmitters regulate cell migration in the telencephalon. Eur J Neurosci 26(3):537–546. doi:10.1111/j.1460-9568.2007.05694.x

    Article  PubMed  Google Scholar 

  • Hiesberger T, Trommsdorff M, Howell BW, Goffinet A, Mumby MC, Cooper JA, Herz J (1999) Direct binding of Reelin to VLDL receptor and ApoE receptor 2 induces tyrosine phosphorylation of disabled-1 and modulates tau phosphorylation. Neuron 24(2):481–489

    Article  PubMed  CAS  Google Scholar 

  • Hong SE, Shugart YY, Huang DT, Shahwan SA, Grant PE, Hourihane JO, Martin ND, Walsh CA (2000) Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nat Genet 26(1):93–96. doi:10.1038/79246

    Article  PubMed  CAS  Google Scholar 

  • Howell BW, Herrick TM, Hildebrand JD, Zhang Y, Cooper JA (2000) Dab1 tyrosine phosphorylation sites relay positional signals during mouse brain development. Curr Biol 10(15):877–885

    Article  PubMed  CAS  Google Scholar 

  • Jin K, Mao XO, Sun Y, Xie L, Greenberg DA (2002) Stem cell factor stimulates neurogenesis in vitro and in vivo. J Clin Invest 110(3):311–319. doi:10.1172/JCI15251

    PubMed  CAS  Google Scholar 

  • Jossin Y, Cooper JA (2011) Reelin, Rap1 and N-cadherin orient the migration of multipolar neurons in the developing neocortex. Nat Neurosci 14(6):697–703. doi:10.1038/nn.2816

    Article  PubMed  CAS  Google Scholar 

  • Kelemenova S, Schmidtova E, Ficek A, Celec P, Kubranska A, Ostatnikova D (2010) Polymorphisms of candidate genes in Slovak autistic patients. Psychiatr Genet 20(4):137–139. doi:10.1097/YPG.0b013e32833a1eb3

    Article  PubMed  Google Scholar 

  • Kelly S, Bliss TM, Shah AK, Sun GH, Ma M, Foo WC, Masel J, Yenari MA, Weissman IL, Uchida N, Palmer T, Steinberg GK (2004) Transplanted human fetal neural stem cells survive, migrate, and differentiate in ischemic rat cerebral cortex. Proc Natl Acad Sci U S A 101(32):11839–11844. doi:10.1073/pnas.0404474101

    Article  PubMed  CAS  Google Scholar 

  • Kim SU, Park IH, Kim TH, Kim KS, Choi HB, Hong SH, Bang JH, Lee MA, Joo IS, Lee CS, Kim YS (2006) Brain transplantation of human neural stem cells transduced with tyrosine hydroxylase and GTP cyclohydrolase 1 provides functional improvement in animal models of Parkinson disease. Neuropathology 26(2):129–140

    Article  PubMed  Google Scholar 

  • Klein SM, Behrstock S, McHugh J, Hoffmann K, Wallace K, Suzuki M, Aebischer P, Svendsen CN (2005) GDNF delivery using human neural progenitor cells in a rat model of ALS. Hum Gene Ther 16(4):509–521. doi:10.1089/hum.2005.16.509

    Article  PubMed  CAS  Google Scholar 

  • Konno D, Yoshimura S, Hori K, Maruoka H, Sobue K (2005) Involvement of the phosphatidylinositol 3-kinase/rac1 and cdc42 pathways in radial migration of cortical neurons. J Biol Chem 280(6):5082–5088. doi:10.1074/jbc.M408251200

    Article  PubMed  CAS  Google Scholar 

  • Kriegstein AR, Noctor SC (2004) Patterns of neuronal migration in the embryonic cortex. Trends Neurosci 27(7):392–399. doi:10.1016/j.tins.2004.05.001

    Article  PubMed  CAS  Google Scholar 

  • LaMonica BE, Lui JH, Wang X, Kriegstein AR (2012) OSVZ progenitors in the human cortex: an updated perspective on neurodevelopmental disease. Curr Opin Neurobiol 22(5):747–753. doi:10.1016/j.conb.2012.03.006

    Article  PubMed  CAS  Google Scholar 

  • Lauffenburger DA, Horwitz AF (1996) Cell migration: a physically integrated molecular process. Cell 84(3):359–369

    Article  PubMed  CAS  Google Scholar 

  • Lois C, Alvarez-Buylla A (1994) Long-distance neuronal migration in the adult mammalian brain. Science 264(5162):1145–1148

    Article  PubMed  CAS  Google Scholar 

  • Lois C, Garcia-Verdugo JM, Alvarez-Buylla A (1996) Chain migration of neuronal precursors. Science 271(5251):978–981

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Bendito G, Lujan R, Shigemoto R, Ganter P, Paulsen O, Molnar Z (2003) Blockade of GABA(B) receptors alters the tangential migration of cortical neurons. Cereb Cortex 13(9):932–942

    Article  PubMed  Google Scholar 

  • Luxton GW, Gomes ER, Folker ES, Worman HJ, Gundersen GG (2011) TAN lines: a novel nuclear envelope structure involved in nuclear positioning. Nucleus 2(3):173–181. doi:10.1073/pnas.1000824108, 10.4161/nucl.2.3.16243

    Article  PubMed  Google Scholar 

  • Malatesta P, Hartfuss E, Gotz M (2000) Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 127(24):5253–5263

    PubMed  CAS  Google Scholar 

  • Marin O, Rubenstein JL (2003) Cell migration in the forebrain. Annu Rev Neurosci 26:441–483. doi:10.1146/annurev.neuro.26.041002.131058

    Article  PubMed  CAS  Google Scholar 

  • Martini FJ, Valiente M, Lopez Bendito G, Szabo G, Moya F, Valdeolmillos M, Marin O (2009) Biased selection of leading process branches mediates chemotaxis during tangential neuronal migration. Development 136(1):41–50. doi:10.1242/dev.025502

    Article  PubMed  CAS  Google Scholar 

  • McCarthy D, Lueras P, Bhide PG (2007) Elevated dopamine levels during gestation produce region-specific decreases in neurogenesis and subtle deficits in neuronal numbers. Brain Res 1182:11–25. doi:10.1016/j.brainres.2007.08.088

    Article  PubMed  CAS  Google Scholar 

  • McCarthy DM, Gioioso V, Zhang X, Sharma N, Bhide PG (2012) Neurogenesis and neuronal migration in the forebrain of the TorsinA knockout mouse embryo. Dev Neurosci 34(4):366–378. doi:10.1159/000342260

    Article  PubMed  CAS  Google Scholar 

  • Miyata T, Kawaguchi A, Okano H, Ogawa M (2001) Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron 31(5):727–741

    Article  PubMed  CAS  Google Scholar 

  • Miyata T, Kawaguchi A, Saito K, Kawano M, Muto T, Ogawa M (2004) Asymmetric production of surface-dividing and non-surface-dividing cortical progenitor cells. Development 131(13):3133–3145. doi:10.1242/dev.01173

    Article  PubMed  CAS  Google Scholar 

  • Mobley AK, Tchaicha JH, Shin J, Hossain MG, McCarty JH (2009) Beta8 integrin regulates neurogenesis and neurovascular homeostasis in the adult brain. J Cell Sci 122(Pt 11):1842–1851. doi:10.1242/jcs.043257

    Article  PubMed  CAS  Google Scholar 

  • Nahin RL, Humphrey E, Hylden JL (1991) Evidence for calcitonin gene-related peptide contacts on a population of lamina I projection neurons. J Chem Neuroanat 4(2):123–129

    Article  PubMed  CAS  Google Scholar 

  • Noctor SC, Flint AC, Weissman TA, Dammerman RS, Kriegstein AR (2001) Neurons derived from radial glial cells establish radial units in neocortex. Nature 409(6821):714–720. doi:10.1038/35055553

    Article  PubMed  CAS  Google Scholar 

  • Noctor SC, Martinez-Cerdeno V, Ivic L, Kriegstein AR (2004) Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci 7(2):136–144. doi:10.1038/nn1172

    Article  PubMed  CAS  Google Scholar 

  • Noctor SC, Martinez-Cerdeno V, Kriegstein AR (2008) Distinct behaviors of neural stem and progenitor cells underlie cortical neurogenesis. J Comp Neurol 508(1):28–44. doi:10.1002/cne.21669

    Article  PubMed  Google Scholar 

  • Nowakowski RS, Rakic P (1979) The mode of migration of neurons to the hippocampus: a Golgi and electron microscopic analysis in foetal rhesus monkey. J Neurocytol 8(6):697–718

    Article  PubMed  CAS  Google Scholar 

  • Okada T, Keino-Masu K, Masu M (2007) Migration and nucleogenesis of mouse precerebellar neurons visualized by in utero electroporation of a green fluorescent protein gene. Neurosci Res 57(1):40–49. doi:10.1016/j.neures.2006.09.010

    Article  PubMed  CAS  Google Scholar 

  • Olstorn H, Varghese M, Murrell W, Moe MC, Langmoen IA (2011) Predifferentiated brain-derived adult human progenitor cells migrate toward ischemia after transplantation to the adult rat brain. Neurosurgery 68(1):213–222. doi:10.1227/NEU.0b013e3181fd2c11; discussion 222

    Article  PubMed  Google Scholar 

  • Owens DF, Kriegstein AR (2002) Is there more to GABA than synaptic inhibition? Nat Rev Neurosci 3(9):715–727. doi:10.1038/nrn919

    Article  PubMed  CAS  Google Scholar 

  • Persico AM, D’Agruma L, Maiorano N, Totaro A, Militerni R, Bravaccio C, Wassink TH, Schneider C, Melmed R, Trillo S, Montecchi F, Palermo M, Pascucci T, Puglisi-Allegra S, Reichelt KL, Conciatori M, Marino R, Quattrocchi CC, Baldi A, Zelante L, Gasparini P, Keller F, Collaborative Linkage Study of A (2001) Reelin gene alleles and haplotypes as a factor predisposing to autistic disorder. Mol Psychiatr 6(2):150–159. doi:10.1038/sj.mp.4000850

    Article  CAS  Google Scholar 

  • Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112(4):453–465

    Article  PubMed  CAS  Google Scholar 

  • Rakic P (1972) Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol 145(1):61–83. doi:10.1002/cne.901450105

    Article  PubMed  CAS  Google Scholar 

  • Rakic P (2007) The radial edifice of cortical architecture: from neuronal silhouettes to genetic engineering. Brain Res Rev 55(2):204–219. doi:10.1016/j.brainresrev.2007.02.010

    Article  PubMed  Google Scholar 

  • Redmond DE Jr, Bjugstad KB, Teng YD, Ourednik V, Ourednik J, Wakeman DR, Parsons XH, Gonzalez R, Blanchard BC, Kim SU, Gu Z, Lipton SA, Markakis EA, Roth RH, Elsworth JD, Sladek JR Jr, Sidman RL, Snyder EY (2007) Behavioral improvement in a primate Parkinson’s model is associated with multiple homeostatic effects of human neural stem cells. Proc Natl Acad Sci U S A 104(29):12175–12180. doi:10.1073/pnas.0704091104

    Article  PubMed  CAS  Google Scholar 

  • Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT, Horwitz AR (2003) Cell migration: integrating signals from front to back. Science 302(5651):1704–1709. doi:10.1126/science.1092053

    Article  PubMed  CAS  Google Scholar 

  • Rogers JT, Rusiana I, Trotter J, Zhao L, Donaldson E, Pak DT, Babus LW, Peters M, Banko JL, Chavis P, Rebeck GW, Hoe HS, Weeber EJ (2011) Reelin supplementation enhances cognitive ability, synaptic plasticity, and dendritic spine density. Learn Mem 18(9):558–564. doi:10.1101/lm.2153511

    Article  PubMed  CAS  Google Scholar 

  • Schaar BT, McConnell SK (2005) Cytoskeletal coordination during neuronal migration. Proc Natl Acad Sci U S A 102(38):13652–13657. doi:10.1073/pnas.0506008102

    Article  PubMed  CAS  Google Scholar 

  • Shieh JC, Schaar BT, Srinivasan K, Brodsky FM, McConnell SK (2011) Endocytosis regulates cell soma translocation and the distribution of adhesion proteins in migrating neurons. PloS One 6(3):e17802. doi:10.1371/journal.pone.0017802

    Article  PubMed  CAS  Google Scholar 

  • Solecki DJ, Trivedi N, Govek EE, Kerekes RA, Gleason SS, Hatten ME (2009) Myosin II motors and F-actin dynamics drive the coordinated movement of the centrosome and soma during CNS glial-guided neuronal migration. Neuron 63(1):63–80. doi:10.1016/j.neuron.2009.05.028

    Article  PubMed  CAS  Google Scholar 

  • Stanco A, Szekeres C, Patel N, Rao S, Campbell K, Kreidberg JA, Polleux F, Anton ES (2009) Netrin-1-alpha3beta1 integrin interactions regulate the migration of interneurons through the cortical marginal zone. Proc Natl Acad Sci U S A 106(18):7595–7600. doi:10.1073/pnas.0811343106

    Article  PubMed  CAS  Google Scholar 

  • Sun L, Lee J, Fine HA (2004) Neuronally expressed stem cell factor induces neural stem cell migration to areas of brain injury. J Clin Invest 113(9):1364–1374. doi:10.1172/JCI20001

    PubMed  CAS  Google Scholar 

  • Takagi Y, Takahashi J, Saiki H, Morizane A, Hayashi T, Kishi Y, Fukuda H, Okamoto Y, Koyanagi M, Ideguchi M, Hayashi H, Imazato T, Kawasaki H, Suemori H, Omachi S, Iida H, Itoh N, Nakatsuji N, Sasai Y, Hashimoto N (2005) Dopaminergic neurons generated from monkey embryonic stem cells function in a Parkinson primate model. J Clin Invest 115(1):102–109. doi:10.1172/JCI21137

    PubMed  CAS  Google Scholar 

  • Tamamaki N, Nakamura K, Okamoto K, Kaneko T (2001) Radial glia is a progenitor of neocortical neurons in the developing cerebral cortex. Neurosci Res 41(1):51–60

    Article  PubMed  CAS  Google Scholar 

  • Tanaka T, Serneo FF, Higgins C, Gambello MJ, Wynshaw-Boris A, Gleeson JG (2004) Lis1 and doublecortin function with dynein to mediate coupling of the nucleus to the centrosome in neuronal migration. J Cell Biol 165(5):709–721. doi:10.1083/jcb.200309025

    Article  PubMed  CAS  Google Scholar 

  • Tsai LH, Gleeson JG (2005) Nucleokinesis in neuronal migration. Neuron 46(3):383–388. doi:10.1016/j.neuron.2005.04.013

    Article  PubMed  CAS  Google Scholar 

  • Vallee RB, Seale GE, Tsai JW (2009) Emerging roles for myosin II and cytoplasmic dynein in migrating neurons and growth cones. Trends Cell Biol 19(7):347–355. doi:10.1016/j.tcb.2009.03.009

    Article  PubMed  CAS  Google Scholar 

  • Wu Q, Wang X (2012) Neuronal stem cells in the central nervous system and in human diseases. Protein Cell 3(4):262–270. doi:10.1007/s13238-012-2930-8

    Article  PubMed  CAS  Google Scholar 

  • Ypsilanti AR, Zagar Y, Chedotal A (2010) Moving away from the midline: new developments for Slit and Robo. Development 137(12):1939–1952. doi:10.1242/dev.044511

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqun Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wu, Q. et al. (2014). The Dynamics of Neuronal Migration. In: Nguyen, L., Hippenmeyer, S. (eds) Cellular and Molecular Control of Neuronal Migration. Advances in Experimental Medicine and Biology, vol 800. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7687-6_2

Download citation

Publish with us

Policies and ethics