Skip to main content

Metabolism in Immune Cell Differentiation and Function

  • Chapter
  • First Online:
Immune Metabolism in Health and Tumor

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1011))

Abstract

The immune system is a central determinant of organismal health. Functional immune responses require quiescent immune cells to rapidly grow, proliferate, and acquire effector functions when they sense infectious agents or other insults. Specialized metabolic programs are critical regulators of immune responses, and alterations in immune metabolism can cause immunological disorders. There has thus been growing interest in understanding how metabolic processes control immune cell functions under normal and pathophysiological conditions. In this chapter, we summarize how metabolic programs are tuned and what the physiological consequences of metabolic reprogramming are as they relate to immune cell homeostasis, differentiation, and function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbas AK, Benoist C, Bluestone JA, Campbell DJ, Ghosh S, Hori S, Jiang S, Kuchroo VK, Mathis D, Roncarolo MG, Rudensky A, Sakaguchi S, Shevach EM, Vignali DA, Ziegler SF (2013) Regulatory T cells: recommendations to simplify the nomenclature. Nat Immunol 14(4):307–308. doi:10.1038/ni.2554

    Article  CAS  PubMed  Google Scholar 

  2. Ahmadian M, Suh JM, Hah N, Liddle C, Atkins AR, Downes M, Evans RM (2013) PPARgamma signaling and metabolism: the good, the bad and the future. Nat Med 19(5):557–566. doi:10.1038/nm.3159

    Article  CAS  PubMed  Google Scholar 

  3. Ai D, Jiang H, Westerterp M, Murphy AJ, Wang M, Ganda A, Abramowicz S, Welch C, Almazan F, Zhu Y, Miller YI, Tall AR (2014) Disruption of mammalian target of rapamycin complex 1 in macrophages decreases chemokine gene expression and atherosclerosis. Circ Res 114(10):1576–1584. doi:10.1161/CIRCRESAHA.114.302313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Akula MK, Shi M, Jiang Z, Foster CE, Miao D, Li AS, Zhang X, Gavin RM, Forde SD, Germain G, Carpenter S, Rosadini CV, Gritsman K, Chae JJ, Hampton R, Silverman N, Gravallese EM, Kagan JC, Fitzgerald KA, Kastner DL, Golenbock DT, Bergo MO, Wang D (2016) Control of the innate immune response by the mevalonate pathway. Nat Immunol 17(8):922–929. doi:10.1038/ni.3487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Amiel E, Everts B, Freitas TC, King IL, Curtis JD, Pearce EL, Pearce EJ (2012) Inhibition of mechanistic target of rapamycin promotes dendritic cell activation and enhances therapeutic autologous vaccination in mice. J Immunol 189(5):2151–2158. doi:10.4049/jimmunol.1103741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ananieva EA, Patel CH, Drake CH, Powell JD, Hutson SM (2014) Cytosolic branched chain aminotransferase (BCATc) regulates mTORC1 signaling and glycolytic metabolism in CD4+ T cells. J Biol Chem 289(27):18793–18804. doi:10.1074/jbc.M114.554113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Angeli V, Hammad H, Staels B, Capron M, Lambrecht BN, Trottein F (2003) Peroxisome proliferator-activated receptor gamma inhibits the migration of dendritic cells: consequences for the immune response. J Immunol 170(10):5295–5301

    Article  CAS  PubMed  Google Scholar 

  8. Apostolidis SA, Rodriguez-Rodriguez N, Suarez-Fueyo A, Dioufa N, Ozcan E, Crispin JC, Tsokos MG, Tsokos GC (2016) Phosphatase PP2A is requisite for the function of regulatory T cells. Nat Immunol 17(5):556–564. doi:10.1038/ni.3390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Appel S, Mirakaj V, Bringmann A, Weck MM, Grunebach F, Brossart P (2005) PPAR-gamma agonists inhibit toll-like receptor-mediated activation of dendritic cells via the MAP kinase and NF-kappaB pathways. Blood 106(12):3888–3894. doi:10.1182/blood-2004-12-4709

    Article  CAS  PubMed  Google Scholar 

  10. Araki K, Turner AP, Shaffer VO, Gangappa S, Keller SA, Bachmann MF, Larsen CP, Ahmed R (2009) mTOR regulates memory CD8 T-cell differentiation. Nature 460(7251):108–112. doi:10.1038/nature08155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P, Liu H, Cross JR, Pfeffer K, Coffer PJ, Rudensky AY (2013) Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504(7480):451–455. doi:10.1038/nature12726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Arranz A, Doxaki C, Vergadi E, Martinez de la Torre Y, Vaporidi K, Lagoudaki ED, Ieronymaki E, Androulidaki A, Venihaki M, Margioris AN, Stathopoulos EN, Tsichlis PN, Tsatsanis C (2012) Akt1 and Akt2 protein kinases differentially contribute to macrophage polarization. Proc Natl Acad Sci U.S.A. 109(24):9517–9522. doi:10.1073/pnas.1119038109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Artis D, Spits H (2015) The biology of innate lymphoid cells. Nature 517(7534):293–301. doi:10.1038/nature14189

    Article  CAS  PubMed  Google Scholar 

  14. Atkuri KR, Herzenberg LA, Herzenberg LA (2005) Culturing at atmospheric oxygen levels impacts lymphocyte function. Proc Natl Acad Sci U.S.A. 102(10):3756–3759. doi:10.1073/pnas.0409910102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Atkuri KR, Herzenberg LA, Niemi AK, Cowan T, Herzenberg LA (2007) Importance of culturing primary lymphocytes at physiological oxygen levels. Proc Natl Acad Sci U.S.A. 104(11):4547–4552. doi:10.1073/pnas.0611732104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Baginska J, Viry E, Paggetti J, Medves S, Berchem G, Moussay E, Janji B (2013) The critical role of the tumor microenvironment in shaping natural killer cell-mediated anti-tumor immunity. Front Immunol 4:490. doi:10.3389/fimmu.2013.00490

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Baixauli F, Acin-Perez R, Villarroya-Beltri C, Mazzeo C, Nunez-Andrade N, Gabande-Rodriguez E, Ledesma MD, Blazquez A, Martin MA, Falcon-Perez JM, Redondo JM, Enriquez JA, Mittelbrunn M (2015) Mitochondrial respiration controls lysosomal function during inflammatory T cell responses. Cell Metab 22(3):485–498. doi:10.1016/j.cmet.2015.07.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ballesteros-Tato A, Leon B, Graf BA, Moquin A, Adams PS, Lund FE, Randall TD (2012) Interleukin-2 inhibits germinal center formation by limiting T follicular helper cell differentiation. Immunity 36(5):847–856. doi:10.1016/j.immuni.2012.02.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Balsamo M, Manzini C, Pietra G, Raggi F, Blengio F, Mingari MC, Varesio L, Moretta L, Bosco MC, Vitale M (2013) Hypoxia downregulates the expression of activating receptors involved in NK-cell-mediated target cell killing without affecting ADCC. Eur J Immunol 43(10):2756–2764. doi:10.1002/eji.201343448

    Article  CAS  PubMed  Google Scholar 

  20. Bar-Peled L, Chantranupong L, Cherniack AD, Chen WW, Ottina KA, Grabiner BC, Spear ED, Carter SL, Meyerson M, Sabatini DM (2013) A tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science 340(6136):1100–1106. doi:10.1126/science.1232044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Battaglia M, Stabilini A, Migliavacca B, Horejs-Hoeck J, Kaupper T, Roncarolo MG (2006) Rapamycin promotes expansion of functional CD4+CD25+FOXP3+ regulatory T cells of both healthy subjects and type 1 diabetic patients. J Immunol (Baltimore, Md: 1950) 177(12):8338–8347

    Article  CAS  Google Scholar 

  22. Bauer DE, Hatzivassiliou G, Zhao F, Andreadis C, Thompson CB (2005) ATP citrate lyase is an important component of cell growth and transformation. Oncogene 24(41):6314–6322. doi:10.1038/sj.onc.1208773

    Article  CAS  PubMed  Google Scholar 

  23. Beier UH, Angelin A, Akimova T, Wang L, Liu Y, Xiao H, Koike MA, Hancock SA, Bhatti TR, Han R, Jiao J, Veasey SC, Sims CA, Baur JA, Wallace DC, Hancock WW (2015) Essential role of mitochondrial energy metabolism in Foxp3(+) T-regulatory cell function and allograft survival. FASEB J: Off Publ Fed Am Soc Exp Biol 29(6):2315–2326. doi:10.1096/fj.14-268409

    Article  CAS  Google Scholar 

  24. Belikov AV, Schraven B, Simeoni L (2015) T cells and reactive oxygen species. J Biomed Sci 22:85. doi:10.1186/s12929-015-0194-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Ben-Shoshan J, Maysel-Auslender S, Mor A, Keren G, George J (2008) Hypoxia controls CD4+CD25+ regulatory T-cell homeostasis via hypoxia-inducible factor-1alpha. Eur J Immunol 38(9):2412–2418. doi:10.1002/eji.200838318

    Article  CAS  PubMed  Google Scholar 

  26. Benhamron S, Tirosh B (2011) Direct activation of mTOR in B lymphocytes confers impairment in B-cell maturation andloss of marginal zone B cells. Eur J Immunol 41(8):2390–2396. doi:10.1002/eji.201041336

    Article  CAS  PubMed  Google Scholar 

  27. Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, Whitesell L, Kelly TE, Saulsbury FT, Chance PF, Ochs HD (2001) The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 27(1):20–21. doi:10.1038/83713

    Article  CAS  PubMed  Google Scholar 

  28. Bensinger SJ, Bradley MN, Joseph SB, Zelcer N, Janssen EM, Hausner MA, Shih R, Parks JS, Edwards PA, Jamieson BD, Tontonoz P (2008) LXR signaling couples sterol metabolism to proliferation in the acquired immune response. Cell 134(1):97–111. doi:10.1016/j.cell.2008.04.052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bentley J, Itchayanan D, Barnes K, McIntosh E, Tang X, Downes CP, Holman GD, Whetton AD, Owen-Lynch PJ, Baldwin SA (2003) Interleukin-3-mediated cell survival signals include phosphatidylinositol 3-kinase-dependent translocation of the glucose transporter GLUT1 to the cell surface. J Biol Chem 278(41):39337–39348. doi:10.1074/jbc.M305689200

    Article  CAS  PubMed  Google Scholar 

  30. Berod L, Friedrich C, Nandan A, Freitag J, Hagemann S, Harmrolfs K, Sandouk A, Hesse C, Castro CN, Bahre H, Tschirner SK, Gorinski N, Gohmert M, Mayer CT, Huehn J, Ponimaskin E, Abraham WR, Muller R, Lochner M, Sparwasser T (2014) De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat Med 20(11):1327–1333. doi:10.1038/nm.3704

    Article  CAS  PubMed  Google Scholar 

  31. Bhandari T, Olson J, Johnson RS, Nizet V (2013) HIF-1alpha influences myeloid cell antigen presentation and response to subcutaneous OVA vaccination. J Mol Med 91(10):1199–1205. doi:10.1007/s00109-013-1052-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Blagih J, Coulombe F, Vincent EE, Dupuy F, Galicia-Vazquez G, Yurchenko E, Raissi TC, van der Windt GJ, Viollet B, Pearce EL, Pelletier J, Piccirillo CA, Krawczyk CM, Divangahi M, Jones RG (2015) The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo. Immunity 42(1):41–54. doi:10.1016/j.immuni.2014.12.030

    Article  CAS  PubMed  Google Scholar 

  33. Blanc M, Hsieh WY, Robertson KA, Kropp KA, Forster T, Shui G, Lacaze P, Watterson S, Griffiths SJ, Spann NJ, Meljon A, Talbot S, Krishnan K, Covey DF, Wenk MR, Craigon M, Ruzsics Z, Haas J, Angulo A, Griffiths WJ, Glass CK, Wang Y, Ghazal P (2013) The transcription factor STAT-1 couples macrophage synthesis of 25-hydroxycholesterol to the interferon antiviral response. Immunity 38(1):106–118. doi:10.1016/j.immuni.2012.11.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Blanc M, Hsieh WY, Robertson KA, Watterson S, Shui G, Lacaze P, Khondoker M, Dickinson P, Sing G, Rodriguez-Martin S, Phelan P, Forster T, Strobl B, Muller M, Riemersma R, Osborne T, Wenk MR, Angulo A, Ghazal P (2011) Host defense against viral infection involves interferon mediated down-regulation of sterol biosynthesis. PLoS Biol 9(3):e1000598. doi:10.1371/journal.pbio.1000598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Blasius AL, Arnold CN, Georgel P, Rutschmann S, Xia Y, Lin P, Ross C, Li X, Smart NG, Beutler B (2010) Slc15a4, AP-3, and Hermansky-Pudlak syndrome proteins are required for Toll-like receptor signaling in plasmacytoid dendritic cells. Proc Natl Acad Sci U.S.A. 107(46):19973–19978. doi:10.1073/pnas.1014051107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Blouin CC, Page EL, Soucy GM, Richard DE (2004) Hypoxic gene activation by lipopolysaccharide in macrophages: implication of hypoxia-inducible factor 1alpha. Blood 103(3):1124–1130. doi:10.1182/blood-2003-07-2427

    Article  CAS  PubMed  Google Scholar 

  37. Boor PP, Metselaar HJ, Mancham S, van der Laan LJ, Kwekkeboom J (2013) Rapamycin has suppressive and stimulatory effects on human plasmacytoid dendritic cell functions. Clin Exp Immunol 174(3):389–401. doi:10.1111/cei.12191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bouhlel MA, Derudas B, Rigamonti E, Dievart R, Brozek J, Haulon S, Zawadzki C, Jude B, Torpier G, Marx N, Staels B, Chinetti-Gbaguidi G (2007) PPARgamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metab 6(2):137–143. doi:10.1016/j.cmet.2007.06.010

    Article  CAS  PubMed  Google Scholar 

  39. Boxer RB, Stairs DB, Dugan KD, Notarfrancesco KL, Portocarrero CP, Keister BA, Belka GK, Cho H, Rathmell JC, Thompson CB, Birnbaum MJ, Chodosh LA (2006) Isoform-specific requirement for Akt1 in the developmental regulation of cellular metabolism during lactation. Cell Metab 4(6):475–490. doi:10.1016/j.cmet.2006.10.011

    Article  CAS  PubMed  Google Scholar 

  40. Brestoff JR, Kim BS, Saenz SA, Stine RR, Monticelli LA, Sonnenberg GF, Thome JJ, Farber DL, Lutfy K, Seale P, Artis D (2015) Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature 519(7542):242–246. doi:10.1038/nature14115

    Article  CAS  PubMed  Google Scholar 

  41. Bronte V, Zanovello P (2005) Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol 5(8):641–654. doi:10.1038/nri1668

    Article  CAS  PubMed  Google Scholar 

  42. Brown J, Wang H, Suttles J, Graves DT, Martin M (2011) Mammalian target of rapamycin complex 2 (mTORC2) negatively regulates Toll-like receptor 4-mediated inflammatory response via FoxO1. J Biol Chem 286(52):44295–44305. doi:10.1074/jbc.M111.258053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Brunet A, Park J, Tran H, Hu LS, Hemmings BA, Greenberg ME (2001) Protein kinase SGK mediates survival signals by phosphorylating the forkhead transcription factor FKHRL1 (FOXO3a). Mol Cell Biol 21(3):952–965. doi:10.1128/MCB.21.3.952-965.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko SA, Wilkinson JE, Galas D, Ziegler SF, Ramsdell F (2001) Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 27(1):68–73. doi:10.1038/83784

    Article  CAS  PubMed  Google Scholar 

  45. Buck MD, O’Sullivan D, Klein Geltink RI, Curtis JD, Chang CH, Sanin DE, Qiu J, Kretz O, Braas D, van der Windt GJ, Chen Q, Huang SC, O’Neill CM, Edelson BT, Pearce EJ, Sesaki H, Huber TB, Rambold AS, Pearce EL (2016) Mitochondrial dynamics controls T cell fate through metabolic programming. Cell 166(1):63–76. doi:10.1016/j.cell.2016.05.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Buck MD, O’Sullivan D, Pearce EL (2015) T cell metabolism drives immunity. J Exp Med 212(9):1345–1360. doi:10.1084/jem.20151159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Buckley AF, Kuo CT, Leiden JM (2001) Transcription factor LKLF is sufficient to program T cell quiescence via a c-Myc-dependent pathway. Nat Immunol 2(8):698–704. doi:10.1038/90633

    Article  CAS  PubMed  Google Scholar 

  48. Bukowski JF, Morita CT, Brenner MB (1999) Human gamma delta T cells recognize alkylamines derived from microbes, edible plants, and tea: implications for innate immunity. Immunity 11(1):57–65

    Article  CAS  PubMed  Google Scholar 

  49. Burke B, Tang N, Corke KP, Tazzyman D, Ameri K, Wells M, Lewis CE (2002) Expression of HIF-1alpha by human macrophages: implications for the use of macrophages in hypoxia-regulated cancer gene therapy. J Pathol 196(2):204–212. doi:10.1002/path.1029

    Article  CAS  PubMed  Google Scholar 

  50. Busada JT, Chappell VA, Niedenberger BA, Kaye EP, Keiper BD, Hogarth CA, Geyer CB (2015) Retinoic acid regulates Kit translation during spermatogonial differentiation in the mouse. Dev Biol 397(1):140–149

    Article  CAS  PubMed  Google Scholar 

  51. Byersdorfer CA, Tkachev V, Opipari AW, Goodell S, Swanson J, Sandquist S, Glick GD, Ferrara JL (2013) Effector T cells require fatty acid metabolism during murine graft-versus-host disease. Blood 122(18):3230–3237. doi:10.1182/blood-2013-04-495515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Byles V, Covarrubias AJ, Ben-Sahra I, Lamming DW, Sabatini DM, Manning BD, Horng T (2013) The TSC-mTOR pathway regulates macrophage polarization. Nat Commun 4:2834. doi:10.1038/ncomms3834

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Caldwell CC, Kojima H, Lukashev D, Armstrong J, Farber M, Apasov SG, Sitkovsky MV (2001) Differential effects of physiologically relevant hypoxic conditions on T lymphocyte development and effector functions. J Immunol 167(11):6140–6149

    Article  CAS  PubMed  Google Scholar 

  54. Calnan DR, Brunet A (2008) The FoxO code. Oncogene 27(16):2276–2288. doi:10.1038/onc.2008.21

    Article  CAS  PubMed  Google Scholar 

  55. Cao W, Manicassamy S, Tang H, Kasturi SP, Pirani A, Murthy N, Pulendran B (2008) Toll-like receptor-mediated induction of type I interferon in plasmacytoid dendritic cells requires the rapamycin-sensitive PI(3)K-mTOR-p70S6K pathway. Nat Immunol 9(10):1157–1164. doi:10.1038/ni.1645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cao Y, Li H, Liu H, Zheng C, Ji H, Liu X (2010) The serine/threonine kinase LKB1 controls thymocyte survival through regulation of AMPK activation and Bcl-XL expression. Cell Res 20(1):99–108. doi:10.1038/cr.2009.141

    Article  CAS  PubMed  Google Scholar 

  57. Carlson CM, Endrizzi BT, Wu J, Ding X, Weinreich MA, Walsh ER, Wani MA, Lingrel JB, Hogquist KA, Jameson SC (2006) Kruppel-like factor 2 regulates thymocyte and T-cell migration. Nature 442(7100):299–302. doi:10.1038/nature04882

    Article  CAS  PubMed  Google Scholar 

  58. Caro-Maldonado A, Wang R, Nichols AG, Kuraoka M, Milasta S, Sun LD, Gavin AL, Abel ED, Kelsoe G, Green DR, Rathmell JC (2014) Metabolic reprogramming is required for antibody production that is suppressed in anergic but exaggerated in chronically BAFF-exposed B cells. J Immunol 192(8):3626–3636. doi:10.4049/jimmunol.1302062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Carr EL, Kelman A, Wu GS, Gopaul R, Senkevitch E, Aghvanyan A, Turay AM, Frauwirth KA (2010) Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. J Immunol 185(2):1037–1044. doi:10.4049/jimmunol.0903586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Carroll KC, Viollet B, Suttles J (2013) AMPKalpha1 deficiency amplifies proinflammatory myeloid APC activity and CD40 signaling. J Leukoc Biol 94(6):1113–1121. doi:10.1189/jlb.0313157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Castellano E, Downward J (2011) RAS interaction with PI3K: more than just another effector pathway. Genes Cancer 2(3):261–274. doi:10.1177/1947601911408079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chakrabarti R, Engleman EG (1991) Interrelationships between mevalonate metabolism and the mitogenic signaling pathway in T lymphocyte proliferation. J Biol Chem 266(19):12216–12222

    CAS  PubMed  Google Scholar 

  63. Cham CM, Gajewski TF (2005) Glucose availability regulates IFN-gamma production and p70S6 kinase activation in CD8+ effector T cells. J Immunol 174(8):4670–4677

    Article  CAS  PubMed  Google Scholar 

  64. Chang CH, Curtis JD, Maggi LB Jr, Faubert B, Villarino AV, O’Sullivan D, Huang SC, van der Windt GJ, Blagih J, Qiu J, Weber JD, Pearce EJ, Jones RG, Pearce EL (2013a) Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153(6):1239–1251. doi:10.1016/j.cell.2013.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chang HC, Sehra S, Goswami R, Yao W, Yu Q, Stritesky GL, Jabeen R, McKinley C, Ahyi AN, Han L, Nguyen ET, Robertson MJ, Perumal NB, Tepper RS, Nutt SL, Kaplan MH (2010) The transcription factor PU.1 is required for the development of IL-9-producing T cells and allergic inflammation. Nat Immunol 11(6):527–534. doi:10.1038/ni.1867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chang J, Burkett PR, Borges CM, Kuchroo VK, Turka LA, Chang CH (2013b) MyD88 is essential to sustain mTOR activation necessary to promote T helper 17 cell proliferation by linking IL-1 and IL-23 signaling. Proc Natl Acad Sci U.S.A. 110(6):2270–2275. doi:10.1073/pnas.1206048110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chang JT, Palanivel VR, Kinjyo I, Schambach F, Intlekofer AM, Banerjee A, Longworth SA, Vinup KE, Mrass P, Oliaro J, Killeen N, Orange JS, Russell SM, Weninger W, Reiner SL (2007) Asymmetric T lymphocyte division in the initiation of adaptive immune responses. Science 315(5819):1687–1691. doi:10.1126/science.1139393

    Article  CAS  PubMed  Google Scholar 

  68. Chatila TA, Blaeser F, Ho N, Lederman HM, Voulgaropoulos C, Helms C, Bowcock AM (2000) JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome. J Clin Invest 106(12):R75–R81. doi:10.1172/JCI11679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chi H (2012) Regulation and function of mTOR signalling in T cell fate decisions. Nat Rev Immunol 12(5):325–338. doi:10.1038/nri3198

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Chinen T, Kannan AK, Levine AG, Fan X, Klein U, Zheng Y, Gasteiger G, Feng Y, Fontenot JD, Rudensky AY (2016) An essential role for the IL-2 receptor in Treg cell function. Nat Immunol. doi:10.1038/ni.3540

  71. Choi YS, Gullicksrud JA, Xing S, Zeng Z, Shan Q, Li F, Love PE, Peng W, Xue HH, Crotty S (2015) LEF-1 and TCF-1 orchestrate T(FH) differentiation by regulating differentiation circuits upstream of the transcriptional repressor Bcl6. Nat Immunol 16(9):980–990. doi:10.1038/ni.3226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chou C, Pinto AK, Curtis JD, Persaud SP, Cella M, Lin CC, Edelson BT, Allen PM, Colonna M, Pearce EL, Diamond MS, Egawa T (2014) c-Myc-induced transcription factor AP4 is required for host protection mediated by CD8+ T cells. Nat Immunol 15(9):884–893. doi:10.1038/ni.2943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cipolletta D, Feuerer M, Li A, Kamei N, Lee J, Shoelson SE, Benoist C, Mathis D (2012) PPAR-gamma is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature 486(7404):549–553. doi:10.1038/nature11132

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Clambey ET, McNamee EN, Westrich JA, Glover LE, Campbell EL, Jedlicka P, de Zoeten EF, Cambier JC, Stenmark KR, Colgan SP, Eltzschig HK (2012) Hypoxia-inducible factor-1 alpha-dependent induction of FoxP3 drives regulatory T-cell abundance and function during inflammatory hypoxia of the mucosa. Proc Natl Acad Sci U.S.A. 109(41):E2784–E2793. doi:10.1073/pnas.1202366109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Clark RB, Bishop-Bailey D, Estrada-Hernandez T, Hla T, Puddington L, Padula SJ (2000) The nuclear receptor PPAR gamma and immunoregulation: PPAR gamma mediates inhibition of helper T cell responses. J Immunol 164(3):1364–1371

    Article  CAS  PubMed  Google Scholar 

  76. Clever D, Roychoudhuri R, Constantinides MG, Askenase MH, Sukumar M, Klebanoff CA, Eil RL, Hickman HD, Yu Z, Pan JH, Palmer DC, Phan AT, Goulding J, Gattinoni L, Goldrath AW, Belkaid Y, Restifo NP (2016) Oxygen sensing by T cells establishes an immunologically tolerant metastatic niche. Cell 166(5):1117–1131. e1114. doi:10.1016/j.cell.2016.07.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Cobbold SP, Adams E, Farquhar CA, Nolan KF, Howie D, Lui KO, Fairchild PJ, Mellor AL, Ron D, Waldmann H (2009) Infectious tolerance via the consumption of essential amino acids and mTOR signaling. Proc Natl Acad Sci U.S.A. 106(29):12055–12060. doi:10.1073/pnas.0903919106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Coombes JL, Siddiqui KR, Arancibia-Carcamo CV, Hall J, Sun CM, Belkaid Y, Powrie F (2007) A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med 204(8):1757–1764. doi:10.1084/jem.20070590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Cooper MA, Elliott JM, Keyel PA, Yang L, Carrero JA, Yokoyama WM (2009) Cytokine-induced memory-like natural killer cells. Proc Natl Acad Sci U.S.A. 106(6):1915–1919. doi:10.1073/pnas.0813192106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Covarrubias AJ, Aksoylar HI, Horng T (2015) Control of macrophage metabolism and activation by mTOR and Akt signaling. Semin Immunol 27(4):286–296. doi:10.1016/j.smim.2015.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cramer T, Yamanishi Y, Clausen BE, Forster I, Pawlinski R, Mackman N, Haase VH, Jaenisch R, Corr M, Nizet V, Firestein GS, Gerber HP, Ferrara N, Johnson RS (2003) HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell 112(5):645–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Cui G, Qin X, Wu L, Zhang Y, Sheng X, Yu Q, Sheng H, Xi B, Zhang JZ, Zang YQ (2011) Liver X receptor (LXR) mediates negative regulation of mouse and human Th17 differentiation. J Clin Invest 121(2):658–670. doi:10.1172/JCI42974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Cui Y, Chen X, Zhang J, Sun X, Liu H, Bai L, Xu C, Liu X (2016) Uhrf1 controls iNKT cell survival and differentiation through the Akt-mTOR Axis. Cell Rep 15(2):256–263. doi:10.1016/j.celrep.2016.03.016

    Article  CAS  PubMed  Google Scholar 

  84. Cunningham JT, Rodgers JT, Arlow DH, Vazquez F, Mootha VK, Puigserver P (2007) mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature 450(7170):736–740. doi:10.1038/nature06322

    Article  CAS  PubMed  Google Scholar 

  85. Cyster JG, Dang EV, Reboldi A, Yi T (2014) 25-Hydroxycholesterols in innate and adaptive immunity. Nat Rev Immunol 14(11):731–743. doi:10.1038/nri3755

    Article  CAS  PubMed  Google Scholar 

  86. Dang EV, Barbi J, Yang HY, Jinasena D, Yu H, Zheng Y, Bordman Z, Fu J, Kim Y, Yen HR, Luo W, Zeller K, Shimoda L, Topalian SL, Semenza GL, Dang CV, Pardoll DM, Pan F (2011) Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell 146(5):772–784. doi:10.1016/j.cell.2011.07.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. de Jong AJ, Kloppenburg M, Toes RE, Ioan-Facsinay A (2014) Fatty acids, lipid mediators, and T-cell function. Front Immunol 5:483. doi:10.3389/fimmu.2014.00483

    PubMed  PubMed Central  Google Scholar 

  88. De Rosa V, Galgani M, Porcellini A, Colamatteo A, Santopaolo M, Zuchegna C, Romano A, De Simone S, Procaccini C, La Rocca C, Carrieri PB, Maniscalco GT, Salvetti M, Buscarinu MC, Franzese A, Mozzillo E, La Cava A, Matarese G (2015) Glycolysis controls the induction of human regulatory T cells by modulating the expression of FOXP3 exon 2 splicing variants. Nat Immunol 16(11):1174–1184. doi:10.1038/ni.3269

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. De Rosa V, Procaccini C, Cali G, Pirozzi G, Fontana S, Zappacosta S, La Cava A, Matarese G (2007) A key role of leptin in the control of regulatory T cell proliferation. Immunity 26(2):241–255. doi:10.1016/j.immuni.2007.01.011

    Article  PubMed  CAS  Google Scholar 

  90. De Saedeleer CJ, Copetti T, Porporato PE, Verrax J, Feron O, Sonveaux P (2012) Lactate activates HIF-1 in oxidative but not in Warburg-phenotype human tumor cells. PLoS One 7(10):e46571. doi:10.1371/journal.pone.0046571

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. De Silva NS, Klein U (2015) Dynamics of B cells in germinal centres. Nat Rev Immunol 15(3):137–148. doi:10.1038/nri3804

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Delgoffe GM, Kole TP, Zheng Y, Zarek PE, Matthews KL, Xiao B, Worley PF, Kozma SC, Powell JD (2009) The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 30(6):832–844. doi:10.1016/j.immuni.2009.04.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Delgoffe GM, Pollizzi KN, Waickman AT, Heikamp E, Meyers DJ, Horton MR, Xiao B, Worley PF, Powell JD (2011) The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat Immunol 12(4):295–303. doi:10.1038/ni.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Delgoffe GM, Woo SR, Turnis ME, Gravano DM, Guy C, Overacre AE, Bettini ML, Vogel P, Finkelstein D, Bonnevier J, Workman CJ, Vignali DA (2013) Stability and function of regulatory T cells is maintained by a neuropilin-1-semaphorin-4a axis. Nature 501(7466):252–256. doi:10.1038/nature12428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Deng Y, Kerdiles Y, Chu J, Yuan S, Wang Y, Chen X, Mao H, Zhang L, Zhang J, Hughes T, Zhang Q, Wang F, Zou X, Liu CG, Freud AG, Li X, Caligiuri MA, Vivier E, Yu J (2015) Transcription factor Foxo1 is a negative regulator of natural killer cell maturation and function. Immunity 42(3):457–470. doi:10.1016/j.immuni.2015.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Depeint F, Bruce WR, Shangari N, Mehta R, O’Brien PJ (2006) Mitochondrial function and toxicity: role of B vitamins on the one-carbon transfer pathways. Chem Biol Interact 163(1–2):113–132. doi:10.1016/j.cbi.2006.05.010

    Article  CAS  PubMed  Google Scholar 

  97. Desreumaux P, Dubuquoy L, Nutten S, Peuchmaur M, Englaro W, Schoonjans K, Derijard B, Desvergne B, Wahli W, Chambon P, Leibowitz MD, Colombel JF, Auwerx J (2001) Attenuation of colon inflammation through activators of the retinoid X receptor (RXR)/peroxisome proliferator-activated receptor gamma (PPARgamma) heterodimer. A basis for new therapeutic strategies. J Exp Med 193(7):827–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Doedens AL, Phan AT, Stradner MH, Fujimoto JK, Nguyen JV, Yang E, Johnson RS, Goldrath AW (2013) Hypoxia-inducible factors enhance the effector responses of CD8(+) T cells to persistent antigen. Nat Immunol 14(11):1173–1182. doi:10.1038/ni.2714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Doege H, Stahl A (2006) Protein-mediated fatty acid uptake: novel insights from in vivo models. Physiology 21:259–268. doi:10.1152/physiol.00014.2006

    Article  CAS  PubMed  Google Scholar 

  100. Donnelly RP, Loftus RM, Keating SE, Liou KT, Biron CA, Gardiner CM, Finlay DK (2014) mTORC1-dependent metabolic reprogramming is a prerequisite for NK cell effector function. J Immunol 193(9):4477–4484. doi:10.4049/jimmunol.1401558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Doughty CA, Bleiman BF, Wagner DJ, Dufort FJ, Mataraza JM, Roberts MF, Chiles TC (2006) Antigen receptor-mediated changes in glucose metabolism in B lymphocytes: role of phosphatidylinositol 3-kinase signaling in the glycolytic control of growth. Blood 107(11):4458–4465. doi:10.1182/blood-2005-12-4788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Dufort FJ, Bleiman BF, Gumina MR, Blair D, Wagner DJ, Roberts MF, Abu-Amer Y, Chiles TC (2007) Cutting edge: IL-4-mediated protection of primary B lymphocytes from apoptosis via Stat6-dependent regulation of glycolytic metabolism. J Immunol 179(8):4953–4957

    Article  CAS  PubMed  Google Scholar 

  103. Dunn SE, Youssef S, Goldstein MJ, Prod’homme T, Weber MS, Zamvil SS, Steinman L (2006) Isoprenoids determine Th1/Th2 fate in pathogenic T cells, providing a mechanism of modulation of autoimmunity by atorvastatin. J Exp Med 203(2):401–412. doi:10.1084/jem.20051129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ecker J, Liebisch G, Englmaier M, Grandl M, Robenek H, Schmitz G (2010) Induction of fatty acid synthesis is a key requirement for phagocytic differentiation of human monocytes. Proc Natl Acad Sci U.S.A. 107(17):7817–7822. doi:10.1073/pnas.0912059107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, Vasquez DS, Joshi A, Gwinn DM, Taylor R, Asara JM, Fitzpatrick J, Dillin A, Viollet B, Kundu M, Hansen M, Shaw RJ (2011) Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331(6016):456–461. doi:10.1126/science.1196371

    Article  CAS  PubMed  Google Scholar 

  106. Eijkelenboom A, Burgering BM (2013) FOXOs: signalling integrators for homeostasis maintenance. Nat Rev Mol Cell Biol 14(2):83–97. doi:10.1038/nrm3507

    Article  CAS  PubMed  Google Scholar 

  107. Endo Y, Asou HK, Matsugae N, Hirahara K, Shinoda K, Tumes DJ, Tokuyama H, Yokote K, Nakayama T (2015) Obesity drives Th17 cell differentiation by inducing the lipid metabolic kinase, ACC1. Cell Rep 12(6):1042–1055. doi:10.1016/j.celrep.2015.07.014

    Article  CAS  PubMed  Google Scholar 

  108. Everts B, Amiel E, Huang SC, Smith AM, Chang CH, Lam WY, Redmann V, Freitas TC, Blagih J, van der Windt GJ, Artyomov MN, Jones RG, Pearce EL, Pearce EJ (2014) TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKvarepsilon supports the anabolic demands of dendritic cell activation. Nat Immunol 15(4):323–332. doi:10.1038/ni.2833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Everts B, Amiel E, van der Windt GJ, Freitas TC, Chott R, Yarasheski KE, Pearce EL, Pearce EJ (2012) Commitment to glycolysis sustains survival of NO-producing inflammatory dendritic cells. Blood 120(7):1422–1431. doi:10.1182/blood-2012-03-419747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Fan W, Morinaga H, Kim JJ, Bae E, Spann NJ, Heinz S, Glass CK, Olefsky JM (2010) FoxO1 regulates Tlr4 inflammatory pathway signalling in macrophages. EMBO J 29(24):4223–4236. doi:10.1038/emboj.2010.268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Fang C, Yu J, Luo Y, Chen S, Wang W, Zhao C, Sun Z, Wu W, Guo W, Han Z, Hu X, Liao F, Feng X (2015) Tsc1 is a critical regulator of macrophage survival and function. Cell Physiol Biochem 36(4):1406–1418. doi:10.1159/000430306

    Article  CAS  PubMed  Google Scholar 

  112. Faveeuw C, Fougeray S, Angeli V, Fontaine J, Chinetti G, Gosset P, Delerive P, Maliszewski C, Capron M, Staels B, Moser M, Trottein F (2000) Peroxisome proliferator-activated receptor gamma activators inhibit interleukin-12 production in murine dendritic cells. FEBS Lett 486(3):261–266

    Article  CAS  PubMed  Google Scholar 

  113. Feng X, Wang H, Takata H, Day TJ, Willen J, Hu H (2011) Transcription factor Foxp1 exerts essential cell-intrinsic regulation of the quiescence of naive T cells. Nat Immunol 12(6):544–550. doi:10.1038/ni.2034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Fernandez-Marcos PJ, Auwerx J (2011) Regulation of PGC-1alpha, a nodal regulator of mitochondrial biogenesis. Am J Clin Nutr 93(4):884S–8890. doi:10.3945/ajcn.110.001917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Festuccia WT, Pouliot P, Bakan I, Sabatini DM, Laplante M (2014) Myeloid-specific Rictor deletion induces M1 macrophage polarization and potentiates in vivo pro-inflammatory response to lipopolysaccharide. PLoS One 9(4):e95432. doi:10.1371/journal.pone.0095432

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Finlay DK (2012) Regulation of glucose metabolism in T cells: new insight into the role of Phosphoinositide 3-kinases. Front Immunol 3:247. doi:10.3389/fimmu.2012.00247

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Finlay DK, Rosenzweig E, Sinclair LV, Feijoo-Carnero C, Hukelmann JL, Rolf J, Panteleyev AA, Okkenhaug K, Cantrell DA (2012) PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrate metabolism and migration of CD8+ T cells. J Exp Med 209(13):2441–2453. doi:10.1084/jem.20112607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Finlay DK, Sinclair LV, Feijoo C, Waugh CM, Hagenbeek TJ, Spits H, Cantrell DA (2009) Phosphoinositide-dependent kinase 1 controls migration and malignant transformation but not cell growth and proliferation in PTEN-null lymphocytes. J Exp Med 206(11):2441–2454. doi:10.1084/jem.20090219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Fletcher M, Ramirez ME, Sierra RA, Raber P, Thevenot P, Al-Khami AA, Sanchez-Pino D, Hernandez C, Wyczechowska DD, Ochoa AC, Rodriguez PC (2015) L-arginine depletion blunts antitumor T-cell responses by inducing myeloid-derived suppressor cells. Cancer Res 75(2):275–283. doi:10.1158/0008-5472.can-14-1491

    Article  CAS  PubMed  Google Scholar 

  120. Fontenot JD, Rasmussen JP, Williams LM, Dooley JL, Farr AG, Rudensky AY (2005) Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 22(3):329–341. doi:10.1016/j.immuni.2005.01.016

    Article  CAS  PubMed  Google Scholar 

  121. Frauwirth KA, Riley JL, Harris MH, Parry RV, Rathmell JC, Plas DR, Elstrom RL, June CH, Thompson CB (2002) The CD28 signaling pathway regulates glucose metabolism. Immunity 16(6):769–777

    Article  CAS  PubMed  Google Scholar 

  122. Freemerman AJ, Johnson AR, Sacks GN, Milner JJ, Kirk EL, Troester MA, Macintyre AN, Goraksha-Hicks P, Rathmell JC, Makowski L (2014) Metabolic reprogramming of macrophages: glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype. J Biol Chem 289(11):7884–7896. doi:10.1074/jbc.M113.522037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Fullerton MD, Galic S, Marcinko K, Sikkema S, Pulinilkunnil T, Chen ZP, O’Neill HM, Ford RJ, Palanivel R, O’Brien M, Hardie DG, Macaulay SL, Schertzer JD, Dyck JR, van Denderen BJ, Kemp BE, Steinberg GR (2013) Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nat Med 19(12):1649–1654. doi:10.1038/nm.3372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, Nakanishi Y, Uetake C, Kato K, Kato T, Takahashi M, Fukuda NN, Murakami S, Miyauchi E, Hino S, Atarashi K, Onawa S, Fujimura Y, Lockett T, Clarke JM, Topping DL, Tomita M, Hori S, Ohara O, Morita T, Koseki H, Kikuchi J, Honda K, Hase K, Ohno H (2013) Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504(7480):446–450. doi:10.1038/nature12721

    Article  CAS  PubMed  Google Scholar 

  125. Galic S, Fullerton MD, Schertzer JD, Sikkema S, Marcinko K, Walkley CR, Izon D, Honeyman J, Chen ZP, van Denderen BJ, Kemp BE, Steinberg GR (2011) Hematopoietic AMPK beta1 reduces mouse adipose tissue macrophage inflammation and insulin resistance in obesity. J Clin Invest 121(12):4903–4915. doi:10.1172/JCI58577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Galvan-Pena S, O’Neill LA (2014) Metabolic reprograming in macrophage polarization. Front Immunol 5:420. doi:10.3389/fimmu.2014.00420

    PubMed  PubMed Central  Google Scholar 

  127. Gan X, Wang J, Su B, Wu D (2011) Evidence for direct activation of mTORC2 kinase activity by phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 286(13):10998–11002. doi:10.1074/jbc.M110.195016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ganeshan K, Chawla A (2014) Metabolic regulation of immune responses. Annu Rev Immunol 32:609–634. doi:10.1146/annurev-immunol-032713-120236

    Article  CAS  PubMed  Google Scholar 

  129. Ganguly D, Haak S, Sisirak V, Reizis B (2013) The role of dendritic cells in autoimmunity. Nat Rev Immunol 13(8):566–577. doi:10.1038/nri3477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Ganley IG, Lam du H, Wang J, Ding X, Chen S, Jiang X (2009) ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem 284(18):12297–12305. doi:10.1074/jbc.M900573200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Gehart H, Kumpf S, Ittner A, Ricci R (2010) MAPK signalling in cellular metabolism: stress or wellness? EMBO Rep 11(11):834–840. doi:10.1038/embor.2010.160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Gerriets VA, Kishton RJ, Nichols AG, Macintyre AN, Inoue M, Ilkayeva O, Winter PS, Liu X, Priyadharshini B, Slawinska ME, Haeberli L, Huck C, Turka LA, Wood KC, Hale LP, Smith PA, Schneider MA, MacIver NJ, Locasale JW, Newgard CB, Shinohara ML, Rathmell JC (2015) Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation. J Clin Invest 125(1):194–207. doi:10.1172/JCI76012

    Article  PubMed  Google Scholar 

  133. Giandomenico V, Simonsson M, Gronroos E, Ericsson J (2003) Coactivator-dependent acetylation stabilizes members of the SREBP family of transcription factors. Mol Cell Biol 23(7):2587–2599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Gober HJ, Kistowska M, Angman L, Jeno P, Mori L, De Libero G (2003) Human T cell receptor gammadelta cells recognize endogenous mevalonate metabolites in tumor cells. J Exp Med 197(2):163–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Gomez-Rodriguez J, Meylan F, Handon R, Hayes ET, Anderson SM, Kirby MR, Siegel RM, Schwartzberg PL (2016) Itk is required for Th9 differentiation via TCR-mediated induction of IL-2 and IRF4. Nat Commun 7:10857. doi:10.1038/ncomms10857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Gomez-Rodriguez J, Wohlfert EA, Handon R, Meylan F, Wu JZ, Anderson SM, Kirby MR, Belkaid Y, Schwartzberg PL (2014) Itk-mediated integration of T cell receptor and cytokine signaling regulates the balance between Th17 and regulatory T cells. J Exp Med 211(3):529–543. doi:10.1084/jem.20131459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Gorentla BK, Wan CK, Zhong XP (2011) Negative regulation of mTOR activation by diacylglycerol kinases. Blood 117(15):4022–4031. doi:10.1182/blood-2010-08-300731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Gorman S, Kuritzky LA, Judge MA, Dixon KM, McGlade JP, Mason RS, Finlay-Jones JJ, Hart PH (2007) Topically applied 1,25-dihydroxyvitamin D3 enhances the suppressive activity of CD4+CD25+ cells in the draining lymph nodes. J Immunol 179(9):6273–6283

    Article  CAS  PubMed  Google Scholar 

  139. Gosset P, Charbonnier AS, Delerive P, Fontaine J, Staels B, Pestel J, Tonnel AB, Trottein F (2001) Peroxisome proliferator-activated receptor gamma activators affect the maturation of human monocyte-derived dendritic cells. Eur J Immunol 31(10):2857–2865

    Article  CAS  PubMed  Google Scholar 

  140. Goswami R, Kaplan MH (2012) Gcn5 is required for PU.1-dependent IL-9 induction in Th9 cells. J Immunol 189(6):3026–3033. doi:10.4049/jimmunol.1201496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Greenwood J, Steinman L, Zamvil SS (2006) Statin therapy and autoimmune disease: from protein prenylation to immunomodulation. Nat Rev Immunol 6(5):358–370. doi:10.1038/nri1839

    Article  CAS  PubMed  Google Scholar 

  142. Gross DN, van den Heuvel AP, Birnbaum MJ (2008) The role of FoxO in the regulation of metabolism. Oncogene 27(16):2320–2336. doi:10.1038/onc.2008.25

    Article  CAS  PubMed  Google Scholar 

  143. Gualdoni GA, Mayer KA, Goschl L, Boucheron N, Ellmeier W, Zlabinger GJ (2016) The AMP analog AICAR modulates the Treg/Th17 axis through enhancement of fatty acid oxidation. FASEB J: Off Publ Fed Am Soc Exp Biol. doi:10.1096/fj.201600522R

  144. Gubbels Bupp MR, Edwards B, Guo C, Wei D, Chen G, Wong B, Masteller E, Peng SL (2009) T cells require Foxo1 to populate the peripheral lymphoid organs. Eur J Immunol 39(11):2991–2999. doi:10.1002/eji.200939427

    Article  CAS  PubMed  Google Scholar 

  145. Gulen MF, Kang Z, Bulek K, Youzhong W, Kim TW, Chen Y, Altuntas CZ, Sass Bak-Jensen K, McGeachy MJ, Do JS, Xiao H, Delgoffe GM, Min B, Powell JD, Tuohy VK, Cua DJ, Li X (2010) The receptor SIGIRR suppresses Th17 cell proliferation via inhibition of the interleukin-1 receptor pathway and mTOR kinase activation. Immunity 32(1):54–66. doi:10.1016/j.immuni.2009.12.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Guo F, Iclozan C, Suh WK, Anasetti C, Yu XZ (2008) CD28 controls differentiation of regulatory T cells from naive CD4 T cells. J Immunol 181(4):2285–2291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Haas R, Smith J, Rocher-Ros V, Nadkarni S, Montero-Melendez T, D’Acquisto F, Bland EJ, Bombardieri M, Pitzalis C, Perretti M, Marelli-Berg FM, Mauro C (2015) Lactate regulates metabolic and pro-inflammatory circuits in control of T cell migration and effector functions. PLoS Biol 13(7):e1002202. doi:10.1371/journal.pbio.1002202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Hagenbeek TJ, Naspetti M, Malergue F, Garcon F, Nunes JA, Cleutjens KB, Trapman J, Krimpenfort P, Spits H (2004) The loss of PTEN allows TCR alphabeta lineage thymocytes to bypass IL-7 and Pre-TCR-mediated signaling. J Exp Med 200(7):883–894. doi:10.1084/jem.20040495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Haghikia A, Jorg S, Duscha A, Berg J, Manzel A, Waschbisch A, Hammer A, Lee DH, May C, Wilck N, Balogh A, Ostermann AI, Schebb NH, Akkad DA, Grohme DA, Kleinewietfeld M, Kempa S, Thone J, Demir S, Muller DN, Gold R, Linker RA (2015) Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. Immunity 43(4):817–829. doi:10.1016/j.immuni.2015.09.007

    Article  CAS  PubMed  Google Scholar 

  150. Haidinger M, Poglitsch M, Geyeregger R, Kasturi S, Zeyda M, Zlabinger GJ, Pulendran B, Horl WH, Saemann MD, Weichhart T (2010) A versatile role of mammalian target of rapamycin in human dendritic cell function and differentiation. J Immunol 185(7):3919–3931. doi:10.4049/jimmunol.1000296

    Article  CAS  PubMed  Google Scholar 

  151. Hamilton KS, Phong B, Corey C, Cheng J, Gorentla B, Zhong X, Shiva S, Kane LP (2014) T cell receptor-dependent activation of mTOR signaling in T cells is mediated by Carma1 and MALT1, but not Bcl10. Sci Signal 7(329):ra55. doi:10.1126/scisignal.2005169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Hard GC (1970) Some biochemical aspects of the immune macrophage. Br J Exp Pathol 51(1):97–105

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Harms M, Seale P (2013) Brown and beige fat: development, function and therapeutic potential. Nat Med 19(10):1252–1263. doi:10.1038/nm.3361

    Article  CAS  PubMed  Google Scholar 

  154. Haschemi A, Kosma P, Gille L, Evans CR, Burant CF, Starkl P, Knapp B, Haas R, Schmid JA, Jandl C, Amir S, Lubec G, Park J, Esterbauer H, Bilban M, Brizuela L, Pospisilik JA, Otterbein LE, Wagner O (2012) The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism. Cell Metab 15(6):813–826. doi:10.1016/j.cmet.2012.04.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Hawley SA, Davison M, Woods A, Davies SP, Beri RK, Carling D, Hardie DG (1996) Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J Biol Chem 271(44):27879–27887

    Article  CAS  PubMed  Google Scholar 

  156. Hedrick SM, Hess Michelini R, Doedens AL, Goldrath AW, Stone EL (2012) FOXO transcription factors throughout T cell biology. Nat Rev Immunol 12(9):649–661. doi:10.1038/nri3278

    Article  CAS  PubMed  Google Scholar 

  157. Hess Michelini R, Doedens AL, Goldrath AW, Hedrick SM (2013) Differentiation of CD8 memory T cells depends on Foxo1. J Exp Med 210(6):1189–1200. doi:10.1084/jem.20130392

    Article  PubMed  CAS  Google Scholar 

  158. Ho PC, Bihuniak JD, Macintyre AN, Staron M, Liu X, Amezquita R, Tsui YC, Cui G, Micevic G, Perales JC, Kleinstein SH, Abel ED, Insogna KL, Feske S, Locasale JW, Bosenberg MW, Rathmell JC, Kaech SM (2015) Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. Cell 162(6):1217–1228. doi:10.1016/j.cell.2015.08.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Hontecillas R, Bassaganya-Riera J (2007) Peroxisome proliferator-activated receptor gamma is required for regulatory CD4+ T cell-mediated protection against colitis. J Immunol 178(5):2940–2949

    Article  CAS  PubMed  Google Scholar 

  160. Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299(5609):1057–1061. doi:10.1126/science.1079490

    Article  CAS  PubMed  Google Scholar 

  161. Hosios AM, Hecht VC, Danai LV, Johnson MO, Rathmell JC, Steinhauser ML, Manalis SR, Vander Heiden MG (2016) Amino acids rather than glucose account for the majority of cell mass in proliferating mammalian cells. Dev Cell 36(5):540–549. doi:10.1016/j.devcel.2016.02.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Housley WJ, Adams CO, Vang AG, Brocke S, Nichols FC, LaCombe M, Rajan TV, Clark RB (2011) Peroxisome proliferator-activated receptor gamma is required for CD4+ T cell-mediated lymphopenia-associated autoimmunity. J Immunol 187(8):4161–4169. doi:10.4049/jimmunol.1101731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Hsieh CS, Lee HM, Lio CW (2012) Selection of regulatory T cells in the thymus. Nat Rev Immunol 12(3):157–167. doi:10.1038/nri3155

    CAS  PubMed  Google Scholar 

  164. Huang D, Li T, Li X, Zhang L, Sun L, He X, Zhong X, Jia D, Song L, Semenza GL, Gao P, Zhang H (2014) HIF-1-mediated suppression of acyl-CoA dehydrogenases and fatty acid oxidation is critical for cancer progression. Cell Rep 8(6):1930–1942. doi:10.1016/j.celrep.2014.08.028

    Article  CAS  PubMed  Google Scholar 

  165. Huh JY, Kim JI, Park YJ, Hwang IJ, Lee YS, Sohn JH, Lee SK, Alfadda AA, Kim SS, Choi SH, Lee DS, Park SH, Seong RH, Choi CS, Kim JB (2013) A novel function of adipocytes in lipid antigen presentation to iNKT cells. Mol Cell Biol 33(2):328–339. doi:10.1128/MCB.00552-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Hukelmann JL, Anderson KE, Sinclair LV, Grzes KM, Murillo AB, Hawkins PT, Stephens LR, Lamond AI, Cantrell DA (2016) The cytotoxic T cell proteome and its shaping by the kinase mTOR. Nat Immunol 17(1):104–112. doi:10.1038/ni.3314

    Article  CAS  PubMed  Google Scholar 

  167. Hussaarts L, Smits HH, Schramm G, van der Ham AJ, van der Zon GC, Haas H, Guigas B, Yazdanbakhsh M (2013) Rapamycin and omega-1: mTOR-dependent and -independent Th2 skewing by human dendritic cells. Immunol Cell Biol 91(7):486–489. doi:10.1038/icb.2013.31

    Article  CAS  PubMed  Google Scholar 

  168. Huynh A, DuPage M, Priyadharshini B, Sage PT, Quiros J, Borges CM, Townamchai N, Gerriets VA, Rathmell JC, Sharpe AH, Bluestone JA, Turka LA (2015) Control of PI(3) kinase in Treg cells maintains homeostasis and lineage stability. Nat Immunol 16(2):188–196. doi:10.1038/ni.3077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Ikeda S, Saijo S, Murayama MA, Shimizu K, Akitsu A, Iwakura Y (2014) Excess IL-1 signaling enhances the development of Th17 cells by downregulating TGF-beta-induced Foxp3 expression. J Immunol 192(4):1449–1458. doi:10.4049/jimmunol.1300387

    Article  CAS  PubMed  Google Scholar 

  170. Im SS, Yousef L, Blaschitz C, Liu JZ, Edwards RA, Young SG, Raffatellu M, Osborne TF (2011) Linking lipid metabolism to the innate immune response in macrophages through sterol regulatory element binding protein-1a. Cell Metab 13(5):540–549. doi:10.1016/j.cmet.2011.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Imtiyaz HZ, Williams EP, Hickey MM, Patel SA, Durham AC, Yuan LJ, Hammond R, Gimotty PA, Keith B, Simon MC (2010) Hypoxia-inducible factor 2alpha regulates macrophage function in mouse models of acute and tumor inflammation. J Clin Invest 120(8):2699–2714. doi:10.1172/JCI39506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Infantino V, Convertini P, Cucci L, Panaro MA, Di Noia MA, Calvello R, Palmieri F, Iacobazzi V (2011) The mitochondrial citrate carrier: a new player in inflammation. Biochem J 438(3):433–436. doi:10.1042/BJ20111275

    Article  CAS  PubMed  Google Scholar 

  173. Jacobs SR, Herman CE, Maciver NJ, Wofford JA, Wieman HL, Hammen JJ, Rathmell JC (2008) Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways. J Immunol 180(7):4476–4486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Janke R, Dodson AE, Rine J (2015) Metabolism and epigenetics. Annu Rev Cell Dev Biol 31:473–496. doi:10.1146/annurev-cellbio-100814-125544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Jantsch J, Chakravortty D, Turza N, Prechtel AT, Buchholz B, Gerlach RG, Volke M, Glasner J, Warnecke C, Wiesener MS, Eckardt KU, Steinkasserer A, Hensel M, Willam C (2008) Hypoxia and hypoxia-inducible factor-1 alpha modulate lipopolysaccharide-induced dendritic cell activation and function. J Immunol 180(7):4697–4705

    Article  CAS  PubMed  Google Scholar 

  176. Jeffery LE, Burke F, Mura M, Zheng Y, Qureshi OS, Hewison M, Walker LS, Lammas DA, Raza K, Sansom DM (2009) 1,25-Dihydroxyvitamin D3 and IL-2 combine to inhibit T cell production of inflammatory cytokines and promote development of regulatory T cells expressing CTLA-4 and FoxP3. J Immunol 183(9):5458–5467. doi:10.4049/jimmunol.0803217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Jewell JL, Russell RC, Guan KL (2013) Amino acid signalling upstream of mTOR. Nat Rev Mol Cell Biol 14(3):133–139. doi:10.1038/nrm3522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Ji G, Zhang Y, Yang Q, Cheng S, Hao J, Zhao X, Jiang Z (2012) Genistein suppresses LPS-induced inflammatory response through inhibiting NF-kappaB following AMP kinase activation in RAW 264.7 macrophages. PloS One 7(12):e53101. doi:10.1371/journal.pone.0053101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Jiang H, Westerterp M, Wang C, Zhu Y, Ai D (2014) Macrophage mTORC1 disruption reduces inflammation and insulin resistance in obese mice. Diabetologia 57(11):2393–2404. doi:10.1007/s00125-014-3350-5

    Article  CAS  PubMed  Google Scholar 

  180. Johnston RJ, Poholek AC, DiToro D, Yusuf I, Eto D, Barnett B, Dent AL, Craft J, Crotty S (2009) Bcl6 and blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science 325(5943):1006–1010. doi:10.1126/science.1175870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Josefowicz SZ, Lu LF, Rudensky AY (2012) Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol 30:531–564. doi:10.1146/annurev.immunol.25.022106.141623

    Article  CAS  PubMed  Google Scholar 

  182. Kabat AM, Harrison OJ, Riffelmacher T, Moghaddam AE, Pearson CF, Laing A, Abeler-Dorner L, Forman SP, Grencis RK, Sattentau Q, Simon AK, Pott J, Maloy KJ (2016) The autophagy gene Atg16l1 differentially regulates Treg and TH2 cells to control intestinal inflammation. eLife 5:e12444. doi:10.7554/eLife.12444

    Article  PubMed  PubMed Central  Google Scholar 

  183. Kaech SM, Cui W (2012) Transcriptional control of effector and memory CD8+ T cell differentiation. Nat Rev Immunol 12(11):749–761. doi:10.1038/nri3307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Kang SG, Lim HW, Andrisani OM, Broxmeyer HE, Kim CH (2007) Vitamin A metabolites induce gut-homing FoxP3+ regulatory T cells. J Immunol 179(6):3724–3733

    Article  CAS  PubMed  Google Scholar 

  185. Kanno Y, Vahedi G, Hirahara K, Singleton K, O’Shea JJ (2012) Transcriptional and epigenetic control of T helper cell specification: molecular mechanisms underlying commitment and plasticity. Annu Rev Immunol 30:707–731. doi:10.1146/annurev-immunol-020711-075058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Kaplan MH, Hufford MM, Olson MR (2015) The development and in vivo function of T helper 9 cells. Nat Rev Immunol 15(5):295–307. doi:10.1038/nri3824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Kawanaka T, Kubo A, Ikushima H, Sano T, Takegawa Y, Nishitani H (2008) Prognostic significance of HIF-2alpha expression on tumor infiltrating macrophages in patients with uterine cervical cancer undergoing radiotherapy. J Med Invest: JMI 55(1–2):78–86

    Article  PubMed  Google Scholar 

  188. Kc W, Satpathy AT, Rapaport AS, Briseno CG, Wu X, Albring JC, Russler-Germain EV, Kretzer NM, Durai V, Persaud SP, Edelson BT, Loschko J, Cella M, Allen PM, Nussenzweig MC, Colonna M, Sleckman BP, Murphy TL, Murphy KM (2014) L-Myc expression by dendritic cells is required for optimal T-cell priming. Nature 507(7491):243–247. doi:10.1038/nature12967

    Article  CAS  PubMed  Google Scholar 

  189. Keating R, Hertz T, Wehenkel M, Harris TL, Edwards BA, McClaren JL, Brown SA, Surman S, Wilson ZS, Bradley P, Hurwitz J, Chi H, Doherty PC, Thomas PG, McGargill MA (2013) The kinase mTOR modulates the antibody response to provide cross-protective immunity to lethal infection with influenza virus. Nat Immunol 14(12):1266–1276. doi:10.1038/ni.2741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Keppel MP, Saucier N, Mah AY, Vogel TP, Cooper MA (2015) Activation-specific metabolic requirements for NK cell IFN-gamma production. J Immunol 194(4):1954–1962. doi:10.4049/jimmunol.1402099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Kerdiles YM, Beisner DR, Tinoco R, Dejean AS, Castrillon DH, DePinho RA, Hedrick SM (2009) Foxo1 links homing and survival of naive T cells by regulating L-selectin, CCR7 and interleukin 7 receptor. Nat Immunol 10(2):176–184. doi:10.1038/ni.1689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Khattri R, Cox T, Yasayko SA, Ramsdell F (2003) An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol 4(4):337–342. doi:10.1038/ni909

    Article  CAS  PubMed  Google Scholar 

  193. Kidani Y, Elsaesser H, Hock MB, Vergnes L, Williams KJ, Argus JP, Marbois BN, Komisopoulou E, Wilson EB, Osborne TF, Graeber TG, Reue K, Brooks DG, Bensinger SJ (2013) Sterol regulatory element-binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity. Nat Immunol 14(5):489–499. doi:10.1038/ni.2570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Kim I, He YY (2013) Targeting the AMP-activated protein kinase for cancer prevention and therapy. Front Oncol 3:175. doi:10.3389/fonc.2013.00175

    PubMed  PubMed Central  Google Scholar 

  195. Kim J, Kundu M, Viollet B, Guan KL (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13(2):132–141. doi:10.1038/ncb2152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Kim JK, Klinger M, Benjamin J, Xiao Y, Erle DJ, Littman DR, Killeen N (2009) Impact of the TCR signal on regulatory T cell homeostasis, function, and trafficking. PLoS One 4(8):e6580. doi:10.1371/journal.pone.0006580

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Kim JW, Tchernyshyov I, Semenza GL, Dang CV (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3(3):177–185. doi:10.1016/j.cmet.2006.02.002

    Article  PubMed  CAS  Google Scholar 

  198. Kimura A, Naka T, Nohara K, Fujii-Kuriyama Y, Kishimoto T (2008) Aryl hydrocarbon receptor regulates Stat1 activation and participates in the development of Th17 cells. Proc Natl Acad Sci U.S.A. 105(28):9721–9726. doi:10.1073/pnas.0804231105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Kinoshita M, Kayama H, Kusu T, Yamaguchi T, Kunisawa J, Kiyono H, Sakaguchi S, Takeda K (2012) Dietary folic acid promotes survival of Foxp3+ regulatory T cells in the colon. J Immunol 189(6):2869–2878. doi:10.4049/jimmunol.1200420

    Article  CAS  PubMed  Google Scholar 

  200. Kleinewietfeld M, Manzel A, Titze J, Kvakan H, Yosef N, Linker RA, Muller DN, Hafler DA (2013) Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature 496(7446):518–522. doi:10.1038/nature11868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Klotz L, Dani I, Edenhofer F, Nolden L, Evert B, Paul B, Kolanus W, Klockgether T, Knolle P, Diehl L (2007) Peroxisome proliferator-activated receptor gamma control of dendritic cell function contributes to development of CD4+ T cell anergy. J Immunol 178(4):2122–2131

    Article  CAS  PubMed  Google Scholar 

  202. Kobayashi T, Shimabukuro-Demoto S, Yoshida-Sugitani R, Furuyama-Tanaka K, Karyu H, Sugiura Y, Shimizu Y, Hosaka T, Goto M, Kato N, Okamura T, Suematsu M, Yokoyama S, Toyama-Sorimachi N (2014) The histidine transporter SLC15A4 coordinates mTOR-dependent inflammatory responses and pathogenic antibody production. Immunity 41(3):375–388. doi:10.1016/j.immuni.2014.08.011

    Article  CAS  PubMed  Google Scholar 

  203. Krawczyk CM, Holowka T, Sun J, Blagih J, Amiel E, DeBerardinis RJ, Cross JR, Jung E, Thompson CB, Jones RG, Pearce EJ (2010) Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood 115(23):4742–4749. doi:10.1182/blood-2009-10-249540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Kress TR, Sabo A, Amati B (2015) MYC: connecting selective transcriptional control to global RNA production. Nat Rev Cancer 15(10):593–607. doi:10.1038/nrc3984

    Article  CAS  PubMed  Google Scholar 

  205. Kryczek I, Zhao E, Liu Y, Wang Y, Vatan L, Szeliga W, Moyer J, Klimczak A, Lange A, Zou W (2011) Human TH17 cells are long-lived effector memory cells. Sci Transl Med 3(104):104ra100. doi:10.1126/scitranslmed.3002949

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Kunisawa J, Hashimoto E, Ishikawa I, Kiyono H (2012) A pivotal role of vitamin B9 in the maintenance of regulatory T cells in vitro and in vivo. PLoS One 7(2):e32094. doi:10.1371/journal.pone.0032094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Kuo CT, Veselits ML, Leiden JM (1997) LKLF: a transcriptional regulator of single-positive T cell quiescence and survival. Science 277(5334):1986–1990

    Article  CAS  PubMed  Google Scholar 

  208. Kurebayashi Y, Nagai S, Ikejiri A, Ohtani M, Ichiyama K, Baba Y, Yamada T, Egami S, Hoshii T, Hirao A, Matsuda S, Koyasu S (2012) PI3K-Akt-mTORC1-S6K1/2 axis controls Th17 differentiation by regulating Gfi1 expression and nuclear translocation of RORgamma. Cell Rep 1(4):360–373. doi:10.1016/j.celrep.2012.02.007

    Article  CAS  PubMed  Google Scholar 

  209. Kurihara T, Arimochi H, Bhuyan ZA, Ishifune C, Tsumura H, Ito M, Ito Y, Kitamura A, Maekawa Y, Yasutomo K (2015) CD98 heavy chain is a potent positive regulator of CD4+ T cell proliferation and interferon-gamma production in vivo. PLoS One 10(10):e0139692. doi:10.1371/journal.pone.0139692

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  210. Kurobe H, Urata M, Ueno M, Ueki M, Ono S, Izawa-Ishizawa Y, Fukuhara Y, Lei Y, Ripen AM, Kanbara T, Aihara K, Ishizawa K, Akaike M, Gonzalez FJ, Tamaki T, Takahama Y, Yoshizumi M, Kitagawa T, Tomita S (2010) Role of hypoxia-inducible factor 1alpha in T cells as a negative regulator in development of vascular remodeling. Arterioscler Thromb Vasc Biol 30(2):210–217. doi:10.1161/ATVBAHA.109.192666

    Article  CAS  PubMed  Google Scholar 

  211. La Cava A, Matarese G (2004) The weight of leptin in immunity. Nat Rev Immunol 4(5):371–379. doi:10.1038/nri1350

    Article  PubMed  CAS  Google Scholar 

  212. Laderoute KR, Amin K, Calaoagan JM, Knapp M, Le T, Orduna J, Foretz M, Viollet B (2006) 5′-AMP-activated protein kinase (AMPK) is induced by low-oxygen and glucose deprivation conditions found in solid-tumor microenvironments. Mol Cell Biol 26(14):5336–5347. doi:10.1128/MCB.00166-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Lal L, Li Y, Smith J, Sassano A, Uddin S, Parmar S, Tallman MS, Minucci S, Hay N, Platanias LC (2005) Activation of the p70 S6 kinase by all-trans-retinoic acid in acute promyelocytic leukemia cells. Blood 105(4):1669–1677. doi:10.1182/blood-2004-06-2078

    Article  CAS  PubMed  Google Scholar 

  214. Laplante M, Sabatini DM (2009) An emerging role of mTOR in lipid biosynthesis. Curr Biol: CB 19(22):R1046–R1052. doi:10.1016/j.cub.2009.09.058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149(2):274–293. doi:10.1016/j.cell.2012.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Larbi A, Zelba H, Goldeck D, Pawelec G (2010) Induction of HIF-1alpha and the glycolytic pathway alters apoptotic and differentiation profiles of activated human T cells. J Leukoc Biol 87(2):265–273. doi:10.1189/jlb.0509304

    Article  CAS  PubMed  Google Scholar 

  217. Lee J, Walsh MC, Hoehn KL, James DE, Wherry EJ, Choi Y (2014) Regulator of fatty acid metabolism, acetyl coenzyme a carboxylase 1, controls T cell immunity. J Immunol 192(7):3190–3199. doi:10.4049/jimmunol.1302985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Lee JE, Walsh MC, Hoehn KL, James DE, Wherry EJ, Choi Y (2015a) Acetyl CoA carboxylase 2 is dispensable for CD8+ T cell responses. PLoS One 10(9):e0137776. doi:10.1371/journal.pone.0137776

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  219. Lee JY, Skon CN, Lee YJ, Oh S, Taylor JJ, Malhotra D, Jenkins MK, Rosenfeld MG, Hogquist KA, Jameson SC (2015b) The transcription factor KLF2 restrains CD4(+) T follicular helper cell differentiation. Immunity 42(2):252–264. doi:10.1016/j.immuni.2015.01.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Lee K, Gudapati P, Dragovic S, Spencer C, Joyce S, Killeen N, Magnuson MA, Boothby M (2010) Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways. Immunity 32(6):743–753. doi:10.1016/j.immuni.2010.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Leek RD, Talks KL, Pezzella F, Turley H, Campo L, Brown NS, Bicknell R, Taylor M, Gatter KC, Harris AL (2002) Relation of hypoxia-inducible factor-2 alpha (HIF-2 alpha) expression in tumor-infiltrative macrophages to tumor angiogenesis and the oxidative thymidine phosphorylase pathway in human breast cancer. Cancer Res 62(5):1326–1329

    CAS  PubMed  Google Scholar 

  222. Levine AG, Arvey A, Jin W, Rudensky AY (2014) Continuous requirement for the TCR in regulatory T cell function. Nat Immunol 15(11):1070–1078. doi:10.1038/ni.3004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Li B, Reynolds JM, Stout RD, Bernlohr DA, Suttles J (2009) Regulation of Th17 differentiation by epidermal fatty acid-binding protein. J Immunol 182(12):7625–7633. doi:10.4049/jimmunol.0804192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Li H, Shi B (2015) Tolerogenic dendritic cells and their applications in transplantation. Cell Mol Immunol 12(1):24–30. doi:10.1038/cmi.2014.52

    Article  CAS  PubMed  Google Scholar 

  225. Li Y, Xu S, Mihaylova MM, Zheng B, Hou X, Jiang B, Park O, Luo Z, Lefai E, Shyy JY, Gao B, Wierzbicki M, Verbeuren TJ, Shaw RJ, Cohen RA, Zang M (2011) AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab 13(4):376–388. doi:10.1016/j.cmet.2011.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Liang SL, Liu H, Zhou A (2006) Lovastatin-induced apoptosis in macrophages through the Rac1/Cdc42/JNK pathway. J Immunol 177(1):651–656

    Article  CAS  PubMed  Google Scholar 

  227. Liang Y, Cucchetti M, Roncagalli R, Yokosuka T, Malzac A, Bertosio E, Imbert J, Nijman IJ, Suchanek M, Saito T, Wulfing C, Malissen B, Malissen M (2013) The lymphoid lineage-specific actin-uncapping protein Rltpr is essential for costimulation via CD28 and the development of regulatory T cells. Nat Immunol 14(8):858–866. doi:10.1038/ni.2634

    Article  CAS  PubMed  Google Scholar 

  228. Limon JJ, So L, Jellbauer S, Chiu H, Corado J, Sykes SM, Raffatellu M, Fruman DA (2014) mTOR kinase inhibitors promote antibody class switching via mTORC2 inhibition. Proc Natl Acad Sci U.S.A. 111(47):E5076–E5085. doi:10.1073/pnas.1407104111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Lisse TS, Hewison M (2011) Vitamin D: a new player in the world of mTOR signaling. Cell Cycle 10(12):1888–1889. doi:10.4161/cc.10.12.15620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Liston A, Gray DH (2014) Homeostatic control of regulatory T cell diversity. Nat Rev Immunol 14(3):154–165. doi:10.1038/nri3605

    Article  CAS  PubMed  Google Scholar 

  231. Liu SY, Aliyari R, Chikere K, Li G, Marsden MD, Smith JK, Pernet O, Guo H, Nusbaum R, Zack JA, Freiberg AN, Su L, Lee B, Cheng G (2013) Interferon-inducible cholesterol-25-hydroxylase broadly inhibits viral entry by production of 25-hydroxycholesterol. Immunity 38(1):92–105. doi:10.1016/j.immuni.2012.11.005

    Article  PubMed  CAS  Google Scholar 

  232. Locasale JW (2013) Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev Cancer 13(8):572–583. doi:10.1038/nrc3557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Lu C, Thompson CB (2012) Metabolic regulation of epigenetics. Cell Metab 16(1):9–17. doi:10.1016/j.cmet.2012.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Lu H, Forbes RA, Verma A (2002) Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J Biol Chem 277(26):23111–23115. doi:10.1074/jbc.M202487200

    Article  CAS  PubMed  Google Scholar 

  235. Lukashev D, Klebanov B, Kojima H, Grinberg A, Ohta A, Berenfeld L, Wenger RH, Ohta A, Sitkovsky M (2006) Cutting edge: hypoxia-inducible factor 1alpha and its activation-inducible short isoform I.1 negatively regulate functions of CD4+ and CD8+ T lymphocytes. J Immunol 177(8):4962–4965

    Article  CAS  PubMed  Google Scholar 

  236. Luo CT, Liao W, Dadi S, Toure A, Li MO (2016) Graded Foxo1 activity in Treg cells differentiates tumour immunity from spontaneous autoimmunity. Nature 529(7587):532–536. doi:10.1038/nature16486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Lynch L, Nowak M, Varghese B, Clark J, Hogan AE, Toxavidis V, Balk SP, O’Shea D, O’Farrelly C, Exley MA (2012) Adipose tissue invariant NKT cells protect against diet-induced obesity and metabolic disorder through regulatory cytokine production. Immunity 37(3):574–587. doi:10.1016/j.immuni.2012.06.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Ma Y, Xu L, Rodriguez-Agudo D, Li X, Heuman DM, Hylemon PB, Pandak WM, Ren S (2008) 25-hydroxycholesterol-3-sulfate regulates macrophage lipid metabolism via the LXR/SREBP-1 signaling pathway. Am J Phys Endocrinol Metab 295(6):E1369–E1379. doi:10.1152/ajpendo.90555.2008

    Article  CAS  Google Scholar 

  239. Macintyre AN, Finlay D, Preston G, Sinclair LV, Waugh CM, Tamas P, Feijoo C, Okkenhaug K, Cantrell DA (2011) Protein kinase B controls transcriptional programs that direct cytotoxic T cell fate but is dispensable for T cell metabolism. Immunity 34(2):224–236. doi:10.1016/j.immuni.2011.01.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Macintyre AN, Gerriets VA, Nichols AG, Michalek RD, Rudolph MC, Deoliveira D, Anderson SM, Abel ED, Chen BJ, Hale LP, Rathmell JC (2014) The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. Cell Metab 20(1):61–72. doi:10.1016/j.cmet.2014.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. MacIver NJ, Blagih J, Saucillo DC, Tonelli L, Griss T, Rathmell JC, Jones RG (2011) The liver kinase B1 is a central regulator of T cell development, activation, and metabolism. J Immunol 187(8):4187–4198. doi:10.4049/jimmunol.1100367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. MacIver NJ, Michalek RD, Rathmell JC (2013) Metabolic regulation of T lymphocytes. Annu Rev Immunol 31:259–283. doi:10.1146/annurev-immunol-032712-095956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Malinarich F, Duan K, Hamid RA, Bijin A, Lin WX, Poidinger M, Fairhurst AM, Connolly JE (2015) High mitochondrial respiration and glycolytic capacity represent a metabolic phenotype of human tolerogenic dendritic cells. J Immunol 194(11):5174–5186. doi:10.4049/jimmunol.1303316

    Article  CAS  PubMed  Google Scholar 

  244. Mangus CW, Massey PR, Fowler DH, Amarnath S (2013) Rapamycin resistant murine th9 cells have a stable in vivo phenotype and inhibit graft-versus-host reactivity. PLoS One 8(8):e72305. doi:10.1371/journal.pone.0072305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Marcais A, Cherfils-Vicini J, Viant C, Degouve S, Viel S, Fenis A, Rabilloud J, Mayol K, Tavares A, Bienvenu J, Gangloff YG, Gilson E, Vivier E, Walzer T (2014) The metabolic checkpoint kinase mTOR is essential for IL-15 signaling during the development and activation of NK cells. Nat Immunol 15(8):749–757. doi:10.1038/ni.2936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Marko AJ, Miller RA, Kelman A, Frauwirth KA (2010) Induction of glucose metabolism in stimulated T lymphocytes is regulated by mitogen-activated protein kinase signaling. PLoS One 5(11):e15425. doi:10.1371/journal.pone.0015425

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  247. Mascanfroni ID, Takenaka MC, Yeste A, Patel B, Wu Y, Kenison JE, Siddiqui S, Basso AS, Otterbein LE, Pardoll DM, Pan F, Priel A, Clish CB, Robson SC, Quintana FJ (2015) Metabolic control of type 1 regulatory T cell differentiation by AHR and HIF1-alpha. Nat Med 21(6):638–646. doi:10.1038/nm.3868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Masson N, Ratcliffe PJ (2014) Hypoxia signaling pathways in cancer metabolism: the importance of co-selecting interconnected physiological pathways. Cancer Metab 2(1):3. doi:10.1186/2049-3002-2-3

    Article  PubMed  PubMed Central  Google Scholar 

  249. Masui K, Tanaka K, Akhavan D, Babic I, Gini B, Matsutani T, Iwanami A, Liu F, Villa GR, Gu Y, Campos C, Zhu S, Yang H, Yong WH, Cloughesy TF, Mellinghoff IK, Cavenee WK, Shaw RJ, Mischel PS (2013) mTOR complex 2 controls glycolytic metabolism in glioblastoma through FoxO acetylation and upregulation of c-Myc. Cell Metab 18(5):726–739. doi:10.1016/j.cmet.2013.09.013

    Article  CAS  PubMed  Google Scholar 

  250. Mazumdar J, Hickey MM, Pant DK, Durham AC, Sweet-Cordero A, Vachani A, Jacks T, Chodosh LA, Kissil JL, Simon MC, Keith B (2010) HIF-2alpha deletion promotes Kras-driven lung tumor development. Proc Natl Acad Sci U.S.A. 107(32):14182–14187. doi:10.1073/pnas.1001296107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. McNamee EN, Korns Johnson D, Homann D, Clambey ET (2013) Hypoxia and hypoxia-inducible factors as regulators of T cell development, differentiation, and function. Immunol Res 55(1–3):58–70. doi:10.1007/s12026-012-8349-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Michalek RD, Gerriets VA, Jacobs SR, Macintyre AN, MacIver NJ, Mason EF, Sullivan SA, Nichols AG, Rathmell JC (2011a) Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol 186(6):3299–3303. doi:10.4049/jimmunol.1003613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Michalek RD, Gerriets VA, Nichols AG, Inoue M, Kazmin D, Chang CY, Dwyer MA, Nelson ER, Pollizzi KN, Ilkayeva O, Giguere V, Zuercher WJ, Powell JD, Shinohara ML, McDonnell DP, Rathmell JC (2011b) Estrogen-related receptor-alpha is a metabolic regulator of effector T-cell activation and differentiation. Proc Natl Acad Sci U.S.A. 108(45):18348–18353. doi:10.1073/pnas.1108856108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Mihaylova MM, Shaw RJ (2011) The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol 13(9):1016–1023. doi:10.1038/ncb2329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Milasta S, Dillon CP, Sturm OE, Verbist KC, Brewer TL, Quarato G, Brown SA, Frase S, Janke LJ, Perry SS, Thomas PG, Green DR (2016) Apoptosis-inducing-factor-dependent mitochondrial function is required for T cell but not B cell function. Immunity 44(1):88–102. doi:10.1016/j.immuni.2015.12.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Mirebeau-Prunier D, Le Pennec S, Jacques C, Gueguen N, Poirier J, Malthiery Y, Savagner F (2010) Estrogen-related receptor alpha and PGC-1-related coactivator constitute a novel complex mediating the biogenesis of functional mitochondria. FEBS J 277(3):713–725. doi:10.1111/j.1742-4658.2009.07516.x

    Article  CAS  PubMed  Google Scholar 

  257. Miyao T, Floess S, Setoguchi R, Luche H, Fehling HJ, Waldmann H, Huehn J, Hori S (2012) Plasticity of Foxp3(+) T cells reflects promiscuous Foxp3 expression in conventional T cells but not reprogramming of regulatory T cells. Immunity 36(2):262–275. doi:10.1016/j.immuni.2011.12.012

    Article  CAS  PubMed  Google Scholar 

  258. Monticelli LA, Buck MD, Flamar AL, Saenz SA, Tait Wojno ED, Yudanin NA, Osborne LC, Hepworth MR, Tran SV, Rodewald HR, Shah H, Cross JR, Diamond JM, Cantu E, Christie JD, Pearce EL, Artis D (2016) Arginase 1 is an innate lymphoid-cell-intrinsic metabolic checkpoint controlling type 2 inflammation. Nat Immunol 17(6):656–665. doi:10.1038/ni.3421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Moore KJ, Rosen ED, Fitzgerald ML, Randow F, Andersson LP, Altshuler D, Milstone DS, Mortensen RM, Spiegelman BM, Freeman MW (2001) The role of PPAR-gamma in macrophage differentiation and cholesterol uptake. Nat Med 7(1):41–47. doi:10.1038/83328

    Article  CAS  PubMed  Google Scholar 

  260. Morrison DK (2012) MAP kinase pathways. Cold Spring Harb Perspect Biol 4(11). doi:10.1101/cshperspect.a011254

  261. Mounier R, Theret M, Arnold L, Cuvellier S, Bultot L, Goransson O, Sanz N, Ferry A, Sakamoto K, Foretz M, Viollet B, Chazaud B (2013) AMPKalpha1 regulates macrophage skewing at the time of resolution of inflammation during skeletal muscle regeneration. Cell Metab 18(2):251–264. doi:10.1016/j.cmet.2013.06.017

    Article  CAS  PubMed  Google Scholar 

  262. Mungai PT, Waypa GB, Jairaman A, Prakriya M, Dokic D, Ball MK, Schumacker PT (2011) Hypoxia triggers AMPK activation through reactive oxygen species-mediated activation of calcium release-activated calcium channels. Mol Cell Biol 31(17):3531–3545. doi:10.1128/MCB.05124-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Munn DH, Sharma MD, Baban B, Harding HP, Zhang Y, Ron D, Mellor AL (2005) GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity 22(5):633–642. doi:10.1016/j.immuni.2005.03.013

    Article  CAS  PubMed  Google Scholar 

  264. Murugaiyan G, Beynon V, Pires Da Cunha A, Joller N, Weiner HL (2012) IFN-gamma limits Th9-mediated autoimmune inflammation through dendritic cell modulation of IL-27. J Immunol 189(11):5277–5283. doi:10.4049/jimmunol.1200808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Nakaya M, Xiao Y, Zhou X, Chang JH, Chang M, Cheng X, Blonska M, Lin X, Sun SC (2014) Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation. Immunity 40(5):692–705. doi:10.1016/j.immuni.2014.04.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Nath N, Khan M, Paintlia MK, Singh I, Hoda MN, Giri S (2009a) Metformin attenuated the autoimmune disease of the central nervous system in animal models of multiple sclerosis. J Immunol 182(12):8005–8014. doi:10.4049/jimmunol.0803563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Nath N, Khan M, Rattan R, Mangalam A, Makkar RS, de Meester C, Bertrand L, Singh I, Chen Y, Viollet B, Giri S (2009b) Loss of AMPK exacerbates experimental autoimmune encephalomyelitis disease severity. Biochem Biophys Res Commun 386(1):16–20. doi:10.1016/j.bbrc.2009.05.106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Nencioni A, Grunebach F, Zobywlaski A, Denzlinger C, Brugger W, Brossart P (2002) Dendritic cell immunogenicity is regulated by peroxisome proliferator-activated receptor gamma. J Immunol 169(3):1228–1235

    Article  CAS  PubMed  Google Scholar 

  269. Newsholme P, Curi R, Gordon S, Newsholme EA (1986) Metabolism of glucose, glutamine, long-chain fatty acids and ketone bodies by murine macrophages. Biochem J 239(1):121–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Newsholme P, Gordon S, Newsholme EA (1987) Rates of utilization and fates of glucose, glutamine, pyruvate, fatty acids and ketone bodies by mouse macrophages. Biochem J 242(3):631–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Newsholme P, Newsholme EA (1989) Rates of utilization of glucose, glutamine and oleate and formation of end-products by mouse peritoneal macrophages in culture. Biochem J 261(1):211–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Nishi K, Oda T, Takabuchi S, Oda S, Fukuda K, Adachi T, Semenza GL, Shingu K, Hirota K (2008) LPS induces hypoxia-inducible factor 1 activation in macrophage-differentiated cells in a reactive oxygen species-dependent manner. Antioxid Redox Signal 10(5):983–995. doi:10.1089/ars.2007.1825

    Article  CAS  PubMed  Google Scholar 

  273. Nurieva RI, Chung Y, Martinez GJ, Yang XO, Tanaka S, Matskevitch TD, Wang YH, Dong C (2009) Bcl6 mediates the development of T follicular helper cells. Science 325(5943):1001–1005. doi:10.1126/science.1176676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Nyirenda MH, Sanvito L, Darlington PJ, O’Brien K, Zhang GX, Constantinescu CS, Bar-Or A, Gran B (2011) TLR2 stimulation drives human naive and effector regulatory T cells into a Th17-like phenotype with reduced suppressive function. J Immunol 187(5):2278–2290. doi:10.4049/jimmunol.1003715

    Article  CAS  PubMed  Google Scholar 

  275. O’Brien TF, Gorentla BK, Xie D, Srivatsan S, McLeod IX, He YW, Zhong XP (2011) Regulation of T-cell survival and mitochondrial homeostasis by TSC1. Eur J Immunol 41(11):3361–3370. doi:10.1002/eji.201141411

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  276. O’Leary JG, Goodarzi M, Drayton DL, von Andrian UH (2006) T cell- and B cell-independent adaptive immunity mediated by natural killer cells. Nat Immunol 7(5):507–516. doi:10.1038/ni1332

    Article  PubMed  CAS  Google Scholar 

  277. O’Neill HM, Maarbjerg SJ, Crane JD, Jeppesen J, Jorgensen SB, Schertzer JD, Shyroka O, Kiens B, van Denderen BJ, Tarnopolsky MA, Kemp BE, Richter EA, Steinberg GR (2011) AMP-activated protein kinase (AMPK) beta1beta2 muscle null mice reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake during exercise. Proc Natl Acad Sci U.S.A. 108(38):16092–16097. doi:10.1073/pnas.1105062108

    Article  PubMed  PubMed Central  Google Scholar 

  278. O’Neill LA, Golenbock D, Bowie AG (2013) The history of toll-like receptors – redefining innate immunity. Nat Rev Immunol 13(6):453–460. doi:10.1038/nri3446

    Article  PubMed  CAS  Google Scholar 

  279. O’Neill LA, Hardie DG (2013) Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature 493(7432):346–355. doi:10.1038/nature11862

    Article  PubMed  CAS  Google Scholar 

  280. O’Rourke AM, Rider CC (1989) Glucose, glutamine and ketone body utilisation by resting and concanavalin A activated rat splenic lymphocytes. Biochim Biophys Acta 1010(3):342–345

    Article  PubMed  Google Scholar 

  281. O’Sullivan D, van der Windt GJ, Huang SC, Curtis JD, Chang CH, Buck MD, Qiu J, Smith AM, Lam WY, DiPlato LM, Hsu FF, Birnbaum MJ, Pearce EJ, Pearce EL (2014) Memory CD8(+) T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development. Immunity 41(1):75–88. doi:10.1016/j.immuni.2014.06.005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  282. O’Sullivan TE, Johnson LR, Kang HH, Sun JC (2015) BNIP3- and BNIP3L-mediated mitophagy promotes the generation of natural killer cell memory. Immunity 43(2):331–342. doi:10.1016/j.immuni.2015.07.012

    Article  PubMed  CAS  Google Scholar 

  283. Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, Morel CR, Subramanian V, Mukundan L, Red Eagle A, Vats D, Brombacher F, Ferrante AW, Chawla A (2007) Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature 447(7148):1116–1120. doi:10.1038/nature05894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Oestreich KJ, Mohn SE, Weinmann AS (2012) Molecular mechanisms that control the expression and activity of Bcl-6 in TH1 cells to regulate flexibility with a TFH-like gene profile. Nat Immunol 13(4):405–411. doi:10.1038/ni.2242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Oestreich KJ, Read KA, Gilbertson SE, Hough KP, McDonald PW, Krishnamoorthy V, Weinmann AS (2014) Bcl-6 directly represses the gene program of the glycolysis pathway. Nat Immunol 15(10):957–964. doi:10.1038/ni.2985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Ohkura N, Hamaguchi M, Morikawa H, Sugimura K, Tanaka A, Ito Y, Osaki M, Tanaka Y, Yamashita R, Nakano N, Huehn J, Fehling HJ, Sparwasser T, Nakai K, Sakaguchi S (2012) T cell receptor stimulation-induced epigenetic changes and Foxp3 expression are independent and complementary events required for Treg cell development. Immunity 37(5):785–799. doi:10.1016/j.immuni.2012.09.010

    Article  CAS  PubMed  Google Scholar 

  287. Ohtani M, Nagai S, Kondo S, Mizuno S, Nakamura K, Tanabe M, Takeuchi T, Matsuda S, Koyasu S (2008) Mammalian target of rapamycin and glycogen synthase kinase 3 differentially regulate lipopolysaccharide-induced interleukin-12 production in dendritic cells. Blood 112(3):635–643. doi:10.1182/blood-2008-02-137430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Okkenhaug K, Bilancio A, Farjot G, Priddle H, Sancho S, Peskett E, Pearce W, Meek SE, Salpekar A, Waterfield MD, Smith AJ, Vanhaesebroeck B (2002) Impaired B and T cell antigen receptor signaling in p110delta PI 3-kinase mutant mice. Science 297(5583):1031–1034. doi:10.1126/science.1073560

    CAS  PubMed  Google Scholar 

  289. Okkenhaug K, Patton DT, Bilancio A, Garcon F, Rowan WC, Vanhaesebroeck B (2006) The p110delta isoform of phosphoinositide 3-kinase controls clonal expansion and differentiation of Th cells. J Immunol 177(8):5122–5128

    Article  CAS  PubMed  Google Scholar 

  290. Orsini H, Araujo LP, Maricato JT, Guereschi MG, Mariano M, Castilho BA, Basso AS (2014) GCN2 kinase plays an important role triggering the remission phase of experimental autoimmune encephalomyelitis (EAE) in mice. Brain Behav Immun 37:177–186. doi:10.1016/j.bbi.2013.12.012

    Article  CAS  PubMed  Google Scholar 

  291. Oshiro N, Rapley J, Avruch J (2014) Amino acids activate mammalian target of rapamycin (mTOR) complex 1 without changing Rag GTPase guanyl nucleotide charging. J Biol Chem 289(5):2658–2674. doi:10.1074/jbc.M113.528505

    Article  CAS  PubMed  Google Scholar 

  292. Ouyang W, Beckett O, Flavell RA, Li MO (2009) An essential role of the Forkhead-box transcription factor Foxo1 in control of T cell homeostasis and tolerance. Immunity 30(3):358–371. doi:10.1016/j.immuni.2009.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Ouyang W, Liao W, Luo CT, Yin N, Huse M, Kim MV, Peng M, Chan P, Ma Q, Mo Y, Meijer D, Zhao K, Rudensky AY, Atwal G, Zhang MQ, Li MO (2012) Novel Foxo1-dependent transcriptional programs control T(reg) cell function. Nature 491(7425):554–559. doi:10.1038/nature11581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Owen OE, Kalhan SC, Hanson RW (2002) The key role of anaplerosis and cataplerosis for citric acid cycle function. J Biol Chem 277(34):30409–30412. doi:10.1074/jbc.R200006200

    Article  CAS  PubMed  Google Scholar 

  295. Panday A, Sahoo MK, Osorio D, Batra S (2015) NADPH oxidases: an overview from structure to innate immunity-associated pathologies. Cell Mol Immunol 12(1):5–23. doi:10.1038/cmi.2014.89

    Article  CAS  PubMed  Google Scholar 

  296. Pantel A, Teixeira A, Haddad E, Wood EG, Steinman RM, Longhi MP (2014) Direct type I IFN but not MDA5/TLR3 activation of dendritic cells is required for maturation and metabolic shift to glycolysis after poly IC stimulation. PLoS Biol 12(1):e1001759. doi:10.1371/journal.pbio.1001759

    Article  PubMed  PubMed Central  Google Scholar 

  297. Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC (2006) HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab 3(3):187–197. doi:10.1016/j.cmet.2006.01.012

    Article  CAS  PubMed  Google Scholar 

  298. Park H, Tsang M, Iritani BM, Bevan MJ (2014) Metabolic regulator Fnip1 is crucial for iNKT lymphocyte development. Proc Natl Acad Sci U.S.A. 111(19):7066–7071. doi:10.1073/pnas.1406473111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Park J, Kim M, Kang SG, Jannasch AH, Cooper B, Patterson J, Kim CH (2015) Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway. Mucosal Immunol 8(1):80–93. doi:10.1038/mi.2014.44

    Article  CAS  PubMed  Google Scholar 

  300. Park Y, Jin HS, Lopez J, Elly C, Kim G, Murai M, Kronenberg M, Liu YC (2013) TSC1 regulates the balance between effector and regulatory T cells. J Clin Invest 123(12):5165–5178. doi:10.1172/JCI69751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Park YH, Wood G, Kastner DL, Chae JJ (2016) Pyrin inflammasome activation and RhoA signaling in the autoinflammatory diseases FMF and HIDS. Nat Immunol 17(8):914–921. doi:10.1038/ni.3457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Parmigiani A, Nourbakhsh A, Ding B, Wang W, Kim YC, Akopiants K, Guan KL, Karin M, Budanov AV (2014) Sestrins inhibit mTORC1 kinase activation through the GATOR complex. Cell Rep 9(4):1281–1291. doi:10.1016/j.celrep.2014.10.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Parra V, Verdejo HE, Iglewski M, Del Campo A, Troncoso R, Jones D, Zhu Y, Kuzmicic J, Pennanen C, Lopez-Crisosto C, Jana F, Ferreira J, Noguera E, Chiong M, Bernlohr DA, Klip A, Hill JA, Rothermel BA, Abel ED, Zorzano A, Lavandero S (2014) Insulin stimulates mitochondrial fusion and function in cardiomyocytes via the Akt-mTOR-NFkappaB-Opa-1 signaling pathway. Diabetes 63(1):75–88. doi:10.2337/db13-0340

    Article  CAS  PubMed  Google Scholar 

  304. Pearce EJ, Everts B (2015) Dendritic cell metabolism. Nat Rev Immunol 15(1):18–29. doi:10.1038/nri3771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Pearce EL, Pearce EJ (2013) Metabolic pathways in immune cell activation and quiescence. Immunity 38(4):633–643. doi:10.1016/j.immuni.2013.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Pearce EL, Poffenberger MC, Chang CH, Jones RG (2013) Fueling immunity: insights into metabolism and lymphocyte function. Science 342(6155):1242454. doi:10.1126/science.1242454

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  307. Pearce EL, Walsh MC, Cejas PJ, Harms GM, Shen H, Wang LS, Jones RG, Choi Y (2009) Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460(7251):103–107. doi:10.1038/nature08097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Peng M, Yin N, Li MO (2014) Sestrins function as guanine nucleotide dissociation inhibitors for Rag GTPases to control mTORC1 signaling. Cell 159(1):122–133. doi:10.1016/j.cell.2014.08.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Penna G, Roncari A, Amuchastegui S, Daniel KC, Berti E, Colonna M, Adorini L (2005) Expression of the inhibitory receptor ILT3 on dendritic cells is dispensable for induction of CD4+Foxp3+ regulatory T cells by 1,25-dihydroxyvitamin D3. Blood 106(10):3490–3497. doi:10.1182/blood-2005-05-2044

    Article  CAS  PubMed  Google Scholar 

  310. Peyssonnaux C, Cejudo-Martin P, Doedens A, Zinkernagel AS, Johnson RS, Nizet V (2007a) Cutting edge: essential role of hypoxia inducible factor-1alpha in development of lipopolysaccharide-induced sepsis. J Immunol 178(12):7516–7519

    Article  CAS  PubMed  Google Scholar 

  311. Peyssonnaux C, Zinkernagel AS, Schuepbach RA, Rankin E, Vaulont S, Haase VH, Nizet V, Johnson RS (2007b) Regulation of iron homeostasis by the hypoxia-inducible transcription factors (HIFs). J Clin Invest 117(7):1926–1932. doi:10.1172/JCI31370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Pochini L, Scalise M, Galluccio M, Indiveri C (2014) Membrane transporters for the special amino acid glutamine: structure/function relationships and relevance to human health. Front Chem 2:61. doi:10.3389/fchem.2014.00061

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  313. Pollizzi KN, Patel CH, Sun IH, Oh MH, Waickman AT, Wen J, Delgoffe GM, Powell JD (2015) mTORC1 and mTORC2 selectively regulate CD8(+) T cell differentiation. J Clin Invest 125(5):2090–2108. doi:10.1172/JCI77746

    Article  PubMed  PubMed Central  Google Scholar 

  314. Pollizzi KN, Sun IH, Patel CH, Lo YC, Oh MH, Waickman AT, Tam AJ, Blosser RL, Wen J, Delgoffe GM, Powell JD (2016) Asymmetric inheritance of mTORC1 kinase activity during division dictates CD8(+) T cell differentiation. Nat Immunol 17(6):704–711. doi:10.1038/ni.3438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Procaccini C, Carbone F, Di Silvestre D, Brambilla F, De Rosa V, Galgani M, Faicchia D, Marone G, Tramontano D, Corona M, Alviggi C, Porcellini A, La Cava A, Mauri P, Matarese G (2016) The proteomic landscape of human ex vivo regulatory and conventional T cells reveals specific metabolic requirements. Immunity 44(2):406–421. doi:10.1016/j.immuni.2016.01.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Procaccini C, De Rosa V, Galgani M, Abanni L, Cali G, Porcellini A, Carbone F, Fontana S, Horvath TL, La Cava A, Matarese G (2010) An oscillatory switch in mTOR kinase activity sets regulatory T cell responsiveness. Immunity 33(6):929–941. doi:10.1016/j.immuni.2010.11.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  317. Qu P, Du H, Wilkes DS, Yan C (2009) Critical roles of lysosomal acid lipase in T cell development and function. Am J Pathol 174(3):944–956. doi:10.2353/ajpath.2009.080562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Raikwar HP, Muthian G, Rajasingh J, Johnson C, Bright JJ (2005) PPARgamma antagonists exacerbate neural antigen-specific Th1 response and experimental allergic encephalomyelitis. J Neuroimmunol 167(1–2):99–107. doi:10.1016/j.jneuroim.2005.06.026

    Article  CAS  PubMed  Google Scholar 

  319. Rao E, Zhang Y, Zhu G, Hao J, Persson XM, Egilmez NK, Suttles J, Li B (2015) Deficiency of AMPK in CD8+ T cells suppresses their anti-tumor function by inducing protein phosphatase-mediated cell death. Oncotarget 6(10):7944–7958. doi:10.18632/oncotarget.3501

    Article  PubMed  PubMed Central  Google Scholar 

  320. Rao RR, Li Q, Gubbels Bupp MR, Shrikant PA (2012) Transcription factor Foxo1 represses T-bet-mediated effector functions and promotes memory CD8(+) T cell differentiation. Immunity 36(3):374–387. doi:10.1016/j.immuni.2012.01.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. Rao RR, Li Q, Odunsi K, Shrikant PA (2010) The mTOR kinase determines effector versus memory CD8+ T cell fate by regulating the expression of transcription factors T-bet and Eomesodermin. Immunity 32(1):67–78. doi:10.1016/j.immuni.2009.10.010

    Article  PubMed  CAS  Google Scholar 

  322. Rathmell JC, Vander Heiden MG, Harris MH, Frauwirth KA, Thompson CB (2000) In the absence of extrinsic signals, nutrient utilization by lymphocytes is insufficient to maintain either cell size or viability. Mol Cell 6(3):683–692

    Article  CAS  PubMed  Google Scholar 

  323. Ravitz MJ, Chen L, Lynch M, Schmidt EV (2007) C-myc repression of TSC2 contributes to control of translation initiation and Myc-induced transformation. Cancer Res 67(23):11209–11217. doi:10.1158/0008-5472.CAN-06-4351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. Ray JP, Staron MM, Shyer JA, Ho PC, Marshall HD, Gray SM, Laidlaw BJ, Araki K, Ahmed R, Kaech SM, Craft J (2015) The interleukin-2-mTORc1 kinase axis defines the signaling, differentiation, and metabolism of T helper 1 and follicular B helper T cells. Immunity 43(4):690–702. doi:10.1016/j.immuni.2015.08.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  325. Reboldi A, Dang EV, McDonald JG, Liang G, Russell DW, Cyster JG (2014) Inflammation. 25-Hydroxycholesterol suppresses interleukin-1-driven inflammation downstream of type I interferon. Science 345(6197):679–684. doi:10.1126/science.1254790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  326. Rocher C, Singla DK (2013) SMAD-PI3K-Akt-mTOR pathway mediates BMP-7 polarization of monocytes into M2 macrophages. PLoS One 8(12):e84009. doi:10.1371/journal.pone.0084009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  327. Rodriguez-Prados JC, Traves PG, Cuenca J, Rico D, Aragones J, Martin-Sanz P, Cascante M, Bosca L (2010) Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation. J Immunol 185(1):605–614. doi:10.4049/jimmunol.0901698

    Article  CAS  PubMed  Google Scholar 

  328. Rolf J, Zarrouk M, Finlay DK, Foretz M, Viollet B, Cantrell DA (2013) AMPKalpha1: a glucose sensor that controls CD8 T-cell memory. Eur J Immunol 43(4):889–896. doi:10.1002/eji.201243008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  329. Roos D, Loos JA (1973) Changes in the carbohydrate metabolism of mitogenically stimulated human peripheral lymphocytes. II Relative importance of glycolysis and oxidative phosphorylation on phytohaemagglutinin stimulation. Exp Cell Res 77(1):127–135

    Article  CAS  PubMed  Google Scholar 

  330. Rubic T, Lametschwandtner G, Jost S, Hinteregger S, Kund J, Carballido-Perrig N, Schwarzler C, Junt T, Voshol H, Meingassner JG, Mao X, Werner G, Rot A, Carballido JM (2008) Triggering the succinate receptor GPR91 on dendritic cells enhances immunity. Nat Immunol 9(11):1261–1269. doi:10.1038/ni.1657

    Article  CAS  PubMed  Google Scholar 

  331. Rubtsov YP, Niec RE, Josefowicz S, Li L, Darce J, Mathis D, Benoist C, Rudensky AY (2010) Stability of the regulatory T cell lineage in vivo. Science 329(5999):1667–1671. doi:10.1126/science.1191996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  332. Sag D, Carling D, Stout RD, Suttles J (2008) Adenosine 5′-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype. J Immunol 181(12):8633–8641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  333. Salles J, Chanet A, Giraudet C, Patrac V, Pierre P, Jourdan M, Luiking YC, Verlaan S, Migne C, Boirie Y, Walrand S (2013) 1,25(OH)2-vitamin D3 enhances the stimulating effect of leucine and insulin on protein synthesis rate through Akt/PKB and mTOR mediated pathways in murine C2C12 skeletal myotubes. Mol Nutr Food Res 57(12):2137–2146. doi:10.1002/mnfr.201300074

    Article  CAS  PubMed  Google Scholar 

  334. Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM (2010) Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141(2):290–303. doi:10.1016/j.cell.2010.02.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  335. Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, Sabatini DM (2008) The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320(5882):1496–1501. doi:10.1126/science.1157535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  336. Sang N, Stiehl DP, Bohensky J, Leshchinsky I, Srinivas V, Caro J (2003) MAPK signaling up-regulates the activity of hypoxia-inducible factors by its effects on p300. J Biol Chem 278(16):14013–14019. doi:10.1074/jbc.M209702200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  337. Sarkar S, Germeraad WT, Rouschop KM, Steeghs EM, van Gelder M, Bos GM, Wieten L (2013) Hypoxia induced impairment of NK cell cytotoxicity against multiple myeloma can be overcome by IL-2 activation of the NK cells. PLoS One 8(5):e64835. doi:10.1371/journal.pone.0064835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Sauer K, Cooke MP (2010) Regulation of immune cell development through soluble inositol-1,3,4,5-tetrakisphosphate. Nat Rev Immunol 10(4):257–271. doi:10.1038/nri2745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  339. Sauer S, Bruno L, Hertweck A, Finlay D, Leleu M, Spivakov M, Knight ZA, Cobb BS, Cantrell D, O’Connor E, Shokat KM, Fisher AG, Merkenschlager M (2008) T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc Natl Acad Sci U.S.A 105(22):7797–7802. doi:10.1073/pnas.0800928105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  340. Schmidt AM, Lu W, Sindhava VJ, Huang Y, Burkhardt JK, Yang E, Riese MJ, Maltzman JS, Jordan MS, Kambayashi T (2015) Regulatory T cells require TCR signaling for their suppressive function. J Immunol 194(9):4362–4370. doi:10.4049/jimmunol.1402384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  341. Schmitt E, Germann T, Goedert S, Hoehn P, Huels C, Koelsch S, Kuhn R, Muller W, Palm N, Rude E (1994) IL-9 production of naive CD4+ T cells depends on IL-2, is synergistically enhanced by a combination of TGF-beta and IL-4, and is inhibited by IFN-gamma. J Immunol 153(9):3989–3996

    CAS  PubMed  Google Scholar 

  342. Schmitt E, Klein M, Bopp T (2014) Th9 cells, new players in adaptive immunity. Trends Immunol 35(2):61–68. doi:10.1016/j.it.2013.10.004

    Article  CAS  PubMed  Google Scholar 

  343. Schonle A, Hartl FA, Mentzel J, Noltner T, Rauch KS, Prestipino A, Wohlfeil SA, Apostolova P, Hechinger AK, Melchinger W, Fehrenbach K, Guadamillas MC, Follo M, Prinz G, Ruess AK, Pfeifer D, del Pozo MA, Schmitt-Graeff A, Duyster J, Hippen KI, Blazar BR, Schachtrup K, Minguet S, Zeiser R (2016) Caveolin-1 regulates TCR signal strength and regulatory T-cell differentiation into alloreactive T cells. Blood 127(15):1930–1939. doi:10.1182/blood-2015-09-672428

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  344. Semple K, Nguyen A, Yu Y, Wang H, Anasetti C, Yu XZ (2011) Strong CD28 costimulation suppresses induction of regulatory T cells from naive precursors through Lck signaling. Blood 117(11):3096–3103. doi:10.1182/blood-2010-08-301275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  345. Sena LA, Li S, Jairaman A, Prakriya M, Ezponda T, Hildeman DA, Wang CR, Schumacker PT, Licht JD, Perlman H, Bryce PJ, Chandel NS (2013) Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity 38(2):225–236. doi:10.1016/j.immuni.2012.10.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  346. Shao W, Espenshade PJ (2012) Expanding roles for SREBP in metabolism. Cell Metab 16(4):414–419. doi:10.1016/j.cmet.2012.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  347. Shen CJ, Yuan ZH, Liu YX, Hu GY (2012) Increased numbers of T helper 17 cells and the correlation with clinicopathological characteristics in multiple myeloma. J Int Med Res 40(2):556–564

    Article  CAS  PubMed  Google Scholar 

  348. Shi LZ, Wang R, Huang G, Vogel P, Neale G, Green DR, Chi H (2011) HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med 208(7):1367–1376. doi:10.1084/jem.20110278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  349. Shimobayashi M, Hall MN (2014) Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nat Rev Mol Cell Biol 15(3):155–162. doi:10.1038/nrm3757

    Article  CAS  PubMed  Google Scholar 

  350. Shimobayashi M, Hall MN (2016) Multiple amino acid sensing inputs to mTORC1. Cell Res 26(1):7–20. doi:10.1038/cr.2015.146

    Article  CAS  PubMed  Google Scholar 

  351. Shin I, Yakes FM, Rojo F, Shin NY, Bakin AV, Baselga J, Arteaga CL (2002) PKB/Akt mediates cell-cycle progression by phosphorylation of p27(Kip1) at threonine 157 and modulation of its cellular localization. Nat Med 8(10):1145–1152. doi:10.1038/nm759

    Article  CAS  PubMed  Google Scholar 

  352. Shrestha S, Yang K, Guy C, Vogel P, Neale G, Chi H (2015) Treg cells require the phosphatase PTEN to restrain TH1 and TFH cell responses. Nat Immunol 16(2):178–187. doi:10.1038/ni.3076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  353. Shrestha S, Yang K, Wei J, Karmaus PWF, Neale G, Chi H (2014) Tsc1 promotes the differentiation of memory CD8+ T cells via orchestrating the transcriptional and metabolic programs. Proc Natl Acad Sci 111(41):14858–14863. doi:10.1073/pnas.1404264111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  354. Silverstein RL, Febbraio M (2009) CD36, a scavenger receptor involved in immunity, metabolism, angiogenesis, and behavior. Sci Signal 2(72):re3. doi:10.1126/scisignal.272re3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  355. Sim WJ, Ahl PJ, Connolly JE (2016) Metabolism is central to tolerogenic dendritic cell function. Mediat Inflamm 2016:2636701. doi:10.1155/2016/2636701

    Article  CAS  Google Scholar 

  356. Sinclair LV, Rolf J, Emslie E, Shi Y-B, Taylor PM, Cantrell DA (2013) Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat Immunol 14(5):500–508. doi:10.1038/ni.2556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  357. Singh N, Gurav A, Sivaprakasam S, Brady E, Padia R, Shi H, Thangaraju M, Prasad PD, Manicassamy S, Munn DH, Lee JR, Offermanns S, Ganapathy V (2014) Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 40(1):128–139. doi:10.1016/j.immuni.2013.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  358. Singh R, Xiang Y, Wang Y, Baikati K, Cuervo AM, Luu YK, Tang Y, Pessin JE, Schwartz GJ, Czaja MJ (2009) Autophagy regulates adipose mass and differentiation in mice. J Clin Invest 119(11):3329–3339. doi:10.1172/JCI39228

    CAS  PubMed  PubMed Central  Google Scholar 

  359. Skon CN, Lee JY, Anderson KG, Masopust D, Hogquist KA, Jameson SC (2013) Transcriptional downregulation of S1pr1 is required for the establishment of resident memory CD8+ T cells. Nat Immunol 14(12):1285–1293. doi:10.1038/ni.2745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  360. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly YM, Glickman JN, Garrett WS (2013) The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341(6145):569–573. doi:10.1126/science.1241165

    Article  CAS  PubMed  Google Scholar 

  361. Sonnenberg GF, Artis D (2015) Innate lymphoid cells in the initiation, regulation and resolution of inflammation. Nat Med 21(7):698–708. doi:10.1038/nm.3892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  362. Sonoda J, Laganiere J, Mehl IR, Barish GD, Chong LW, Li X, Scheffler IE, Mock DC, Bataille AR, Robert F, Lee CH, Giguere V, Evans RM (2007) Nuclear receptor ERR alpha and coactivator PGC-1 beta are effectors of IFN-gamma-induced host defense. Genes Dev 21(15):1909–1920. doi:10.1101/gad.1553007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  363. Sonveaux P, Copetti T, De Saedeleer CJ, Vegran F, Verrax J, Kennedy KM, Moon EJ, Dhup S, Danhier P, Frerart F, Gallez B, Ribeiro A, Michiels C, Dewhirst MW, Feron O (2012) Targeting the lactate transporter MCT1 in endothelial cells inhibits lactate-induced HIF-1 activation and tumor angiogenesis. PLoS One 7(3):e33418. doi:10.1371/journal.pone.0033418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  364. Sowell RT, Rogozinska M, Nelson CE, Vezys V, Marzo AL (2014) Cutting edge: generation of effector cells that localize to mucosal tissues and form resident memory CD8 T cells is controlled by mTOR. J Immunol 193(5):2067–2071. doi:10.4049/jimmunol.1400074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  365. Spirig R, Djafarzadeh S, Regueira T, Shaw SG, von Garnier C, Takala J, Jakob SM, Rieben R, Lepper PM (2010) Effects of TLR agonists on the hypoxia-regulated transcription factor HIF-1alpha and dendritic cell maturation under normoxic conditions. PLoS One 5(6):e0010983. doi:10.1371/journal.pone.0010983

    Article  PubMed  CAS  Google Scholar 

  366. Staron MM, Gray SM, Marshall HD, Parish IA, Chen JH, Perry CJ, Cui G, Li MO, Kaech SM (2014) The transcription factor FoxO1 sustains expression of the inhibitory receptor PD-1 and survival of antiviral CD8(+) T cells during chronic infection. Immunity 41(5):802–814. doi:10.1016/j.immuni.2014.10.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  367. Staudt V, Bothur E, Klein M, Lingnau K, Reuter S, Grebe N, Gerlitzki B, Hoffmann M, Ulges A, Taube C, Dehzad N, Becker M, Stassen M, Steinborn A, Lohoff M, Schild H, Schmitt E, Bopp T (2010) Interferon-regulatory factor 4 is essential for the developmental program of T helper 9 cells. Immunity 33(2):192–202. doi:10.1016/j.immuni.2010.07.014

    Article  CAS  PubMed  Google Scholar 

  368. Steinberg GR, Michell BJ, van Denderen BJ, Watt MJ, Carey AL, Fam BC, Andrikopoulos S, Proietto J, Gorgun CZ, Carling D, Hotamisligil GS, Febbraio MA, Kay TW, Kemp BE (2006) Tumor necrosis factor alpha-induced skeletal muscle insulin resistance involves suppression of AMP-kinase signaling. Cell Metab 4(6):465–474. doi:10.1016/j.cmet.2006.11.005

    Article  CAS  PubMed  Google Scholar 

  369. Stone EL, Pepper M, Katayama CD, Kerdiles YM, Lai CY, Emslie E, Lin YC, Yang E, Goldrath AW, Li MO, Cantrell DA, Hedrick SM (2015) ICOS coreceptor signaling inactivates the transcription factor FOXO1 to promote Tfh cell differentiation. Immunity 42(2):239–251. doi:10.1016/j.immuni.2015.01.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  370. Sukumar M, Liu J, Ji Y, Subramanian M, Crompton JG, Yu Z, Roychoudhuri R, Palmer DC, Muranski P, Karoly ED, Mohney RP, Klebanoff CA, Lal A, Finkel T, Restifo NP, Gattinoni L (2013) Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function. J Clin Invest 123(10):4479–4488. doi:10.1172/JCI69589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  371. Sun CM, Hall JA, Blank RB, Bouladoux N, Oukka M, Mora JR, Belkaid Y (2007) Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J Exp Med 204(8):1775–1785. doi:10.1084/jem.20070602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  372. Sun JC, Beilke JN, Lanier LL (2009) Adaptive immune features of natural killer cells. Nature 457(7229):557–561. doi:10.1038/nature07665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  373. Sun X, Kanwar JR, Leung E, Lehnert K, Wang D, Krissansen GW (2001) Gene transfer of antisense hypoxia inducible factor-1 alpha enhances the therapeutic efficacy of cancer immunotherapy. Gene Ther 8(8):638–645. doi:10.1038/sj.gt.3301388

    Article  CAS  PubMed  Google Scholar 

  374. Swamy M, Beck-Garcia K, Beck-Garcia E, Hartl FA, Morath A, Yousefi OS, Dopfer EP, Molnar E, Schulze AK, Blanco R, Borroto A, Martin-Blanco N, Alarcon B, Hofer T, Minguet S, Schamel WW (2016) A cholesterol-based allostery model of T cell receptor phosphorylation. Immunity 44(5):1091–1101. doi:10.1016/j.immuni.2016.04.011

    Article  CAS  PubMed  Google Scholar 

  375. Szatmari I, Gogolak P, Im JS, Dezso B, Rajnavolgyi E, Nagy L (2004) Activation of PPARgamma specifies a dendritic cell subtype capable of enhanced induction of iNKT cell expansion. Immunity 21(1):95–106. doi:10.1016/j.immuni.2004.06.003

    Article  CAS  PubMed  Google Scholar 

  376. Takamatsu M, Hirata A, Ohtaki H, Hoshi M, Ando T, Ito H, Hatano Y, Tomita H, Kuno T, Saito K, Seishima M, Hara A (2015) Inhibition of indoleamine 2,3-dioxygenase 1 expression alters immune response in colon tumor microenvironment in mice. Cancer Sci 106(8):1008–1015. doi:10.1111/cas.12705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  377. Takeda N, O’Dea EL, Doedens A, Kim JW, Weidemann A, Stockmann C, Asagiri M, Simon MC, Hoffmann A, Johnson RS (2010) Differential activation and antagonistic function of HIF-{alpha} isoforms in macrophages are essential for NO homeostasis. Genes Dev 24(5):491–501. doi:10.1101/gad.1881410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  378. Talks KL, Turley H, Gatter KC, Maxwell PH, Pugh CW, Ratcliffe PJ, Harris AL (2000) The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am J Pathol 157(2):411–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  379. Tamas P, Hawley SA, Clarke RG, Mustard KJ, Green K, Hardie DG, Cantrell DA (2006) Regulation of the energy sensor AMP-activated protein kinase by antigen receptor and Ca2+ in T lymphocytes. J Exp Med 203(7):1665–1670. doi:10.1084/jem.20052469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  380. Tamas P, Macintyre A, Finlay D, Clarke R, Feijoo-Carnero C, Ashworth A, Cantrell D (2010) LKB1 is essential for the proliferation of T-cell progenitors and mature peripheral T cells. Eur J Immunol 40(1):242–253. doi:10.1002/eji.200939677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  381. Tannahill GM, Curtis AM, Adamik J, Palsson-McDermott EM, McGettrick AF, Goel G, Frezza C, Bernard NJ, Kelly B, Foley NH, Zheng L, Gardet A, Tong Z, Jany SS, Corr SC, Haneklaus M, Caffrey BE, Pierce K, Walmsley S, Beasley FC, Cummins E, Nizet V, Whyte M, Taylor CT, Lin H, Masters SL, Gottlieb E, Kelly VP, Clish C, Auron PE, Xavier RJ, O’Neill LA (2013) Succinate is an inflammatory signal that induces IL-1beta through HIF-1alpha. Nature 496(7444):238–242. doi:10.1038/nature11986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  382. Tato I, Bartrons R, Ventura F, Rosa JL (2011) Amino acids activate mammalian target of rapamycin complex 2 (mTORC2) via PI3K/Akt signaling. J Biol Chem 286(8):6128–6142. doi:10.1074/jbc.M110.166991

    Article  CAS  PubMed  Google Scholar 

  383. Tejera MM, Kim EH, Sullivan JA, Plisch EH, Suresh M (2013) FoxO1 controls effector-to-memory transition and maintenance of functional CD8 T cell memory. J Immunol 191(1):187–199. doi:10.4049/jimmunol.1300331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  384. Thiel M, Caldwell CC, Kreth S, Kuboki S, Chen P, Smith P, Ohta A, Lentsch AB, Lukashev D, Sitkovsky MV (2007) Targeted deletion of HIF-1alpha gene in T cells prevents their inhibition in hypoxic inflamed tissues and improves septic mice survival. PLoS One 2(9):e853. doi:10.1371/journal.pone.0000853

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  385. Thurnher M, Gruenbacher G (2015) T lymphocyte regulation by mevalonate metabolism. Sci Signal 8(370):re4. doi:10.1126/scisignal.2005970

    Article  PubMed  CAS  Google Scholar 

  386. Toschi A, Lee E, Gadir N, Ohh M, Foster DA (2008) Differential dependence of hypoxia-inducible factors 1 alpha and 2 alpha on mTORC1 and mTORC2. J Biol Chem 283(50):34495–34499. doi:10.1074/jbc.C800170200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  387. Tripmacher R, Gaber T, Dziurla R, Haupl T, Erekul K, Grutzkau A, Tschirschmann M, Scheffold A, Radbruch A, Burmester GR, Buttgereit F (2008) Human CD4(+) T cells maintain specific functions even under conditions of extremely restricted ATP production. Eur J Immunol 38(6):1631–1642. doi:10.1002/eji.200738047

    Article  CAS  PubMed  Google Scholar 

  388. Troutman TD, Hu W, Fulenchek S, Yamazaki T, Kurosaki T, Bazan JF, Pasare C (2012) Role for B-cell adapter for PI3K (BCAP) as a signaling adapter linking toll-like receptors (TLRs) to serine/threonine kinases PI3K/Akt. Proc Natl Acad Sci U.S.A. 109(1):273–278. doi:10.1073/pnas.1118579109

    Article  CAS  PubMed  Google Scholar 

  389. Tsun ZY, Bar-Peled L, Chantranupong L, Zoncu R, Wang T, Kim C, Spooner E, Sabatini DM (2013) The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1. Mol Cell 52(4):495–505. doi:10.1016/j.molcel.2013.09.016

    Article  CAS  PubMed  Google Scholar 

  390. Turcotte LP, Raney MA, Todd MK (2005) ERK1/2 inhibition prevents contraction-induced increase in plasma membrane FAT/CD36 content and FA uptake in rodent muscle. Acta Physiol Scand 184(2):131–139. doi:10.1111/j.1365-201X.2005.01445.x

    Article  CAS  PubMed  Google Scholar 

  391. Vahl JC, Drees C, Heger K, Heink S, Fischer JC, Nedjic J, Ohkura N, Morikawa H, Poeck H, Schallenberg S, Riess D, Hein MY, Buch T, Polic B, Schonle A, Zeiser R, Schmitt-Graff A, Kretschmer K, Klein L, Korn T, Sakaguchi S, Schmidt-Supprian M (2014) Continuous T cell receptor signals maintain a functional regulatory T cell pool. Immunity 41(5):722–736. doi:10.1016/j.immuni.2014.10.012

    Article  CAS  PubMed  Google Scholar 

  392. van der Bliek AM, Shen Q, Kawajiri S (2013) Mechanisms of mitochondrial fission and fusion. Cold Spring Harb Perspect Biol 5(6). doi:10.1101/cshperspect.a011072

  393. van der Windt GJ, Everts B, Chang CH, Curtis JD, Freitas TC, Amiel E, Pearce EJ, Pearce EL (2012) Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity 36(1):68–78. doi:10.1016/j.immuni.2011.12.007

    Article  PubMed  CAS  Google Scholar 

  394. Vander Heiden MG, Locasale JW, Swanson KD, Sharfi H, Heffron GJ, Amador-Noguez D, Christofk HR, Wagner G, Rabinowitz JD, Asara JM, Cantley LC (2010) Evidence for an alternative glycolytic pathway in rapidly proliferating cells. Science 329(5998):1492–1499. doi:10.1126/science.1188015

    Article  CAS  PubMed  Google Scholar 

  395. Vasanthakumar A, Moro K, Xin A, Liao Y, Gloury R, Kawamoto S, Fagarasan S, Mielke LA, Afshar-Sterle S, Masters SL, Nakae S, Saito H, Wentworth JM, Li P, Liao W, Leonard WJ, Smyth GK, Shi W, Nutt SL, Koyasu S, Kallies A (2015) The transcriptional regulators IRF4, BATF and IL-33 orchestrate development and maintenance of adipose tissue-resident regulatory T cells. Nat Immunol 16(3):276–285. doi:10.1038/ni.3085

    Article  CAS  PubMed  Google Scholar 

  396. Vats D, Mukundan L, Odegaard JI, Zhang L, Smith KL, Morel CR, Wagner RA, Greaves DR, Murray PJ, Chawla A (2006) Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation. Cell Metab 4(1):13–24. doi:10.1016/j.cmet.2006.05.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  397. Veldhoen M, Hirota K, Westendorf AM, Buer J, Dumoutier L, Renauld JC, Stockinger B (2008a) The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 453(7191):106–109. doi:10.1038/nature06881

    Article  CAS  PubMed  Google Scholar 

  398. Veldhoen M, Uyttenhove C, van Snick J, Helmby H, Westendorf A, Buer J, Martin B, Wilhelm C, Stockinger B (2008b) Transforming growth factor-beta ‘reprograms’ the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat Immunol 9(12):1341–1346. doi:10.1038/ni.1659

    Article  CAS  PubMed  Google Scholar 

  399. Verbist KC, Guy CS, Milasta S, Liedmann S, Kaminski MM, Wang R, Green DR (2016) Metabolic maintenance of cell asymmetry following division in activated T lymphocytes. Nature 532(7599):389–393. doi:10.1038/nature17442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  400. Vousden KH, Lane DP (2007) p53 in health and disease. Nat Rev Mol Cell Biol 8(4):275–283. doi:10.1038/nrm2147

    Article  CAS  PubMed  Google Scholar 

  401. Wahli W, Michalik L (2012) PPARs at the crossroads of lipid signaling and inflammation. Trends Endocrinol Metab 23(7):351–363. doi:10.1016/j.tem.2012.05.001

    Article  CAS  PubMed  Google Scholar 

  402. Wang F, Alain T, Szretter KJ, Stephenson K, Pol JG, Atherton MJ, Hoang HD, Fonseca BD, Zakaria C, Chen L, Rangwala Z, Hesch A, Chan ES, Tuinman C, Suthar MS, Jiang Z, Ashkar AA, Thomas G, Kozma SC, Gale M Jr, Fitzgerald KA, Diamond MS, Mossman K, Sonenberg N, Wan Y, Lichty BD (2016a) S6K-STING interaction regulates cytosolic DNA-mediated activation of the transcription factor IRF3. Nat Immunol 17(5):514–522. doi:10.1038/ni.3433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  403. Wang R, Dillon CP, Shi LZ, Milasta S, Carter R, Finkelstein D, McCormick LL, Fitzgerald P, Chi H, Munger J, Green DR (2011) The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35(6):871–882. doi:10.1016/j.immuni.2011.09.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  404. Wang R, Green DR (2012) Metabolic checkpoints in activated T cells. Nat Immunol 13(10):907–915. doi:10.1038/ni.2386

    Article  CAS  PubMed  Google Scholar 

  405. Wang S, Charbonnier LM, Noval Rivas M, Georgiev P, Li N, Gerber G, Bry L, Chatila TA (2015a) MyD88 adaptor-dependent microbial sensing by regulatory T cells promotes mucosal tolerance and enforces commensalism. Immunity 43(2):289–303. doi:10.1016/j.immuni.2015.06.014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  406. Wang S, Tsun ZY, Wolfson RL, Shen K, Wyant GA, Plovanich ME, Yuan ED, Jones TD, Chantranupong L, Comb W, Wang T, Bar-Peled L, Zoncu R, Straub C, Kim C, Park J, Sabatini BL, Sabatini DM (2015b) Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science 347(6218):188–194. doi:10.1126/science.1257132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  407. Wang S, Xia P, Huang G, Zhu P, Liu J, Ye B, Du Y, Fan Z (2016b) FoxO1-mediated autophagy is required for NK cell development and innate immunity. Nat Commun 7:11023. doi:10.1038/ncomms11023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  408. Wang X, Wang W, Xu J, Wu S, Le Q (2015c) All-trans retinoid acid promotes allogeneic corneal graft survival in mice by regulating Treg-Th17 balance in the presence of TGF-beta. BMC Immunol 16:17. doi:10.1186/s12865-015-0082-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  409. Wang Y, Bi Y, Chen X, Li C, Li Y, Zhang Z, Wang J, Lu Y, Yu Q, Su H, Yang H, Liu G (2016c) Histone deacetylase SIRT1 negatively regulates the differentiation of interleukin-9-producing CD4(+) T cells. Immunity 44(6):1337–1349. doi:10.1016/j.immuni.2016.05.009

    Article  CAS  PubMed  Google Scholar 

  410. Wang Y, Huang G, Zeng H, Yang K, Lamb RF, Chi H (2013) Tuberous sclerosis 1 (Tsc1)-dependent metabolic checkpoint controls development of dendritic cells. Proc Natl Acad Sci USA 110(50):E4894–E4903. doi:10.1073/pnas.1308905110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  411. Waugh C, Sinclair L, Finlay D, Bayascas JR, Cantrell D (2009) Phosphoinositide (3,4,5)-triphosphate binding to phosphoinositide-dependent kinase 1 regulates a protein kinase B/Akt signaling threshold that dictates T-cell migration, not proliferation. Mol Cell Biol 29(21):5952–5962. doi:10.1128/MCB.00585-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  412. Weber JP, Fuhrmann F, Feist RK, Lahmann A, Al Baz MS, Gentz LJ, Vu Van D, Mages HW, Haftmann C, Riedel R, Grun JR, Schuh W, Kroczek RA, Radbruch A, Mashreghi MF, Hutloff A (2015) ICOS maintains the T follicular helper cell phenotype by down-regulating Kruppel-like factor 2. J Exp Med 212(2):217–233. doi:10.1084/jem.20141432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  413. Wei H, Geng J, Shi B, Liu Z, Wang YH, Stevens AC, Sprout SL, Yao M, Wang H, Hu H (2016a) Cutting edge: Foxp1 controls naive CD8+ T cell quiescence by simultaneously repressing key pathways in cellular metabolism and cell cycle progression. J Immunol 196(9):3537–3541. doi:10.4049/jimmunol.1501896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  414. Wei J, Long L, Yang K, Guy C, Shrestha S, Chen Z, Wu C, Vogel P, Neale G, Green DR, Chi H (2016b) Autophagy enforces functional integrity of regulatory T cells by coupling environmental cues and metabolic homeostasis. Nat Immunol 17(3):277–285. doi:10.1038/ni.3365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  415. Wei J, Yang K, Chi H (2014) Cutting edge: discrete functions of mTOR signaling in invariant NKT cell development and NKT17 fate decision. J Immunol 193(9):4297–4301. doi:10.4049/jimmunol.1402042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  416. Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR, Thompson CB (2009) ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324(5930):1076–1080. doi:10.1126/science.1164097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  417. West AP, Shadel GS, Ghosh S (2011) Mitochondria in innate immune responses. Nat Rev Immunol 11(6):389–402. doi:10.1038/nri2975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  418. Wieman HL, Wofford JA, Rathmell JC (2007) Cytokine stimulation promotes glucose uptake via phosphatidylinositol-3 kinase/Akt regulation of Glut1 activity and trafficking. Mol Biol Cell 18(4):1437–1446. doi:10.1091/mbc.E06-07-0593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  419. Wildin RS, Ramsdell F, Peake J, Faravelli F, Casanova JL, Buist N, Levy-Lahad E, Mazzella M, Goulet O, Perroni L, Bricarelli FD, Byrne G, McEuen M, Proll S, Appleby M, Brunkow ME (2001) X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet 27(1):18–20. doi:10.1038/83707

    Article  CAS  PubMed  Google Scholar 

  420. Wofford JA, Wieman HL, Jacobs SR, Zhao Y, Rathmell JC (2008) IL-7 promotes Glut1 trafficking and glucose uptake via STAT5-mediated activation of Akt to support T-cell survival. Blood 111(4):2101–2111. doi:10.1182/blood-2007-06-096297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  421. Woodland RT, Fox CJ, Schmidt MR, Hammerman PS, Opferman JT, Korsmeyer SJ, Hilbert DM, Thompson CB (2008) Multiple signaling pathways promote B lymphocyte stimulator dependent B-cell growth and survival. Blood 111(2):750–760. doi:10.1182/blood-2007-03-077222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  422. Wu C, Yosef N, Thalhamer T, Zhu C, Xiao S, Kishi Y, Regev A, Kuchroo VK (2013a) Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1. Nature 496(7446):513–517. doi:10.1038/nature11984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  423. Wu D, Sanin DE, Everts B, Chen Q, Qiu J, Buck MD, Patterson A, Smith AM, Chang CH, Liu Z, Artyomov MN, Pearce EL, Cella M, Pearce EJ (2016) Type 1 interferons induce changes in core metabolism that are critical for immune function. Immunity 44(6):1325–1336. doi:10.1016/j.immuni.2016.06.006

    Article  CAS  PubMed  Google Scholar 

  424. Wu J, Yang J, Yang K, Wang H, Gorentla B, Shin J, Qiu Y, Que LG, Foster WM, Xia Z, Chi H, Zhong XP (2014) iNKT cells require TSC1 for terminal maturation and effector lineage fate decisions. J Clin Invest 124(4):1685–1698. doi:10.1172/JCI69780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  425. Wu N, Zheng B, Shaywitz A, Dagon Y, Tower C, Bellinger G, Shen CH, Wen J, Asara J, McGraw TE, Kahn BB, Cantley LC (2013b) AMPK-dependent degradation of TXNIP upon energy stress leads to enhanced glucose uptake via GLUT1. Mol Cell 49(6):1167–1175. doi:10.1016/j.molcel.2013.01.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  426. Wu Q, Liu Y, Chen C, Ikenoue T, Qiao Y, Li CS, Li W, Guan KL, Liu Y, Zheng P (2011) The tuberous sclerosis complex-mammalian target of rapamycin pathway maintains the quiescence and survival of naive T cells. J Immunol 187(3):1106–1112. doi:10.4049/jimmunol.1003968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  427. Wu T, Shin HM, Moseman EA, Ji Y, Huang B, Harly C, Sen JM, Berg LJ, Gattinoni L, McGavern DB, Schwartzberg PL (2015) TCF1 is required for the T follicular helper cell response to viral infection. Cell Rep 12(12):2099–2110. doi:10.1016/j.celrep.2015.08.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  428. Xiao N, Eto D, Elly C, Peng G, Crotty S, Liu YC (2014) The E3 ubiquitin ligase Itch is required for the differentiation of follicular helper T cells. Nat Immunol 15(7):657–666. doi:10.1038/ni.2912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  429. Xu L, Cao Y, Xie Z, Huang Q, Bai Q, Yang X, He R, Hao Y, Wang H, Zhao T, Fan Z, Qin A, Ye J, Zhou X, Ye L, Wu Y (2015) The transcription factor TCF-1 initiates the differentiation of T(FH) cells during acute viral infection. Nat Immunol 16(9):991–999. doi:10.1038/ni.3229

    Article  CAS  PubMed  Google Scholar 

  430. Yamagata K, Daitoku H, Takahashi Y, Namiki K, Hisatake K, Kako K, Mukai H, Kasuya Y, Fukamizu A (2008) Arginine methylation of FOXO transcription factors inhibits their phosphorylation by Akt. Mol Cell 32(2):221–231. doi:10.1016/j.molcel.2008.09.013

    Article  CAS  PubMed  Google Scholar 

  431. Yan D, Farache J, Mingueneau M, Mathis D, Benoist C (2015) Imbalanced signal transduction in regulatory T cells expressing the transcription factor FoxP3. Proc Natl Acad Sci U.S.A. 112(48):14942–14947. doi:10.1073/pnas.1520393112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  432. Yan Y, Zhang GX, Gran B, Fallarino F, Yu S, Li H, Cullimore ML, Rostami A, Xu H (2010) IDO upregulates regulatory T cells via tryptophan catabolite and suppresses encephalitogenic T cell responses in experimental autoimmune encephalomyelitis. J Immunol 185(10):5953–5961. doi:10.4049/jimmunol.1001628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  433. Yang K, Neale G, Green DR, He W, Chi H (2011) The tumor suppressor Tsc1 enforces quiescence of naive T cells to promote immune homeostasis and function. Nat Immunol 12(9):888–897. doi:10.1038/ni.2068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  434. Yang K, Shrestha S, Zeng H, Karmaus PW, Neale G, Vogel P, Guertin DA, Lamb RF, Chi H (2013a) T cell exit from quiescence and differentiation into Th2 cells depend on Raptor-mTORC1-mediated metabolic reprogramming. Immunity 39(6):1043–1056. doi:10.1016/j.immuni.2013.09.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  435. Yang W, Bai Y, Xiong Y, Zhang J, Chen S, Zheng X, Meng X, Li L, Wang J, Xu C, Yan C, Wang L, Chang CC, Chang TY, Zhang T, Zhou P, Song BL, Liu W, Sun SC, Liu X, Li BL, Xu C (2016) Potentiating the antitumour response of CD8(+) T cells by modulating cholesterol metabolism. Nature 531(7596):651–655. doi:10.1038/nature17412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  436. Yang XO, Zhang H, Kim BS, Niu X, Peng J, Chen Y, Kerketta R, Lee YH, Chang SH, Corry DB, Wang D, Watowich SS, Dong C (2013b) The signaling suppressor CIS controls proallergic T cell development and allergic airway inflammation. Nat Immunol 14(7):732–740. doi:10.1038/ni.2633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  437. Yang XY, Wang LH, Chen T, Hodge DR, Resau JH, DaSilva L, Farrar WL (2000) Activation of human T lymphocytes is inhibited by peroxisome proliferator-activated receptor gamma (PPARgamma) agonists. PPARgamma co-association with transcription factor NFAT. J Biol Chem 275(7):4541–4544

    Article  CAS  PubMed  Google Scholar 

  438. Yang Y, Lovett-Racke AE, Racke MK (2010a) Regulation of immune responses and autoimmune encephalomyelitis by PPARs. PPAR Res 2010:104705. doi:10.1155/2010/104705

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  439. Yang Z, Kahn BB, Shi H, Xue BZ (2010b) Macrophage alpha1 AMP-activated protein kinase (alpha1AMPK) antagonizes fatty acid-induced inflammation through SIRT1. J Biol Chem 285(25):19051–19059. doi:10.1074/jbc.M110.123620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  440. Ye J, DeBose-Boyd RA (2011) Regulation of cholesterol and fatty acid synthesis. Cold Spring Harb Perspect Biol 3(7). doi:10.1101/cshperspect.a004754

  441. Yin Y, Choi SC, Xu Z, Perry DJ, Seay H, Croker BP, Sobel ES, Brusko TM, Morel L (2015) Normalization of CD4+ T cell metabolism reverses lupus. Sci Transl Med 7(274):274ra218. doi:10.1126/scitranslmed.aaa0835

    Article  CAS  Google Scholar 

  442. York AG, Williams KJ, Argus JP, Zhou QD, Brar G, Vergnes L, Gray EE, Zhen A, Wu NC, Yamada DH, Cunningham CR, Tarling EJ, Wilks MQ, Casero D, Gray DH, Yu AK, Wang ES, Brooks DG, Sun R, Kitchen SG, Wu TT, Reue K, Stetson DB, Bensinger SJ (2015) Limiting cholesterol biosynthetic flux spontaneously engages type I IFN signaling. Cell 163(7):1716–1729. doi:10.1016/j.cell.2015.11.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  443. Zeng H, Cohen S, Guy C, Shrestha S, Neale G, Brown SA, Cloer C, Kishton RJ, Youngblood B, Do M, Li MO, Locasale JW, Rathmell JC, Chi H (2016) mTORC1 and mTORC2 kinase signaling and glucose metabolism drive follicular helper T cell differentitiation. Immunity 45:540

    Article  CAS  PubMed  Google Scholar 

  444. Zeng H, Yang K, Cloer C, Neale G, Vogel P, Chi H (2013) mTORC1 couples immune signals and metabolic programming to establish T(reg)-cell function. Nature 499(7459):485–490. doi:10.1038/nature12297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  445. Zhang L, Tschumi BO, Corgnac S, Ruegg MA, Hall MN, Mach JP, Romero P, Donda A (2014) Mammalian target of rapamycin complex 1 orchestrates invariant NKT cell differentiation and effector function. J Immunol 193(4):1759–1765. doi:10.4049/jimmunol.1400769

    Article  CAS  PubMed  Google Scholar 

  446. Zhang L, Zhang H, Li L, Xiao Y, Rao E, Miao Z, Chen H, Sun L, Li H, Liu G, Zhao Y (2012) TSC1/2 signaling complex is essential for peripheral naive CD8+ T cell survival and homeostasis in mice. PLoS One 7(2):e30592. doi:10.1371/journal.pone.0030592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  447. Zhang R, Huynh A, Whitcher G, Chang J, Maltzman JS, Turka LA (2013) An obligate cell-intrinsic function for CD28 in Tregs. J Clin Invest 123(2):580–593. doi:10.1172/JCI65013

    CAS  PubMed  PubMed Central  Google Scholar 

  448. Zheng Y, Delgoffe GM, Meyer CF, Chan W, Powell JD (2009) Anergic T cells are metabolically anergic. J Immunol 183(10):6095–6101. doi:10.4049/jimmunol.0803510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  449. Zheng Y, Josefowicz S, Chaudhry A, Peng XP, Forbush K, Rudensky AY (2010) Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 463(7282):808–812. doi:10.1038/nature08750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  450. Zhou X, Bailey-Bucktrout SL, Jeker LT, Penaranda C, Martinez-Llordella M, Ashby M, Nakayama M, Rosenthal W, Bluestone JA (2009) Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat Immunol 10(9):1000–1007. doi:10.1038/ni.1774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  451. Zhu L, Yang T, Li L, Sun L, Hou Y, Hu X, Zhang L, Tian H, Zhao Q, Peng J, Zhang H, Wang R, Yang Z, Zhao Y (2014) TSC1 controls macrophage polarization to prevent inflammatory disease. Nat Commun 5:4696. doi:10.1038/ncomms5696

    Article  CAS  PubMed  Google Scholar 

  452. Zinzalla V, Stracka D, Oppliger W, Hall MN (2011) Activation of mTORC2 by association with the ribosome. Cell 144(5):757–768. doi:10.1016/j.cell.2011.02.014

    Article  CAS  PubMed  Google Scholar 

  453. Zizzo G, Cohen PL (2015) The PPAR-gamma antagonist GW9662 elicits differentiation of M2c-like cells and upregulation of the MerTK/Gas6 axis: a key role for PPAR-gamma in human macrophage polarization. J Inflamm 12:36. doi:10.1186/s12950-015-0081-4

    Article  CAS  Google Scholar 

  454. Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y, Sabatini DM (2011) mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science 334(6056):678–683. doi:10.1126/science.1207056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  455. Zong Y, Sun L, Liu B, Deng YS, Zhan D, Chen YL, He Y, Liu J, Zhang ZJ, Sun J, Lu D (2012) Resveratrol inhibits LPS-induced MAPKs activation via activation of the phosphatidylinositol 3-kinase pathway in murine RAW 264.7 macrophage cells. PloS One 7(8):e44107. doi:10.1371/journal.pone.0044107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Hartwell Foundation Biomedical Research Fellowship (N.M.C.) and NIH AI105887, AI101407, CA176624, and NS064599, America Asthma Foundation, and Crohn’s & Colitis Foundation of America (to H.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbo Chi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Chapman, N.M., Shrestha, S., Chi, H. (2017). Metabolism in Immune Cell Differentiation and Function. In: Li, B., Pan, F. (eds) Immune Metabolism in Health and Tumor. Advances in Experimental Medicine and Biology, vol 1011. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1170-6_1

Download citation

Publish with us

Policies and ethics