Skip to main content

Recombination in the Geminiviruses: Mechanisms for Maintaining Genome Size and Generating Genomic Diversity

  • Chapter
Homologous Recombination and Gene Silencing in Plants

Abstract

The geminiviruses are a unique group of infectious agents that replicate and cause disease in a wide variety of plant species, including many of agricultural importance. In addition to their significance as pathogens, these viruses, with their small DNA genomes and extensive reliance on host systems, are attractive models for the study of host DNA replication and transcription. The geminiviruses have also received much attention as vectors for the expression of foreign genes in plants. Considerable progress has been made toward understanding geminivirus molecular biology and pathology, and recent reviews of this progress are available (Stanley 1991; Lazarowitz 1992). The purpose of this article is to review what is known about recombination mechanisms that operate during geminivirus replication. The role of recombination in the maintenance of genome size and in the evolution of geminivirus genomes is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Accotto GP, Donson J & Mullineaux PM (1989) Mapping of Digitaria streak virus transcripts reveals different RNA species from the same transcription unit. EMBO J 8: 1033–1039.

    PubMed  CAS  Google Scholar 

  • Boulton MI, Bucholtz WG, Marks MS, Markham PG & Davies JW (1989) Specificity of Agrobacterium-mediated inoculation of maize streak virus DNA to members of the Gramineae. Plant Mol Biol 12: 31–40.

    Article  CAS  Google Scholar 

  • Boulton MI, King DI, Markham PG, Pinner MS & Davies JW (1991) Host range and symptoms are determined by specific domains of the maize streak virus genome. Virology 181: 312–318.

    Article  PubMed  CAS  Google Scholar 

  • Boulton MI, Pallaghy CK, Chatani M, MacFarlane S & Davies JW (1993) Replication of maize streak virus mutants in maize protoplasts: evidence for a movement protein. Virology 192: 85–93.

    Article  PubMed  CAS  Google Scholar 

  • Briddon RW, Watts J, Markham PG & Stanley J (1989) The coat protein of beet curly top virus is essential for infectivity. Virology 172: 628–633.

    Article  PubMed  CAS  Google Scholar 

  • Brough CL, Hayes RJ, Morgan AJ, Coutts RHA & Buck KW (1988) Effects of mutagenesis in vitro on the ability of cloned tomato golden mosaic virus DNA to infect Nicotiana benthamiana plants. J Gen Virol 69: 503–514.

    Article  CAS  Google Scholar 

  • Brough CL, Sunter G, Gardiner WE & Bisaro DM (1992) Kinetics of tomato golden mosaic virus DNA replication and coat protein promoter activity in Nicotiana tabacum protoplasts. Virology 187: 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Bullock P, Champoux JJ & Botchan M (1985) Association of crossover points with topoisomerase I cleavage sites: a model for nonhomologous recombination. Science 230: 954–958.

    Article  PubMed  CAS  Google Scholar 

  • Carr RJ & Kim KS (1983) Evidence that bean golden mosaic virus invades non-phloem tissue in double infections with tobacco mosaic virus. J Gen Virol 64: 2489–2492.

    Article  Google Scholar 

  • Citovsky V, Knorr D, Schuster G & Zambryski P (1990) The P30 movement protein of tobacco mosaic virus is a single-strand nucleic acid binding protein. Cell 60: 637–647.

    Article  PubMed  CAS  Google Scholar 

  • Czosnek H, Ber R, Navot N, Antignus Y, Cohen S & Zamir D (1989) Tomato yellow leaf curl virus DNA forms in the viral capsid, in infected plants and in the insect vector. J Phytopath 125: 47–54.

    Article  Google Scholar 

  • Elmer JS, Brand L, Sunter G, Gardiner WE, Bisaro DM & Rogers SG (1988a) Genetic analysis of tomato golden mosaic virus II. The product of the AL1 coding sequence is required for replication. Nucleic Acids Res 16: 7043–7060.

    Article  PubMed  CAS  Google Scholar 

  • Elmer JS, Sunter G, Gardiner WE, Brand L, Browning CK, Bisaro DM & Rogers SG (1988b) Agrobacterium-mediated inoculation of plants with tomato golden mosaic virus DNAs. Plant Mol Biol 10: 225–234.

    Article  CAS  Google Scholar 

  • Elmer S & Rogers SG (1990) Selection for wild-type size derivatives of tomato golden mosaic virus during systemic infection. Nucleic Acids Res 18: 2001–2006.

    Article  PubMed  CAS  Google Scholar 

  • Etessami P, Callis R, Ellwood S & Stanley J (1988) Delimitation of essential genes of cassava latent virus DNA 2. Nucleic Acids Res 16: 4811–4829.

    Article  PubMed  CAS  Google Scholar 

  • Etessami P, Watts J & Stanley J (1989) Size reversion of African cassava mosaic virus coat protein gene deletion mutants during infection of Nicotiana benthamiana. J Gen Virol 70: 277–289.

    Article  PubMed  CAS  Google Scholar 

  • Faria JC, Gilbertson RL, Morales FJ, Russel DR, Ahlquist PG, Hanson SF & Maxwell DP (1990) Sequence of infectious clones of two mechanically transmissable isolates of bean golden mosaic geminivirus. Phytopathology 80: 983.

    Google Scholar 

  • Fontes EPB, Luckow VA & Hanley-Bowdoin L (1992) A geminivirus replication protein is a sequence-specific DNA binding protein. Plant Cell 4: 597–608.

    PubMed  CAS  Google Scholar 

  • Frischmuth T & Stanley J (1991) African cassava mosaic virus DI DNA interferes with the replication of both genome components. Virology 183: 539–544.

    Article  PubMed  CAS  Google Scholar 

  • Frischmuth T & Stanley J (1992) Characterization of beet curly top virus subgenomic DNA localizes sequences required for replication. Virology 189: 808–811.

    Article  PubMed  CAS  Google Scholar 

  • Gardiner WE, Sunter G, Brand L, Elmer JS, Rogers SG & Bisaro DM (1988) Genetic analysis of tomato golden mosaic virus: the coat protein is not required for systemic spread or symptom development. EMBO J 7: 899–904.

    PubMed  CAS  Google Scholar 

  • Gilbertson RL, Faria JC, Hanson SF, Morales FJ, Ahlquist P, Maxwell DP & Russell DR (1991) Cloning of the complete DNA genomes of four bean-infecting geminiviruses and determining their infectivity by electric discharge particle acceleration. Phytopathology 81: 980–985.

    Article  CAS  Google Scholar 

  • Gilbertson RL, Hidayat SH, Paplomatas EJ, Rojas MR, Hou Y-M & Maxwell DP (1993) Pseudorecombination between infectious cloned DNA components of tomato mottle and bean dwarf mosaic geminiviruses. J Gen Virol 74: 23–31.

    Article  PubMed  CAS  Google Scholar 

  • Gorbalenya AE & Koonin EV (1989) Viral proteins containing the purine NTP-binding sequence pattern. Nucleic Acids Res 17: 8413–8440.

    Article  PubMed  CAS  Google Scholar 

  • Gorbalenya AE, Koonin EV & Wolf YI (1990) A new superfamily of putative NTP-binding domains encoded by genomes of small DNA and RNA viruses. FEBS Lett 262: 145–148.

    Article  PubMed  CAS  Google Scholar 

  • Grimsley N & Bisaro D (1987) Agroinfection. In: Hohn T and Schell J (ed) Plant DNA Infectious Agents (pp 88–107). Springer-Verlag, Vienna.

    Google Scholar 

  • Grimsley N, Hohn B, Hohn T & Waiden R (1986) “Agroinfection,” an alternative route for viral infection of plants using the Ti plasmid. Proc Natl Acad Sci USA 83: 3282–3286.

    Article  PubMed  CAS  Google Scholar 

  • Grimsley N, Hohn T, Davies JW & Hohn B (1987) Agrobacterium-mediated delivery of infectious maize streak virus into maize plants. Nature 325: 177–179.

    Article  CAS  Google Scholar 

  • Hamilton WDO, Bisaro DM & Buck KW (1982) Identification of novel DNA forms in tomato golden mosaic virus infected tissue. Evidence for a two component viral genome. Nucleic Acids Res 10: 4901–4912.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton WDO, Bisaro DM, Coutts RHA & Buck KW (1983) Demonstration of the bipartite nature of the genome of a single-stranded DNA plant virus by infection with the cloned DNA components. Nucleic Acids Res 11: 7387–7396.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton WDO, Stein VE, Coutts RHA & Buck KW (1984) Complete nucleotide sequence of the infectious cloned DNA components of tomato golden mosaic virus: potential coding regions and regulatory sequences. EMBO J 3: 2197–2205.

    PubMed  CAS  Google Scholar 

  • Hanley-Bowdoin L, Elmer JS & Rogers SG (1988) Transient expression of heterologous RNAs using tomato golden mosaic virus. Nucleic Acids Res 16: 10511–10528.

    Article  PubMed  CAS  Google Scholar 

  • Hanley-Bowdoin L, Elmer JS & Rogers SG (1990) Expression of functional replication protein from tomato golden mosaic virus in transgenic tobacco. Proc Natl Acad Sci USA 87: 1446–1450.

    Article  PubMed  CAS  Google Scholar 

  • Harding RM, Burns TM, Hafner G, Dietzgen RG & Dale JL (1993) Nucleotide sequence of one component of the banana bunchy top virus genome contains a putative replicase gene. J Gen Virol 74: 323–328.

    Article  PubMed  CAS  Google Scholar 

  • Hayes RJ & Buck KW (1989) Replication of tomato golden mosaic virus DNA B in transgenic plants expressing open reading frames (ORFs) of DNA A: requirement of ORF AL2 for production of single-stranded DNA. Nucleic Acids Res 17: 10213–10222.

    Article  PubMed  CAS  Google Scholar 

  • Hayes RJ, Brough CL, Prince VE, Coutts RHA & Buck KW (1988a) Infection of Nicotiana benthamiana with uncut cloned tandem dimers of tomato golden mosaic virus DNA. J Gen Virol 69: 209–218.

    Article  CAS  Google Scholar 

  • Hayes RJ, Coutts RHA & Buck KW (1988b) Agroinfection of Nicotiana spp. with cloned DNA of tomato golden mosaic virus. J Gen Virol 69: 1487–1496.

    Article  CAS  Google Scholar 

  • Hayes RJ, Petty ITD, Coutts RHA & Buck KW (1988c) Gene amplification and expression in plants by a replicating geminivirus vector. Nature 334: 179–182.

    Article  CAS  Google Scholar 

  • Hayes RJ, Coutts RHA & Buck KW (1989) Stability and expression of bacterial genes in replicating geminivirus vectors. Nucleic Acids Res 17: 2391–2403.

    Article  PubMed  CAS  Google Scholar 

  • Heyraud F, Matzeit V, Kammann M, Schaefer S, Schell J & Gronenborn B (1993a) Identification of the initiation sequence for viral strand DNA synthesis of wheat dwarf virus. EMBO J 12: 4445–4452.

    PubMed  CAS  Google Scholar 

  • Heyraud F, Matzeit V, Schaefer S, Schell J & Gronenborn B (1993b) The conserved nonanucleotide motif of the geminivirus stem-loop sequence promotes replicational release of virus molecules from redundant copies. Biochimie 75: 605–615.

    Article  PubMed  CAS  Google Scholar 

  • Hofer JMI, Dekker EL, Reynolds HV, Woolston CJ, Cox BS & Mullineaux PM (1992) Coordinate regulation of replication and virion sense gene expression in wheat dwarf virus. Plant Cell 4: 213–223.

    PubMed  CAS  Google Scholar 

  • Holland JJ (1990) Defective viral genomes. In: Fields BN & Knipe DM (eds) Virology (pp 151–165). Raven Press, New York.

    Google Scholar 

  • Hormuzdi SG & Bisaro DM (1993) Genetic analysis of beet curly top virus: evidence for three virion sense genes involved in movement and regulation of single- and double-stranded DNA levels. Virology 193: 900–909.

    Article  PubMed  CAS  Google Scholar 

  • Kanevski IF, Thakur S, Cosowsky L, Sunter G, Brough C, Bisaro D & Maliga P (1992) Tobacco lines with high copy number of replicating geminivirus vectors after biolistic DNA delivery. Plant Journal 2: 457–463.

    Article  CAS  Google Scholar 

  • Klinkenberg FA, Ellwood S & Stanley J (1989) Fate of African cassava mosaic virus coat protein deletion mutants after agroinoculation. J Gen Virol 70: 1837–1844.

    Article  CAS  Google Scholar 

  • Koonin EV & Ilyina TV (1992) Geminivirus replication proteins are related to prokaryotic plasmid rolling circle DNA replication initiator proteins. J Gen Virol 2763–2766.

    Google Scholar 

  • Koonin EV, Mushegian AR, Ryabov EV & Dolija VV (1991) Diverse groups of plant RNA and DNA viruses share related movement proteins that may possess chaperone-like activity. J Gen Virol 72: 2895–2903.

    Article  PubMed  Google Scholar 

  • Laufs J, Wirtz U, Kammann M, Matzeit V, Schaefer S, Schell J, Czernilofsky AP, Baker B & Gronenborn B (1990) Wheat dwarf virus AC/DS vectors: expression and excision of transposable elements introduced into various cereals by a viral replicon. Proc Natl Acad Sci USA 87: 7752–7756.

    Article  PubMed  CAS  Google Scholar 

  • Lazarowitz SG (1991) Molecular characterization of two bipartite geminiviruses causing squash leaf curl disease: role of viral replication and movement functions in determining host range. Virology 180: 70–80.

    Article  PubMed  CAS  Google Scholar 

  • Lazarowitz, SG (1992) Geminiviruses: Genome structure and gene function. Crit Rev Plant Sciences 11: 327–349.

    CAS  Google Scholar 

  • Lazarowitz SG, Pinder A, Damsteegt VD & Rogers SG (1989) Maize streak virus genes essential for systemic spread and symptom development. EMBO J 8: 1023–1032.

    PubMed  CAS  Google Scholar 

  • Lazarowitz SG, Wu LC, Rogers SG & Elmer JS (1992) Sequence-specific interaction with the viral AL1 protein identifies a geminivirus DNA replication origin. Plant Cell 4: 799–809.

    PubMed  CAS  Google Scholar 

  • Macdonald H, Coutts RHA & Buck KW (1988) Characterization of a subgenomic DNA isolated from Triticum aestivum plants infected with wheat dwarf virus. J Gen Virol 69: 1339–1344.

    Article  CAS  Google Scholar 

  • MacDowell SW, Coutts RHA & Buck KW (1986) Molecular characterization of subgenomic single-stranded and double-stranded DNA forms isolated from plants infected with tomato golden mosaic virus. Nucleic Acids Res 14: 7967–7984.

    Article  PubMed  CAS  Google Scholar 

  • Matthews REF (1991) Plant Virology. Academic Press, San Diego.

    Google Scholar 

  • Matzeit V, Schaefer S, Kammann M, Schalk H-J, Schell J & Gronenborn B (1991) Wheat dwarf virus vectors replicate and express foreign genes in cells of monocotyledonous plants. Plant Cell 3: 247–258.

    PubMed  CAS  Google Scholar 

  • Michel B & Ehrlich SD (1986a) Illegitimate recombination at the replication origin of bacteriophage M13. Proc Natl Acad Sci USA 83: 3386–3390.

    Article  PubMed  CAS  Google Scholar 

  • Michel B & Ehrlich SD (1986b) Illegitimate recombination occurs between the replication origin of the plasmid pC194 and a progressing replication fork. EMBO J 5: 3691–3696.

    PubMed  CAS  Google Scholar 

  • Morinaga T, Ikegami M, Arai T, Yazaki K & Miura K (1988) Infectivity of cloned tandem dimer DNAs of bean golden mosaic virus. J Gen Virol 69: 897–902.

    Article  CAS  Google Scholar 

  • Morris BAM, Richardson KA, Andersen MT & Gardner RC (1988) Cassava latent virus infections mediated by the Ti plasmid of Agrobacterium tumefaciens containing either monomeric or dimeric viral DNA. Plant Mol Biol 11: 795–803.

    Article  CAS  Google Scholar 

  • Morris B, Coates L, Lowe S, Richardson K & Eddy P (1990) Nucleotide sequence of the infectious cloned DNA components of African cassava mosaic virus (Nigerian strain). Nucleic Acids Res 18: 197–198.

    Article  PubMed  CAS  Google Scholar 

  • Revington GN, Sunter G & Bisaro DM (1989) DNA sequences essential for replication of the B genome component of tomato golden mosaic virus. Plant Cell 1: 985–992.

    PubMed  CAS  Google Scholar 

  • Rogers SG, Bisaro DM, Horsch RB, Fraley RT, Hoffmann NL, Brand L, Elmer JS & Lloyd AM (1986) Tomato golden mosaic virus A component DNA replicates autonomously in transgenic plants. Cell 45: 593–600.

    Article  PubMed  CAS  Google Scholar 

  • Rogers SG, Elmer JS, Sunter G, Gardiner WE, Brand L, Browning CK & Bisaro DM (1989) Molecular genetics of tomato golden mosaic virus. In: Staskawicz B, Ahlquist P & Yoder O (eds) Molecular Biology of Plant-Pathogen Interactions, Vol 101 (pp 199–215). Alan R. Liss, New York.

    Google Scholar 

  • Rohde W, Randles JW, Langridge P & Hanold D (1990) Nucleotide sequence of a circular single-stranded DNA associated with coconut foliar decay virus. Virology 176: 648–651.

    Article  PubMed  CAS  Google Scholar 

  • Saunders K, Lucy A & Stanley J (1991) DNA forms of the geminivirus African cassava mosaic virus consistent with a rolling circle mechanism of replication. Nucleic Acids Res 19: 2325–2330.

    Article  PubMed  CAS  Google Scholar 

  • Schalk H-J, Matzeit V, Schiller B, Schell J & Gronenborn B (1989) Wheat dwarf virus, a geminivirus of graminaceous plants, needs splicing for replication. EMBO J 8: 359–364.

    PubMed  CAS  Google Scholar 

  • Shen W-H & Hohn B (1991) Mutational analysis of the small intergenic region of maize streak virus. Virology 183: 721–730.

    Article  PubMed  CAS  Google Scholar 

  • Slomka MJ, Buck KW & Coutts RHA (1988) Characterisation of multimene DNA forms associated with tomato golden mosaic virus infection. Arch Virol 100: 99–108.

    Article  PubMed  CAS  Google Scholar 

  • Stanley J (1991) The molecular determinants of geminivirus pathogenesis. Seminars in Virology 2: 139–149.

    CAS  Google Scholar 

  • Stanley J & Townsend R (1985) Characterization of DNA forms associated with cassava latent virus infection. Nucleic Acids Res 13: 2189–2206.

    Article  PubMed  CAS  Google Scholar 

  • Stanley J & Townsend R (1986) Infectious mutants of cassava latent virus generated in vivo from intact recombinant clones containing single copies of the genome. Nucleic Acids Res 14: 5981–5998.

    Article  PubMed  CAS  Google Scholar 

  • Stanley J, Townsend R & Curson SJ (1985) Pseudorecombinants between cloned DNAs of two isolates of cassava latent virus. J Gen Virol 66: 1055–1061.

    Article  CAS  Google Scholar 

  • Stanley J, Frischmuth T & Ellwood S (1990) Defective viral DNA ameliorates symptoms of geminivirus infection in transgenic plants. Proc Natl Acad Sci USA 87: 6291–6295.

    Article  PubMed  CAS  Google Scholar 

  • Stanley J, Latham J, Pinner MS, Bedford I & Markham PG (1992) Mutational analysis of the monopartite geminivirus beet curly top virus. Virology 191: 396–405.

    Article  PubMed  CAS  Google Scholar 

  • Stenger DC, Carbonaro D & Duffus JE (1990a) Genomic characterization of phenotypic variants of beet curly top virus. J Gen Virol 71: 2211–2215.

    Article  PubMed  CAS  Google Scholar 

  • Stenger DC, Duffus JE & Villalon B (1990b) Biological and genomic properties of a geminivirus isolated from pepper. Phytopathology 80: 704–709.

    Article  CAS  Google Scholar 

  • Stenger DC, Revington GN, Stevenson MC & Bisaro DM (1991) Replicational release of geminivirus genomes from tandemly repeated copies: evidence for rolling circle replication of a plant viral DNA. Proc Natl Acad Sci USA 88: 8029–8033.

    Article  PubMed  CAS  Google Scholar 

  • Stenger DC, Stevenson MC, Hormuzdi SG & Bisaro DM (1992) A number of subgenomic DNAs are produced following agroinoculation of plants with beet curly top virus. J Gen Virol 73: 237–242.

    Article  PubMed  CAS  Google Scholar 

  • Sunter G & Bisaro DM (1991) Transactivation in a geminivirus: AL2 gene product is needed for coat protein expression. Virology 180: 416–419.

    Article  PubMed  CAS  Google Scholar 

  • Sunter G & Bisaro DM (1992) Transactivation of geminivirus AR1 and BR1 gene expression by the viral AL2 gene product occurs at the level of transcription. Plant Cell 4: 1321–1331.

    PubMed  CAS  Google Scholar 

  • Sunter G, Buck KW & Coutts RHA (1985) S1-sensitive sites in the supercoiled double-stranded form of tomato golden mosaic virus DNA component B: identification of regions of potential alternative secondary structure and regulatory function. Nucleic Acids Res 13: 4645–4659.

    Article  PubMed  CAS  Google Scholar 

  • Sunter G, Gardiner WE, Rushing AE, Rogers SG & Bisaro DM (1987) Independent encapsidation of tomato golden mosaic virus A component DNA in transgenic plants. Plant Mol Biol 8: 477–484.

    Article  CAS  Google Scholar 

  • Sunter G, Hartitz MD, Hormuzdi SG, Brough CL & Bisaro DM (1990) Genetic analysis of tomato golden mosaic virus. ORF AL2 is required for coat protein accumulation while ORF AL3 is necessary for efficient DNA replication. Virology 179: 69–77.

    Article  PubMed  CAS  Google Scholar 

  • Sunter G, Hartitz MD & Bisaro DM (1993) Tomato golden mosaic virus leftward gene expression: autoregulation of geminivirus replication protein. Virology 195: 275–280.

    Article  PubMed  CAS  Google Scholar 

  • Thommes P, Osman TAM, Hayes RJ & Buck KW (1993) TGMV replication protein AL1 preferentially binds to single-stranded DNA from the common region. FEBS Lett 319: 95–99.

    Article  PubMed  CAS  Google Scholar 

  • Ugaki M, Ueda T, Timmermans MCP, Vieira J, Elliston KO & Messing J (1991) Replication of a geminivirus derived shuttle vector in maize endosperm cells. Nucleic Acids Res 19: 371–377.

    Article  PubMed  CAS  Google Scholar 

  • von Arnim A & Stanley J (1992a) Determinants of tomato golden mosaic virus symptom development are located on DNA B. Virology 186: 286–293.

    Article  Google Scholar 

  • von Arnim A & Stanley J (1992b) Inhibition of African cassava mosaic virus systemic spread by a movement protein from the related geminivirus tomato golden mosaic virus. Virology 187: 555–564.

    Article  Google Scholar 

  • Ward A, Etessami P & Stanley J (1988) Expression of a bacterial gene in plants mediated by infectious geminivirus DNA. EMBO J 7: 1583–1587.

    PubMed  CAS  Google Scholar 

  • Wolf S, Deom CM, Beachy RN & Lucas WJ (1989) Movement protein of tobacco mosaic virus modifies plasmodesmatal size exclusion limit. Science 246: 377–379.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bisaro, D.M. (1994). Recombination in the Geminiviruses: Mechanisms for Maintaining Genome Size and Generating Genomic Diversity. In: Paszkowski, J. (eds) Homologous Recombination and Gene Silencing in Plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1094-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1094-5_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4478-3

  • Online ISBN: 978-94-011-1094-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics