Skip to main content

Immunochemical Detection of Lipid Hydroperoxide- and Aldehyde-Modified Proteins in Diseases

  • Chapter
  • First Online:
Lipid Hydroperoxide-Derived Modification of Biomolecules

Part of the book series: Subcellular Biochemistry ((SCBI,volume 77))

Abstract

Polyunsaturated fatty acid (PUFA) is easily peroxidized by free radicals and enzymes. When this occurs, it results in the compromised integrity of cellular membranes and leads to lipid hydroperoxide as a major reaction product, which is decomposed into aldehyde. Lipid hydroperoxide-modified lysine is known to be an early product of the lipid peroxidation process, suggesting that it might be a PUFA-oxidative stress marker during the initial stage of oxidative stress. Lipid hydroperoxides cause or enhance ROS-mediated DNA fragmentation. The α,β-unsaturated aldehydes are end products of PUFA peroxidation. They are highly reactive and readily attack and modify the protein amino acid residues into aldehyde-modified proteins. Lipid peroxidation-derived α,β-unsaturated aldehydes are capable of inducing cellular stress-responsive processes such as cell signaling and apoptosis. The lipid hydroperoxide- and aldehyde-modified proteins have been immunohistochemically detected in diverse pathological situations such as atherosclerosis, Alzheimer’s disease, Parkinson’s disease, and chemical material-induced liver injury and renal tubular injury in humans and experimental animals. These findings suggest that the expression of the lipid hydroperoxide- and aldehyde-modified proteins is closely associated with the pathogenesis of these diseases in humans and experimental animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aray I, Safirstein RL (2003) Cisplatin nephrotoxicity. Semin Nephrol 23:460–464

    Article  Google Scholar 

  • Bernhard D, Wang XL (2007) Smoking, oxidative stress and cardiovascular diseases-do anti-oxidative therapies fail? Curr Med Chem 14:1703–1712

    Article  CAS  PubMed  Google Scholar 

  • Bessems JG, Vermeulen NP (2001) Paracetamol (acetaminophen)-induced toxicity: molecular and biochemical mechanisms, analogues and protective approaches. Crit Rev Toxicol 31:55–138

    Article  CAS  PubMed  Google Scholar 

  • Calingasan NY, Uchida K, Gibson GE (1999) Protein-bound acrolein: a novel marker of oxidative stress in Alzheimer’s disease. J Neurochem 72:751–756

    Article  CAS  PubMed  Google Scholar 

  • Castellani RJ, Perry G, Siedlak SL et al (2002) Hydroxynonenal adducts indicate a role for lipid peroxidation in neocortical and brainstem Lewy bodies in humans. Neurosci Lett 319:25–28

    Article  CAS  PubMed  Google Scholar 

  • Castro JA (1984) Mechanistic studies and prevention of free radical cell injury. In: Paton W, Mitchell J, Turner P (eds) Proceedings of IUPHAR 9th International Congress Pharmacol, MacMillan

    Google Scholar 

  • Cheeseman KH, Albono EF, Tomasi A et al (1985) Biochemical studies on the metabolic activity of halogenated alkanes. Environ Health Perspect 64:85–101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen YH, Lin FY, Liu PL et al (2009) Antioxidative and hepatoprotective effects of magnolol on acetaminophen-induced liver damage in rats. Arch Pharm Res 32:221–228

    Article  CAS  PubMed  Google Scholar 

  • Chirino YI, Sánchez-González DJ, Martínez-Martínez CM et al (2008) Protective effects of apocynin against cisplatin-induced oxidative stress and nephrotoxicity. Toxicology 245:18–23

    Article  CAS  PubMed  Google Scholar 

  • Cooper AA, Gitler AD, Cashikar A et al (2006) Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science 313:324–328

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ekuni D, Tomofuji T, Sanbe T et al (2009) Periodontitis-induced lipid peroxidation in rat descending aorta is involved in the initiation of atherosclerosis. J Periodontal Res 44:434–442

    Article  CAS  PubMed  Google Scholar 

  • Fillastre JP, Raguenez-Viotte G (1989) Cisplatin nephrotoxicity. Toxicol Lett 46:163–175

    Article  CAS  PubMed  Google Scholar 

  • Forni LG, Packer JE, Slater TF et al (1983) Reaction of the trichloromethyl and halothane-derived peroxy radicals with unsaturated fatty acids: a pulse radiolysis study. Chem Biol Interact 45:171–177

    Article  CAS  PubMed  Google Scholar 

  • Fukuchi Y, Miura Y, Nabeno Y et al (2008) Immunohistochemical detection of oxidative stress biomarkers, dityrosine and Nε-(hexanoyl)lysine, and c-reactive protein in rabbit atherosclerotic lesions. J Atheroscler Thromb 15:185–192

    Article  CAS  PubMed  Google Scholar 

  • Fukuda M, Kanou F, Shimada N et al (2009) Elevated levels of 4-hydroxynonenal-histidine Michael adduct in the hippocampi of patients with Alzheimer’s disease. Biomed Res 30:227–233

    Article  CAS  PubMed  Google Scholar 

  • Grant Maxie M, Robinson WF (2007) Cardiovascular system. In: Grant Maxie M (ed) Ubb, Kennedy, and Palmer’s pathology of domestic animals, vol 3, 5th edn. Sanders, New York

    Google Scholar 

  • Greggi Antunes LM, Darin JDC, Biancii MLP (2000) Protective effects of vitamin C against cisplatin-induced nephrotoxicity and lipid peroxidation in adult rats: a dose-dependent study. Pharmacol Res 41:405–411

    Article  CAS  Google Scholar 

  • Hartley DP, Kolaja KL, Reichard J et al (1999) 4-Hydroxynoneal and malondialdehyde hepatic protein adducts in rats treated with carbon tetrachloride: immunohistochemical detection and lobular localization. Toxicol Appl Pharmacol 161:23–33

    Article  CAS  PubMed  Google Scholar 

  • Higuchi Y (2003) Chromosomal DNA fragmentation in apoptosis and necrosis induced by oxidative stress. Biochem Pharmacol 66:1527–1535

    Article  CAS  PubMed  Google Scholar 

  • Hinson JA, Roberts DW, James LP (2010) Mechanisms of acetaminophen-induced liver necrosis. Handb Exp Pharmacol 196:369–405

    Article  CAS  PubMed  Google Scholar 

  • Hisaka S, Kato Y, Kitamoto N et al (2009) Chemical and immunochemical identification of propanoyllysine derived from oxidized n-3 polyunsaturated fatty acid. Free Radic Biol Med 46:1463–1471

    Article  CAS  PubMed  Google Scholar 

  • Huang A, Sun D, Kaley G et al (1998) Superoxide released to high intra-arteriolar pressure reduces nitric oxide-mediated shear stress-and agonist-induced dilations. Circ Res 83:960–965

    Article  CAS  PubMed  Google Scholar 

  • Jaeschke H, Bajt ML (2006) Intracellular signaling mechanisms of acetaminophen-induced liver cell death. Toxicol Sci 89:31–41

    Article  CAS  PubMed  Google Scholar 

  • Jenner P (2003) Oxidative stress in Parkinson’s disease. Ann Neurol 53:S26–S36

    Article  CAS  PubMed  Google Scholar 

  • Jomova K, Vondrakova D, Lawson M et al (2010) Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem 345:91–104

    Article  CAS  PubMed  Google Scholar 

  • Jones TW, Chopra S, Kaufman JS et al (1985) Cis-diamminedichloroplatinum (II)-induced acute renal failure in the rat. Correlation of structural and functional alterations. Lab Invest 52:363–374

    CAS  PubMed  Google Scholar 

  • Kato Y, Osawa T (2010) Detection of lipid-lysine amide-type adduct as a marker of PUFA oxidation and its applications. Arch Biochem Biophs 501:182–187

    Article  CAS  Google Scholar 

  • Kato Y, Mori Y, Makino Y et al (1999) Formation of Nepsilon-(hexanonyl)lysine in protein exposed to lipid hydroperoxide. A plausible marker for lipid hydroperoxide-derived protein modification. J Biol Chem 274:20406–20414

    Article  CAS  PubMed  Google Scholar 

  • Kawai Y, Kato Y, Fujii H et al (2003) Immunochemical detection of a novel lysine adduct using an antibody to linoleic acid hydroperoxide-modified protein. J Lipid Res 44:1124–1131

    Article  CAS  PubMed  Google Scholar 

  • Kawai Y, Fujii H, Kato Y et al (2004) Esterified lipid hydroperoxide-derived modification of protein: formation of a carboxyalkylamide-type lysine adduct in human atherosclerotic lesions. Biochem Biophys Res Commun 313:271–276

    Article  CAS  PubMed  Google Scholar 

  • Kawai Y, Fujii H, Okada M et al (2006) Formation of Nε-(succinyl)lysine in vivo: a novel marker for docosahexaenoic acid-derived protein modification. J Lipid Res 47:1386–1398

    Article  CAS  PubMed  Google Scholar 

  • Kim JS, He L, Lemasters JJ (2003) Mitochondrial permeability transition: a common pathway to necrosis and apoptosis. Biochem Biophys Res Commun 304:463–470

    Article  CAS  PubMed  Google Scholar 

  • Kristal BS, Park BK, Yu BP (1996) 4-Hydroxyhexenal is a potent inducer of the mitochondrial permeability transition. J Biol Chem 271:6033–6038

    Article  CAS  PubMed  Google Scholar 

  • Kruidering M, Van de Water B, de Heer E (1997) Cisplatin-induced nephrotoxicity in porcine proximal tubular cells: mitochondrial dysfunction by inhibition of complex I to IV of the respiratory chain. J Pharmacol Exp Ther 280:638–649

    CAS  PubMed  Google Scholar 

  • Larson AM, Polson J, Fontana RJ et al (2005) Acetaminophen-induced acute liver failure: results of a United States multicenter, prospective study. Hepatology 42:1364–1372

    Article  CAS  PubMed  Google Scholar 

  • Lee JY, Je JH, Kim DH et al (2004) Induction of endothelial apoptosis by 4-hydroxyhexenal. Eur J Biochem 271:1339–1347

    Article  CAS  PubMed  Google Scholar 

  • Liu XY, Yang ZH, Pan XJ et al (2010) Crotonaldehyde induces oxidative stress and caspase-dependent apoptosis in human bronchial epithelial cells. Toxicol Lett 195:90–98

    Article  CAS  PubMed  Google Scholar 

  • Long EK, Murphy TC, Leiphon LJ et al (2008) Trans-4-hydroxy-2-hexenal is a neurotoxic product of docosahexaenoic (22:6; n-3) acid oxidation. J Neurochem 105:714–724

    Article  CAS  PubMed  Google Scholar 

  • Masubuchi Y, Suda C, Horie T (2005) Involvement of mitochondrial permeability transition in acetaminophen-induced liver injury in mice. J Hepatol 42:110–116

    Article  CAS  PubMed  Google Scholar 

  • Masuda H, Tanaka T, Takahama U (1994) Cisplatin generates superoxide anion by interaction with DNA in a cell-free system. Biochem Biophys Res Commun 203:1175–1180

    Article  CAS  PubMed  Google Scholar 

  • McCay PB, Lai EK, Poyer JL et al (1984) Oxygen and carbon-centered free radical formation during carbon tetrachloride metabolism. J Biol Chem 259:2135–2143

    CAS  PubMed  Google Scholar 

  • Mitra S, Goyal T, Mehta JL (2011) Oxidized LDL, LOX-1 and atherosclerosis. Cardiovasc Drug Ther 25:419–429

    Article  CAS  Google Scholar 

  • Mügge A, Brandes RP, Böger RH et al (1994) Vascular release of superoxide radicals is enhanced in hypercholesterolemic rabbits. J Cardiovasc Pharmacol 24:994–998

    Article  PubMed  Google Scholar 

  • Nelson SD (1990) Molecular mechanisms of the hepatotoxicity caused by acetaminophen. Semin Liver Dis 10:267–278

    Article  CAS  PubMed  Google Scholar 

  • Nicolls MR, Haskins K, Flores SC (2007) Oxidant stress, immune dysregulation, and vascular function in type I diabetes. Antioxid Redox Signal 9:879–889

    Article  CAS  PubMed  Google Scholar 

  • Pabla N, Dong Z (2008) Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int 73:994–1007

    Article  CAS  PubMed  Google Scholar 

  • Recknagel RO, Glende EA Jr, Dolak JK et al (1989) Mechanisms of carbon tetrachloride toxicity. Pharmacol Ther 43:139–154

    Article  CAS  PubMed  Google Scholar 

  • Reynolds ES (1963) Liver parenchymal cell injury. I. Initial alterations of the cell following poisoning with carbon tetrachloride. J Cell Biol 19:139–157

    Article  CAS  PubMed  Google Scholar 

  • Rumack BH (2004) Acetaminophen misconceptions. Hepatology 40:10–15

    Article  CAS  PubMed  Google Scholar 

  • Saito C, Yan HM, Artigues A et al (2010) Mechanism of protection by metallothionein against acetaminophen hepatotoxicity. Toxicol Appl Pharmacol 242:182–190

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schmidley JW (1990) Free radicals in central nervous system ischemia. Stroke 21:1086–1090

    Article  CAS  PubMed  Google Scholar 

  • Shamamoto-Nagai M, Maruyama W, Hashizume Y et al (2007) In Parkinsonian substantia nigra, alpha-synuclein is modified by acrolein, a lipid-peroxidation product, and accumulates in the dopamine neurons with inhibition of proteasome activity. J Neural Transm 114:1559–1567

    Article  Google Scholar 

  • Sugiyama A, Sun J, Nishinohara M et al (2011) Expressions of lipid oxidation markers, Nε-hexanoyl lysine and acrolein in cisplatin-induced nephrotoxicity in rats. J Vet Med Sci 73:821–826

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Sugiyama A, Hisaka S et al (2012) Immunohistochemical detection of polyunsaturated fatty acid oxidation markers in acetaminophen-induced liver injury in rats. J Vet Med Sci 74:141–147

    Article  CAS  PubMed  Google Scholar 

  • Tamer L, Sucu N, Polat G et al (2002) Decreased serum total antioxidant status and erythrocyte-reduced glutathione levels are associated with increased serum malondialdehyde in atherosclerotic patients. Arch Med Res 33:257–260

    Article  CAS  PubMed  Google Scholar 

  • Uchida K (1999) Current status of acrolein as a lipid peroxidation product. Trends Cardiovasc Med 9:109–113

    Article  CAS  PubMed  Google Scholar 

  • Uchida K (2000) Role of reactive aldehyde in cardiovascular disease. Free Radic Biol Med 28:1685–1696

    Article  CAS  PubMed  Google Scholar 

  • Uchida K, Kanematsu M, Sakai K et al (1998) Protein-bound acrolein: potential markers for oxidative stress. Proc Natl Acad Sci U S A 95:4882–4887

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weber LW, Boll M, Stampfl A (2003) Hepatotoxicity and mechanism of action of haloalkanes: carbon tetrachloride as a toxicological model. Crit Rev Toxicol 33:105–136

    Article  CAS  PubMed  Google Scholar 

  • Yao X, Panichpisal K, Kurtzman N et al (2007) Cisplatin nephrotoxicity: a review. Am J Med Sci 334:115–124

    Article  PubMed  Google Scholar 

  • Yoritaka A, Hattori N, Uchida K et al (1996) Immunohistochemical detection of 4-hydroxynoneal protein adducts in Parkinson disease. Proc Natl Acad Sci U S A 93:2696–2701

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yoshida T, Adachi E, Nigi H et al (1999) Changes of sinusoidal basement membrane collagens in early hepatic fibrosis induced with CCl4 in cynomolgus monkeys. Pathology 31:29–35

    Article  CAS  PubMed  Google Scholar 

  • Zarkovic K (2003) 4-Hydroxynoneal and neurodegenerative diseases. Mol Aspect Med 24:293–303

    Article  CAS  Google Scholar 

  • Zhou H, Kato A, Yasuda H et al (2004) The induction of cell cycle regulatory and DNA repair proteins in cisplatin-induced acute renal failure. Toxicol Appl Pharmacol 200:111–120

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Kato A, Miyaji T et al (2006) Urinary marker for oxidative stress in kidneys in cisplatin-induced acute renal failure in rats. Nephrol Dial Transplant 21:616–623

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiko Sugiyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sugiyama, A., Sun, J. (2014). Immunochemical Detection of Lipid Hydroperoxide- and Aldehyde-Modified Proteins in Diseases. In: Kato, Y. (eds) Lipid Hydroperoxide-Derived Modification of Biomolecules. Subcellular Biochemistry, vol 77. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7920-4_10

Download citation

Publish with us

Policies and ethics