Skip to main content

Cardiac Aging – Benefits of Exercise, Nrf2 Activation and Antioxidant Signaling

  • Chapter
  • First Online:
Exercise for Cardiovascular Disease Prevention and Treatment

Abstract

Cardiovascular dysfunction and heart failure associated with aging not only impairs the cardiac function but also the quality of life eventually decreasing the life expectancy of the elderly. Notably, cardiac tissue can prematurely age under certain conditions such as genetic mutation, persistent redox stress and overload, aberrant molecular signaling, DNA damage, telomere attrition, and other pathological insults. While cardiovascular-related morbidity and mortality is on the rise and remains a global health threat, there has been only little to moderate improvements in its medical management. This is due to the fact that the lifestyle changes to molecular mechanisms underlying age-related myocardial structure and functional remodeling are multifactorial and intricately operate at different levels. Along these lines, the intrinsic redox mechanisms and oxidative stress (OS) are widely studied in the myocardium. The accumulation of reactive oxygen species (ROS) with age and the resultant oxidative damage has been shown to increase the susceptibility of the myocardium to multiple complications such as atherosclerosis, hypertension, ischemic heart disease, cardiac myopathy, and heart failure. There has been growing interest in trying to enhance the mechanisms that neutralize the ROS and curtailing OS as a possible anti-aging intervention and as a treatment for age-related disorders. Natural defense system to fight against OS involves a master transcription factor named nuclear erythroid-2-p45-related factor-2 (Nrf2) that regulates several antioxidant genes. Compelling evidence exists on the Nrf2 gain of function through pharmacological interventions in counteracting the oxidative damage and affords cytoprotection in several organs including but not limited to lung, liver, kidney, brain, etc. Nevertheless, thus far, only a few studies have described the potential role of Nrf2 and its non-pharmacological induction in cardiac aging. This chapter explores the effects of various modes of exercise on Nrf2 signaling along with its responses and ramifications on the cascade of OS in the aging heart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sobel H (1970) Ageing and age-associated disease. Lancet 2(7684):1191–1192

    Article  CAS  PubMed  Google Scholar 

  2. Strait JB, Lakatta EG (2012) Aging-associated cardiovascular changes and their relationship to heart failure. Heart Fail Clin 8(1):143–164

    Article  PubMed Central  PubMed  Google Scholar 

  3. Niccoli T, Partridge L (2012) Ageing as a risk factor for disease. Curr Biol 22(17):R741–R752

    Article  CAS  PubMed  Google Scholar 

  4. Costa E, Alice SS, Paúl C, et al (2015) Aging and cardiovascular risk. Biomed Res Int 2015:871656, 1

    Google Scholar 

  5. Mozaffarian D, Benjamin EJ, Go AS et al (2015) Heart disease and stroke statistics--2015 update: a report from the American Heart Association. Circulation 131(4):e29–e322

    Article  PubMed  Google Scholar 

  6. Administration on Aging (2015) Aging Statistics. https://aoa.acl.gov/Aging _Statistics/Index.aspx

  7. Kitzman DW, Upadhya B, Haykowsky M, et al (2017) Effects of aging on cardiovascular structure and function. In: Halter JB, Ouslander JG, Studenski S et al (2011) Hazzard’s geriatric medicine and gerontology, 6th edn, 7e. McGraw-Hill Education, New York

    Google Scholar 

  8. Buttar HS, Li T, Ravi N (2005) Prevention of cardiovascular diseases: role of exercise, dietary interventions, obesity and smoking cessation. Exp Clin Cardiol 10(4):229–249

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Hurt RT, Kulisek C, Buchanan LA et al (2010) The obesity epidemic: challenges, health initiatives, and implications for gastroenterologists. Gastroenterol Hepatol 6(12):780–792

    Google Scholar 

  10. Mampuya WM (2012) Cardiac rehabilitation past, present and future: an overview. Cardiovasc Diagn Ther 2(1):38–49

    PubMed Central  PubMed  Google Scholar 

  11. Blair SN, Morris JN (2009) Healthy hearts--and the universal benefits of being physically active: physical activity and health. Ann Epidemiol 19(4):253–256

    Article  PubMed  Google Scholar 

  12. Taylor RS, Brown A, Ebrahim S et al (2004) Exercise-based rehabilitation for patients with coronary heart disease: systematic review and meta-analysis of randomized controlled trials. Am J Med 116(10):682–692

    Article  PubMed  Google Scholar 

  13. Paffenbarger RS Jr, Hyde RT, Wing AL et al (1993) The association of changes in physical-activity level and other lifestyle characteristics with mortality among men. N Engl J Me 328(8):538–545

    Article  Google Scholar 

  14. Sandvik L, Erikssen J, Thaulow E et al (1993) Physical fitness as a predictor of mortality among healthy, middle-aged Norwegian men. N Engl J Me 328(8):533–537

    Article  CAS  Google Scholar 

  15. Navarro A, Gomez C, Lopez-Cepero JM et al (2004) Beneficial effects of moderate exercise on mice aging: survival, behavior, oxidative stress, and mitochondrial electron transfer. Am J Physiol Regul Integr Comp Physiol 286(3):505R–5511

    Article  Google Scholar 

  16. Franco OH, de Laet C, Peeters A et al (2005) Effects of physical activity on life expectancy with cardiovascular disease. Arch Intern Med 165(20):2355–2360

    Article  PubMed  Google Scholar 

  17. Halverstadt A, Phares DA, Wilund KR et al (2007) Endurance exercise training raises high-density lipoprotein cholesterol and lowers small low-density lipoprotein and very low-density lipoprotein independent of body fat phenotypes in older men and women. Metabolism 56(4):444–450

    Article  CAS  PubMed  Google Scholar 

  18. Green DJ, O’Driscoll G, Joyner MJ et al (2008) Exercise and cardiovascular risk reduction: time to update the rationale for exercise? J Appl Physiol (1985) 105(2):766–768

    Article  Google Scholar 

  19. Kraus WE, Houmard JA, Duscha BD et al (2002) Effects of the amount and intensity of exercise on plasma lipoproteins. N Engl J Med 347(19):1483–1492

    Article  CAS  PubMed  Google Scholar 

  20. Fagard RH (2001) Exercise characteristics and the blood pressure response to dynamic physical training. Med Sci Sports Exerc 33(6 Suppl):S484–S492. discussion S493-484

    Article  CAS  PubMed  Google Scholar 

  21. Whelton SP, Chin A, Xin X et al (2002) Effect of aerobic exercise on blood pressure: a meta-analysis of randomized, controlled trials. Ann Intern Med 136(7):493–503

    Article  PubMed  Google Scholar 

  22. Thompson PD, Crouse SF, Goodpaster B et al (2001) The acute versus the chronic response to exercise. Med Sci Sports Exerc 33(6 Suppl):S438–S445. discussion S452-433

    Article  CAS  PubMed  Google Scholar 

  23. King DS, Costill DL, Fink WJ et al (1985) Muscle metabolism during exercise in the heat in unacclimatized and acclimatized humans. J Appl Physiol 59(5):1350–1354

    CAS  PubMed  Google Scholar 

  24. Nadel ER (1983) Effects of temperature on muscle metabolism. In: Knuttgene HG, Vogel JA (eds) Biochemistry of exercise. Human Kinetics Publishers, Champaign

    Google Scholar 

  25. Sawka MN, Pandolf KB (1990) Effects of body water loss on exercise performance and physiological functions. In: Gisolfi eaDRL CV (ed) Perspectives in Exercise Science and Sports Medicine. Benchmark Press, Indianapolis

    Google Scholar 

  26. Mora S, Cook N, Buring JE et al (2007) Physical activity and reduced risk of cardiovascular events: potential mediating mechanisms. Circulation 116(19):2110–2118

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Joyner MJ, Green DJ (2009) Exercise protects the cardiovascular system: effects beyond traditional risk factors. J Physiol 587(23):5551–5558

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. WHO (2009) Global health risks: mortality and burden of disease attributable to selected major risks. World Health Organization, Geneva

    Google Scholar 

  29. He F, Zuo L (2015) Redox roles of reactive oxygen species in cardiovascular diseases. Int J Mol Sci 16(12):27770–27780

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Sugamura K, Keaney JF (2011) Reactive oxygen species in cardiovascular disease. Free Radic Biol Med 51(5):978–992

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. North BJ, Sinclair DA (2012) The intersection between aging and cardiovascular disease. Circ Res 110(8):1097–1108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Elahi MM, Kong YX, Matata BM (2009) Oxidative stress as a mediator of cardiovascular disease. Oxidative Med Cell Longev 2(5):259–269

    Article  Google Scholar 

  33. Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11(3):298–300

    Article  CAS  PubMed  Google Scholar 

  34. Vina J, Borras C, Miquel J (2007) Theories of ageing. IUBMB Life 59(4):249–254

    Article  CAS  PubMed  Google Scholar 

  35. Rebrin I, Sohal RS (2008) Pro-oxidant shift in glutathione redox state during aging. Adv Drug Deliv Rev 60(13-14):1545–1552

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Marí M, Morales A, Colell A et al (2009) Mitochondrial glutathione, a key survival antioxidant. Antioxid Redox Signal 11(11):2685–2700

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Sohal RS, Orr WC (2012) The redox stress hypothesis of aging. Free Radic Biol Med 52(3):539–555

    Article  CAS  PubMed  Google Scholar 

  38. Birben E, Sahiner UM, Sackesen C et al (2012) Oxidative stress and antioxidant defense. World Allergy Organ J 5(1):9–19

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Li J, Pang Q (2014) Oxidative stress-associated protein tyrosine kinases and phosphatases in Fanconi anemia. Antioxid Redox Signal 20(14):2290–2301

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Kregel KC, Zhang HJ (2007) An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations. Am J Physiol Regul Integr Comp Physiol 292(1):R18–R36

    Article  CAS  PubMed  Google Scholar 

  41. Forman HJ (2016) Redox signaling: an evolution from free radicals to aging. Free Radic Biol Med 97:398–407

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Zhang Y, Ikeno Y, Qi W et al (2009) Mice deficient in both Mn superoxide dismutase and glutathione peroxidase-1 have increased oxidative damage and a greater incidence of pathology but no reduction in longevity. J Gerontol A Biol Sci Med Sci 64(12):1212–1220

    Article  CAS  PubMed  Google Scholar 

  43. Perez VI, Bokov A, Van Remmen H et al (2009) Is the oxidative stress theory of aging dead? Biochim Biophys Acta 1790(10):1005–1014

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Sohal RS, Weindruch R (1996) Oxidative stress, caloric restriction, and aging. Science 273(5271):59–63

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Buffenstein R, Edrey YH, Yang T et al (2008) The oxidative stress theory of aging: embattled or invincible? Insights from non-traditional model organisms. Age 30(2-3):99–109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Ursini F, Maiorino M, Forman HJ (2016) Redox homeostasis: the golden mean of healthy living. Redox Biol 8:205–215

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. West JB (1981) Cardiac energetics and myocardial oxygen consumption. Physiologic basis of medical practice. Williams and Wilkins, Baltimore

    Google Scholar 

  48. Coronary Blood Flow and Myocardial Ischemia (2001) Heart disease: a textbook of cardiovascular medicine. WB Saunders Company, Philadelphia

    Google Scholar 

  49. Harvey RP, Nadia R (1999) Heart development. Academic Press, San Diego, pp xiii–xixv

    Google Scholar 

  50. Baudino TA, Carver W, Giles W et al (2006) Cardiac fibroblasts: friend or foe? Am J Physiol Heart Circ Physiol 291(3):H1015–H1026

    Article  CAS  PubMed  Google Scholar 

  51. Camelliti P, Borg TK, Kohl P (2005) Structural and functional characterisation of cardiac fibroblasts. Cardiovasc Res 65(1):40–51

    Article  CAS  PubMed  Google Scholar 

  52. Souders CA, Bowers SL, Baudino TA (2009) Cardiac fibroblast: the renaissance cell. Circ Res 105(12):1164–1176

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Frantz S, Nahrendorf M (2014) Cardiac macrophages and their role in ischaemic heart disease. Cardiovasc Res 102(2):240–248

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Janicki JS, Brower GL, Levick SP (2015) The emerging prominence of the cardiac mast cell as a potent mediator of adverse myocardial remodeling. Methods Mol Biol (Clifton, NJ) 1220:121–139

    Article  CAS  Google Scholar 

  55. Capell BC, Collins FS, Nabel EG (2007) Mechanisms of cardiovascular disease in accelerated aging syndromes. Circ Res 101(1):13–26

    Article  CAS  PubMed  Google Scholar 

  56. Zhou S, Sun W, Zhang Z et al (2014) The role of Nrf2-mediated pathway in cardiac remodeling and heart failure. Oxidative Med Cell Longev 2014:260429

    Google Scholar 

  57. Harman D (1981) The aging process. Proc Natl Acad Sci U S A 78(11):7124–7128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Buggisch M, Ateghang B, Ruhe C et al (2007) Stimulation of ES-cell-derived cardiomyogenesis and neonatal cardiac cell proliferation by reactive oxygen species and NADPH oxidase. J Cell Sci 120(5):885–894

    Article  CAS  PubMed  Google Scholar 

  59. Prosser BL, Ward CW, Lederer WJ (2011) X-ROS signaling: rapid mechano-chemo transduction in heart. Science 333(6048):1440–1445

    Article  CAS  PubMed  Google Scholar 

  60. Prysyazhna O, Rudyk O, Eaton P (2012) Single atom substitution in mouse protein kinase G eliminates oxidant sensing to cause hypertension. Nat Med 18(2):286–290

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Burgoyne JR, Mongue-Din H, Eaton P et al (2012) Redox signaling in cardiac physiology and pathology. Circ Res 111(8):1091–1106

    Article  CAS  PubMed  Google Scholar 

  62. Karavidas A, Lazaros G, Tsiachris D et al (2010) Aging and the cardiovascular system. Hell J Cardiol 51(5):421–427

    Google Scholar 

  63. Roger VL, Go AS, Lloyd-Jones DM et al (2012) Heart disease and stroke statistics--2012 update: a report from the American Heart Association. Circulation 125(1):e2–e220

    Article  PubMed  Google Scholar 

  64. Wu J, Xia S, Kalionis B et al (2014) The role of oxidative stress and inflammation in cardiovascular aging. Biomed Res Int 2014:615312

    PubMed Central  PubMed  Google Scholar 

  65. Lakatta E (1994) Aging effects on the vasculature in health: risk factors for cardiovascular disease. Am J Geriatr Cardiol 3(6):11–17

    PubMed  Google Scholar 

  66. Kajstura J, Cheng W, Sarangarajan R et al (1996) Necrotic and apoptotic myocyte cell death in the aging heart of Fischer 344 rats. Am J Physiol 271(3 Pt 2):H1215–H1228

    CAS  PubMed  Google Scholar 

  67. Higami Y, Shimokawa I (2000) Apoptosis in the aging process. Cell Tissue Res 301(1):125–132

    Article  CAS  PubMed  Google Scholar 

  68. Jennings JR, Kamarck T, Manuck S et al (1997) Aging or disease? Cardiovascular reactivity in Finnish men over the middle years. Psychol Aging 12(2):225–238

    Article  CAS  PubMed  Google Scholar 

  69. Collins AR, Lyon CJ, Xia X et al (2009) Age-accelerated atherosclerosis correlates with failure to upregulate antioxidant genes. Circ Res 104(6):e42–e54

    Article  CAS  PubMed  Google Scholar 

  70. Dai DF, Rabinovitch PS (2009) Cardiac aging in mice and humans: the role of mitochondrial oxidative stress. Trends Cardiovasc Med 19(7):213–220

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Domenighetti AA, Wang Q, Egger M et al (2005) Angiotensin II-mediated phenotypic cardiomyocyte remodeling leads to age-dependent cardiac dysfunction and failure. Hypertension 46(2):426–432

    Article  CAS  PubMed  Google Scholar 

  72. Okumura S, Vatner DE, Kurotani R et al (2007) Disruption of type 5 adenylyl cyclase enhances desensitization of cyclic adenosine monophosphate signal and increases Akt signal with chronic catecholamine stress. Circulation 116(16):1776–1783

    Article  CAS  PubMed  Google Scholar 

  73. Yan L, Vatner DE, O’Connor JP et al (2007) Type 5 adenylyl cyclase disruption increases longevity and protects against stress. Cell 130(2):247–258

    Article  CAS  PubMed  Google Scholar 

  74. Treuting PM, Linford NJ, Knoblaugh SE et al (2008) Reduction of age-associated pathology in old mice by overexpression of catalase in mitochondria. J Gerontol A Biol Sci Med Sci 63(8):813–822

    Article  PubMed  Google Scholar 

  75. Gounder SS, Kannan S, Devadoss D et al (2012) Impaired transcriptional activity of Nrf2 in age-related myocardial oxidative stress is reversible by moderate exercise training. PLoS One 7(9):e45697

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Beltrami AP, Urbanek K, Kajstura J et al (2001) Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med 344(23):1750–1757

    Article  CAS  PubMed  Google Scholar 

  77. Quaini F, Urbanek K, Beltrami AP et al (2002) Chimerism of the transplanted heart. N Engl J Med 346(1):5–15

    Article  PubMed  Google Scholar 

  78. Chimenti C, Kajstura J, Torella D et al (2003) Senescence and death of primitive cells and myocytes lead to premature cardiac aging and heart failure. Circ Res 93(7):604–613

    Article  CAS  PubMed  Google Scholar 

  79. Epel ES, Blackburn EH, Lin J et al (2004) Accelerated telomere shortening in response to life stress. Proc Natl Acad Sci U S A 101(49):17312–17315

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Wolkowitz OM, Mellon SH, Epel ES et al (2011) Leukocyte telomere length in major depression: correlations with chronicity, inflammation and oxidative stress–preliminary findings. PLoS One 6(3):e17837

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Murillo OB, Ramírez EJ, Hernández VWI et al (2016) Impact of oxidative stress in premature aging and iron overload in hemodialysis patients. Oxidative Med Cell Longev 2016:1578235

    Google Scholar 

  82. Leri A, Franco S, Zacheo A et al (2003) Ablation of telomerase and telomere loss leads to cardiac dilatation and heart failure associated with p 53 upregulation. EMBO J 22(1):131–139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Mourkioti F, Kustan J, Kraft P et al (2013) Role of telomere dysfunction in cardiac failure in Duchenne muscular dystrophy. Nat Cell Biol 15(8):895–904

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Olivetti G, Melissari M, Capasso JM et al (1991) Cardiomyopathy of the aging human heart. Myocyte loss and reactive cellular hypertrophy. Circ Res 68(6):1560–1568

    Article  CAS  PubMed  Google Scholar 

  85. Chien KR, Karsenty G (2005) Longevity and lineages: toward the integrative biology of degenerative diseases in heart, muscle, and bone. Cell 120(4):533–544

    Article  CAS  PubMed  Google Scholar 

  86. Zhu H, Tannous P, Johnstone JL et al (2007) Cardiac autophagy is a maladaptive response to hemodynamic stress. J Clin Invest 117(7):1782–1793

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Ramos GC, van den Berg A, Nunes-Silva V et al (2017) Myocardial aging as a T-cell–mediated phenomenon. Proc Natl Acad Sci U S A 114(12):E2420–E2429

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Torella D, Rota M, Nurzynska D et al (2004) Cardiac stem cell and myocyte aging, heart failure, and insulin-like growth factor-1 overexpression. Circ Res 94(4):514–524

    Article  CAS  PubMed  Google Scholar 

  89. Bergmann O, Bhardwaj RD, Bernard S et al (2009) Evidence for cardiomyocyte renewal in humans. Science 324(5923):98–102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Hayakawa M, Hattori K, Sugiyama S et al (1992) Age-associated oxygen damage and mutations in mitochondrial DNA in human hearts. Biochem Biophys Res Commun 189(2):979–985

    Article  CAS  PubMed  Google Scholar 

  91. Barja G, Herrero A (2000) Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heart and brain of mammals. FASEB J 14(2):312–318

    CAS  PubMed  Google Scholar 

  92. Bellizzi D, Rose G, Cavalcante P et al (2005) A novel VNTR enhancer within the SIRT3 gene, a human homologue of SIR2, is associated with survival at oldest ages. Genomics 85(2):258–263

    Article  CAS  PubMed  Google Scholar 

  93. Sundaresan NR, Gupta M, Kim G et al (2009) Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J Clin Invest 119(9):2758–2771

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Terman A, Brunk UT (2006) Oxidative stress, accumulation of biological ‘garbage’, and aging. Antioxid Redox Signal 8(1-2):197–204

    Article  CAS  PubMed  Google Scholar 

  95. Haddad JJ, Olver RE, Land SC (2000) Antioxidant/pro-oxidant equilibrium regulates HIF-1alpha and NF-kappa B redox sensitivity. Evidence for inhibition by glutathione oxidation in alveolar epithelial cells. J Biol Chem 275(28):21130–21139

    Article  CAS  PubMed  Google Scholar 

  96. Muthusamy VR, Kannan S, Sadhaasivam K et al (2012) Acute exercise stress activates Nrf2/ARE signaling and promotes antioxidant mechanisms in the myocardium. Free Radic Biol Med 52(2):366–376

    Article  CAS  PubMed  Google Scholar 

  97. Huang TT, Carlson EJ, Gillespie AM et al (2000) Ubiquitous overexpression of CuZn superoxide dismutase does not extend life span in mice. J Gerontol A Biol Sci Med Sci 55(1):B5–B9

    Article  CAS  PubMed  Google Scholar 

  98. Jang YC, Pérez VI, Song W et al (2009) Overexpression of Mn superoxide dismutase does not increase life span in mice. J Gerontol A Biol Sci Med Sci 64A(11):1114–1125

    Article  CAS  PubMed Central  Google Scholar 

  99. Martin GM, Oshima J (2000) Lessons from human progeroid syndromes. Nature 408(6809):263–266

    Article  CAS  PubMed  Google Scholar 

  100. Postiglione A, Soricelli A, Covelli EM et al (1996) Premature aging in Werner’s syndrome spares the central nervous system. Neurobiol Aging 17(3):325–330

    Article  CAS  PubMed  Google Scholar 

  101. James SE, Faragher RG, Burke JF et al (2000) Werner’s syndrome T lymphocytes display a normal in vitro life-span. Mech Ageing Dev 121(1-3):139–149

    Article  CAS  PubMed  Google Scholar 

  102. Ori A, Toyama Brandon H, Harris Michael S et al (2015) Integrated Transcriptome and proteome analyses reveal organ-specific proteome deterioration in old rats. Mech Ageing Dev 1(3):224–237

    CAS  Google Scholar 

  103. Rahal A, Kumar A, Singh V et al (2014) Oxidative stress, prooxidants, and antioxidants: the interplay. Biomed Res Int 2014:761264

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Osburn WO, Kensler TW (2008) Nrf2 signaling: an adaptive response pathway for protection against environmental toxic insults. Mutat Res 659(1-2):31–39

    Article  CAS  PubMed  Google Scholar 

  105. Ji L, Li H, Gao P et al (2013) Nrf2 pathway regulates multidrug-resistance-associated protein 1 in small cell lung cancer. PLoS One 8(5):e63404

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  106. Andrews NC, Kotkow KJ, Ney PA et al (1993) The ubiquitous subunit of erythroid transcription factor NF-E2 is a small basic-leucine zipper protein related to the v-maf oncogene. Proc Natl Acad Sci U S A 90(24):11488–11492

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  107. Katsuoka F, Motohashi H, Ishii T et al (2005) Genetic evidence that small maf proteins are essential for the activation of antioxidant response element-dependent genes. Mol Cell Biol 25(18):8044–8051

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  108. Motohashi H, Katsuoka F, Engel JD et al (2004) Small Maf proteins serve as transcriptional cofactors for keratinocyte differentiation in the Keap1–Nrf2 regulatory pathway. Proc Natl Acad Sci U S A 101(17):6379–6384

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  109. Kim J, Cha YN, Surh YJ (2010) A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders. Mutat Res 690(1-2):12–23

    Article  CAS  PubMed  Google Scholar 

  110. Jain A, Lamark T, Sjøttem E et al (2010) p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J Biol Chem 285(29):22576–22591

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. Pickering AM, Linder RA, Zhang H et al (2012) Nrf2-dependent induction of proteasome and Pa28alphabeta regulator are required for adaptation to oxidative stress. J Biol Chem 287(13):10021–10031

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  112. Cullinan SB, Gordan JD, Jin J et al (2004) The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase. Mol Cell Biol 24(19):8477–8486

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  113. Furukawa M, Xiong Y (2005) BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase. Mol Cell Biol 25(1):162–171

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  114. Kobayashi A, Kang MI, Okawa H et al (2004) Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol 24(16):7130–7139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  115. Tong KI, Katoh Y, Kusunoki H et al (2006) Keap1 recruits Neh2 through binding to ETGE and DLG motifs: characterization of the two-site molecular recognition model. Mol Cell Biol 26(8):2887–2900

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  116. Rada P, Rojo AI, Chowdhry S et al (2011) SCF/{beta}-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner. Mol Cell Biol 31(6):1121–1133

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  117. Cullinan SB, Diehl JA (2006) Coordination of ER and oxidative stress signaling: the PERK/Nrf2 signaling pathway. Int J Biochem Cell Biol 38(3):317–332

    Article  CAS  PubMed  Google Scholar 

  118. Kensler TW, Wakabayashi N, Biswal S (2007) Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 47:89–116

    Article  CAS  PubMed  Google Scholar 

  119. Kwak MK, Itoh K, Yamamoto M et al (2002) Enhanced expression of the transcription factor Nrf2 by cancer chemopreventive agents: role of antioxidant response element-like sequences in the nrf2 promoter. Mol Cell Biol 22(9):2883–2892

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  120. Narasimhan M, Hong J, Atieno N et al (2014) Nrf2 deficiency promotes apoptosis and impairs PAX7/MyoD expression in aging skeletal muscle cells. Free Radic Biol Med 71:402–414

    Article  CAS  PubMed  Google Scholar 

  121. Narasimhan M, Mahimainathan L, Rathinam ML et al (2011) Overexpression of Nrf2 protects cerebral cortical neurons from ethanol-induced apoptotic death. Mol Pharmacol 80(6):988–999

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  122. Mukaigasa K, Nguyen LTP, Li L et al (2012) Genetic evidence of an evolutionarily conserved role for Nrf2 in the protection against oxidative stress. Mol Cell Biol 32(21):4455–4461

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  123. Kunapuli S, Rosanio S, Schwarz ER (2006) “How do cardiomyocytes die?” apoptosis and autophagic cell death in cardiac myocytes. J Card Fail 12(5):381–391

    Article  CAS  PubMed  Google Scholar 

  124. Hamacher-Brady A, Brady NR, Gottlieb RA (2006) The interplay between pro-death and pro-survival signaling pathways in myocardial ischemia/reperfusion injury: apoptosis meets autophagy. Cardiovasc Drugs Ther 20(6):445–462

    Article  CAS  PubMed  Google Scholar 

  125. Terman A, Gustafsson B, Brunk UT (2007) Autophagy, organelles and ageing. J Pathol 211(2):134–143

    Article  CAS  PubMed  Google Scholar 

  126. Warabi E, Takabe W, Minami T et al (2007) Shear stress stabilizes NF-E2-related factor 2 and induces antioxidant genes in endothelial cells: role of reactive oxygen/nitrogen species. Free Radic Biol Med 42(2):260–269

    Article  CAS  PubMed  Google Scholar 

  127. Tan Y, Ichikawa T, Li J et al (2011) Diabetic downregulation of Nrf2 activity via ERK contributes to oxidative stress-induced insulin resistance in cardiac cells in vitro and in vivo. Diabetes 60(2):625–633

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  128. Suh JH, Shenvi SV, Dixon BM et al (2004) Decline in transcriptional activity of Nrf2 causes age-related loss of glutathione synthesis, which is reversible with lipoic acid. Proc Natl Acad Sci U S A 101(10):3381–3386

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  129. Lewis KN, Mele J, Hornsby PJ et al (2012) Stress resistance in the naked mole-rat: the bare essentials - a mini-review. Gerontology 58(5):453–462

    Article  PubMed Central  PubMed  Google Scholar 

  130. Lewis KN, Wason E, Edrey YH et al (2015) Regulation of Nrf2 signaling and longevity in naturally long-lived rodents. Proc Natl Acad Sci U S A 112(12):3722–3727

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Leiser SF, Miller RA (2010) Nrf2 signaling, a mechanism for cellular stress resistance in long-lived mice. Mol Cell Biol 30(3):871–884

    Article  CAS  PubMed  Google Scholar 

  132. Sykiotis GP, Bohmann D (2010) Stress-activated cap‘n’collar transcription factors in aging and human disease. Sci Signal 3(112):re3

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  133. Ungvari Z, Bailey-Downs L, Sosnowska D et al (2011) Vascular oxidative stress in aging: a homeostatic failure due to dysregulation of NRF2-mediated antioxidant response. Am J Physiol Heart Circ Physiol 301(2):H363–H372

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  134. Valcarcel-Ares MN, Gautam T, Warrington JP et al (2012) Disruption of Nrf2 signaling impairs angiogenic capacity of endothelial cells: implications for microvascular aging. J Gerontol A Biol Sci Med Sci 67(8):821–829

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  135. Radak Z, Taylor AW, Ohno H et al (2001) Adaptation to exercise-induced oxidative stress: from muscle to brain. Exerc Immunol Rev 7:90–107

    CAS  PubMed  Google Scholar 

  136. Katzmarzyk PT, Janssen I (2004) The economic costs associated with physical inactivity and obesity in Canada: an update. Can J Appl Physiol 29(1):90–115

    Article  PubMed  Google Scholar 

  137. Halestrap AP, Clarke SJ, Khaliulin I (2007) The role of mitochondria in protection of the heart by preconditioning. Biochim Biophys Acta 1767(8):1007–1031

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  138. Tremblay MS, Shephard RJ, Brawley LR et al (2007) Physical activity guidelines and guides for Canadians: facts and future. Can J Public Health 98(Suppl 2):S218–S224

    PubMed  Google Scholar 

  139. van Praag H (2008) Neurogenesis and exercise: past and future directions. Neuro Mol Med 10(2):128–140

    Article  CAS  Google Scholar 

  140. Radak Z, Atalay M, Jakus J et al (2009) Exercise improves import of 8-oxoguanine DNA glycosylase into the mitochondrial matrix of skeletal muscle and enhances the relative activity. Free Radic Biol Med 46(2):238–243

    Article  CAS  PubMed  Google Scholar 

  141. Myers J (2003) Exercise and cardiovascular health. Circulation 107(1):2e–25

    Article  Google Scholar 

  142. Eaton CB (1992) Relation of physical activity and cardiovascular fitness to coronary heart disease, part II: cardiovascular fitness and the safety and efficacy of physical activity prescription. J Am Board Fam Pract 5(2):157–165

    CAS  PubMed  Google Scholar 

  143. Berzosa C, Cebrián I, Fuentes-Broto L et al (2011) Acute exercise increases plasma Total antioxidant status and antioxidant enzyme activities in untrained men. J Biomed Biotechnol 2011:540458

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  144. van Empel VP, Bertrand AT, Hofstra L et al (2005) Myocyte apoptosis in heart failure. Cardiovasc Res 67(1):21–29

    Article  CAS  PubMed  Google Scholar 

  145. Wonders KY, Hydock DS, Schneider CM et al (2008) Acute exercise protects against doxorubicin Cardiotoxicity. Integr Cancer Ther 7(3):147–154

    Article  CAS  PubMed  Google Scholar 

  146. Ludlow AT, Gratidão L, Ludlow LW et al (2017) Acute exercise activates p38 MAPK and increases the expression of telomere-protective genes in cardiac muscle. Exp Physiol 102(4):397–410

    Article  CAS  PubMed  Google Scholar 

  147. Li J, Ichikawa T, Villacorta L et al (2009) Nrf2 protects against maladaptive cardiac responses to hemodynamic stress. Arterioscler Thromb Vasc Biol 29(11):1843–1850

    Article  CAS  PubMed  Google Scholar 

  148. Fleg JL, Morrell CH, Bos AG et al (2005) Accelerated longitudinal decline of aerobic capacity in healthy older adults. Circulation 112(5):674–682

    Article  PubMed  Google Scholar 

  149. Fleg JL, Schulman SP, O’Connor FC et al (1994) Cardiovascular responses to exhaustive upright cycle exercise in highly trained older men. J Appl Physiol (1985) 77(3):1500–1506

    CAS  Google Scholar 

  150. Hollenberg M, Yang J, Haight TJ et al (2006) Longitudinal changes in aerobic capacity: implications for concepts of aging. J Gerontol A Biol Sci Med Sci 61(8):851–858

    Article  PubMed  Google Scholar 

  151. Jackson AS, Sui X, Hebert JR et al (2009) Role of lifestyle and aging on the longitudinal change in cardiorespiratory fitness. Arch Intern Med 169(19):1781–1787

    Article  PubMed Central  PubMed  Google Scholar 

  152. FB H, Stampfer MJ, Solomon C et al (2001) Physical activity and risk for cardiovascular events in diabetic women. Ann Intern Med 134(2):96–105

    Article  Google Scholar 

  153. Sharma S, Merghani A, Mont L (2015) Exercise and the heart: the good, the bad, and the ugly. Eur Heart J 36(23):1445–1453

    Article  PubMed  Google Scholar 

  154. Safdar A, de Beer J, Tarnopolsky MA (2010) Dysfunctional Nrf2-Keap1 redox signaling in skeletal muscle of the sedentary old. Free Radic Biol Med 49(10):1487–1493

    Article  CAS  PubMed  Google Scholar 

  155. Kumar RR, Narasimhan M, Shanmugam G et al (2016) Abrogation of Nrf2 impairs antioxidant signaling and promotes atrial hypertrophy in response to high-intensity exercise stress. J Transl Med 14(1):86

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  156. Narasimhan M, Rajasekaran NS (2016) Exercise, Nrf2 and antioxidant signaling in cardiac aging. Front Physiol 7:241

    Article  PubMed Central  PubMed  Google Scholar 

  157. Stratton JR, Levy WC, Cerqueira MD et al (1994) Cardiovascular responses to exercise. Effects of aging and exercise training in healthy men. Circulation 89(4):1648–1655

    Article  CAS  PubMed  Google Scholar 

  158. Wang S, Li Y, Song X et al (2015) Febuxostat pretreatment attenuates myocardial ischemia/reperfusion injury via mitochondrial apoptosis. J Transl Med 13:209

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  159. Belardinelli R, Georgiou D, Cianci G et al (1999) Randomized, controlled trial of long-term moderate exercise training in chronic heart failure. Circulation 99(9):1173–1182

    Article  CAS  PubMed  Google Scholar 

  160. Barboza CA, Rocha LY, Mostarda CT et al (2013) Ventricular and autonomic benefits of exercise training persist after detraining in infarcted rats. Eur J Appl Physiol 113(5):1137–1146

    Article  PubMed  Google Scholar 

  161. Chicco AJ, Hydock DS, Schneider CM et al (2006) Low-intensity exercise training during doxorubicin treatment protects against cardiotoxicity. J Appl Physiol (1985) 100(2):519–527

    Article  CAS  Google Scholar 

  162. Bocalini DS, Beutel A, Bergamaschi CT et al (2014) Treadmill exercise training prevents myocardial mechanical dysfunction induced by androgenic-anabolic steroid treatment in rats. PLoS One 9(2):e87106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  163. Gregg EW, Gerzoff RB, Caspersen CJ et al (2003) Relationship of walking to mortality among US adults with diabetes. Arch Intern Med 163(12):1440–1447

    Article  PubMed  Google Scholar 

  164. Brassard P, Legault S, Garneau C et al (2007) Normalization of diastolic dysfunction in type 2 diabetics after exercise training. Med Sci Sports Exerc 39(11):1896–1901

    Article  PubMed  Google Scholar 

  165. Tanasescu M, Leitzmann MF, Rimm EB et al (2003) Physical activity in relation to cardiovascular disease and total mortality among men with type 2 diabetes. Circulation 107(19):2435–2439

    Article  PubMed  Google Scholar 

  166. Xu X, Zhao W, Wan W et al (2010) Exercise training combined with angiotensin II receptor blockade reduces oxidative stress after myocardial infarction in rats. Exp Physiol 95(10):1008–1015

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  167. Bean JF, Vora A, Frontera WR (2004) Benefits of exercise for community-dwelling older adults. Arch Phys Med Rehabil 85(3):31–42

    Article  Google Scholar 

  168. Laughlin MH, McAllister RM (1992) Exercise training-induced coronary vascular adaptation. J Appl Physiol (1985) 73(6):2209–2225

    CAS  Google Scholar 

  169. Deschenes MR, Ogilvie RW (1999) Exercise stimulates neovascularization in occluded muscle without affecting bFGF content. Med Sci Sports Exerc 31(11):1599–1604

    Article  CAS  PubMed  Google Scholar 

  170. Whyte JJ, Laughlin MH (2010) The effects of acute and chronic exercise on the vasculature. Acta Physiol 199(4):441–450

    Article  CAS  Google Scholar 

  171. Padilla J, Simmons GH, Bender SB et al (2011) Vascular effects of exercise: endothelial adaptations beyond active muscle beds. Physiology 26(3):132–145

    Article  PubMed Central  PubMed  Google Scholar 

  172. Kim TH, Hur EG, Kang SJ et al (2011) NRF2 blockade suppresses colon tumor angiogenesis by inhibiting hypoxia-induced activation of HIF-1alpha. Cancer Res 71(6):2260–2275

    Article  CAS  PubMed  Google Scholar 

  173. Zhang Z, Wang Q, Ma J et al (2013) Reactive oxygen species regulate FSH-induced expression of vascular endothelial growth factor via Nrf2 and HIF1alpha signaling in human epithelial ovarian cancer. Oncol Rep 29(4):1429–1434

    Article  CAS  PubMed  Google Scholar 

  174. Lupien SJ, de Leon M, de Santi S et al (1998) Cortisol levels during human aging predict hippocampal atrophy and memory deficits. Nat Neurosci 1(1):69–73

    Article  CAS  PubMed  Google Scholar 

  175. Safdar A, Bourgeois JM, Ogborn DI et al (2011) Endurance exercise rescues progeroid aging and induces systemic mitochondrial rejuvenation in mtDNA mutator mice. Proc Natl Acad Sci U S A 108(10):4135–4140

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  176. Seals DR, Hagberg JM, Hurley BF et al (1984) Effects of endurance training on glucose tolerance and plasma lipid levels in older men and women. JAMA 252(5):645–649

    Article  CAS  PubMed  Google Scholar 

  177. Conraads VM, Beckers P, Bosmans J et al (2002) Combined endurance/resistance training reduces plasma TNF-alpha receptor levels in patients with chronic heart failure and coronary artery disease. Eur Heart J 23(23):1854–1860

    Article  CAS  PubMed  Google Scholar 

  178. Conraads VM, Beckers P, Vaes J et al (2004) Combined endurance/resistance training reduces NT-proBNP levels in patients with chronic heart failure. Eur Heart J 25(20):1797–1805

    Article  CAS  PubMed  Google Scholar 

  179. Singh MA, Ding W, Manfredi TJ et al (1999) Insulin-like growth factor I in skeletal muscle after weight-lifting exercise in frail elders. Am J Physiol 277(1 Pt 1):E135–E143

    CAS  PubMed  Google Scholar 

  180. Tyni-Lenne R, Gordon A, Jansson E et al (1997) Skeletal muscle endurance training improves peripheral oxidative capacity, exercise tolerance, and health-related quality of life in women with chronic congestive heart failure secondary to either ischemic cardiomyopathy or idiopathic dilated cardiomyopathy. Am J Cardiol 80(8):1025–1029

    Article  CAS  PubMed  Google Scholar 

  181. Tyni-Lenne R, Gordon A, Europe E et al (1998) Exercise-based rehabilitation improves skeletal muscle capacity, exercise tolerance, and quality of life in both women and men with chronic heart failure. J Card Fail 4(1):9–17

    Article  CAS  PubMed  Google Scholar 

  182. Kitzman DW, Brubaker PH, Herrington DM et al (2013) Effect of endurance exercise training on endothelial function and arterial stiffness in older patients with heart failure and preserved ejection fraction: a randomized, controlled, single-blind trial. J Am Coll Cardiol 62(7):584–592

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  183. Johnson ML, Irving BA, Lanza IR et al (2015) Differential effect of endurance training on mitochondrial protein damage, degradation, and acetylation in the context of aging. J Gerontol A Biol Sci Med Sci 70(11):1386–1393

    Article  PubMed  Google Scholar 

  184. Haykowsky MJ, Brubaker PH, Stewart KP et al (2012) Effect of endurance training on the determinants of peak exercise oxygen consumption in elderly patients with stable compensated heart failure and preserved ejection fraction. J Am Coll Cardiol 60(2):120–128

    Article  PubMed Central  PubMed  Google Scholar 

  185. Bartlo P (2007) Evidence-based application of aerobic and resistance training in patients with congestive heart failure. J Cardiopulm Rehabil Prev 27(6):368–375

    Article  PubMed  Google Scholar 

  186. Lanza IR, Short DK, Short KR et al (2008) Endurance exercise as a countermeasure for aging. Diabetes 57(11):2933–2942

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  187. Middleton N, Shave R, George K et al (2006) Left ventricular function immediately following prolonged exercise: a meta-analysis. Med Sci Sports Exerc 38(4):681–687

    Article  PubMed  Google Scholar 

  188. Zoccali C, Benedetto FA, Mallamaci F et al (2004) Prognostic value of echocardiographic indicators of left ventricular systolic function in asymptomatic dialysis patients. J Am Soc Nephrol 15(4):1029–1037

    Article  PubMed  Google Scholar 

  189. La Gerche A, Connelly KA, Mooney DJ et al (2008) Biochemical and functional abnormalities of left and right ventricular function after ultra-endurance exercise. Heart 94(7):860–866

    Article  PubMed  Google Scholar 

  190. Benito B, Gay-Jordi G, Serrano-Mollar A et al (2011) Cardiac arrhythmogenic remodeling in a rat model of long-term intensive exercise training. Circulation 123(1):13–22

    Article  PubMed  Google Scholar 

  191. Arbab-Zadeh A, Perhonen M, Howden E et al (2014) Cardiac remodeling in response to 1 year of intensive endurance training. Circulation 130(24):2152–2161

    Article  PubMed  Google Scholar 

  192. Chandra N, Bastiaenen R, Papadakis M et al (2013) Sudden cardiac death in young athletes: practical challenges and diagnostic dilemmas. J Am Coll Cardiol 61(10):1027–1040

    Article  PubMed  Google Scholar 

  193. Kadaja L, Eimre M, Paju K et al (2010) Impaired oxidative phosphorylation in overtrained rat myocardium. Exp Clin Cardiol 15(4):e116–e127

    CAS  PubMed Central  PubMed  Google Scholar 

  194. Hoffman MD, Wegelin JA (2009) The western states 100-mile endurance run: participation and performance trends. Med Sci Sports Exerc 41(12):2191–2198

    Article  PubMed Central  PubMed  Google Scholar 

  195. Knechtle B, Knechtle P, Lepers R (2011) Participation and performance trends in ultra-triathlons from 1985 to 2009. Scand J Med Sci Sports 21(6):e82–e90

    Article  CAS  PubMed  Google Scholar 

  196. Vitiello D, Boissiere J, Doucende G et al (2011) Beta-adrenergic receptors desensitization is not involved in exercise-induced cardiac fatigue: NADPH oxidase-induced oxidative stress as a new trigger. J Appl Physiol (1985) 111(5):1242–1248

    Article  CAS  Google Scholar 

  197. Eijsvogels TM, Fernandez AB, Thompson PD (2016) Are there deleterious cardiac effects of acute and chronic endurance exercise? Physiol Rev 96(1):99–125

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

This book chapter includes various studies that were supported by funding from NHLBI (HL118067), NIA (AG042860), the AHA (BGIA 0865015F), University of Utah Center for Aging (Pilot grant#2009), and the start-up funds from the Division of Cardiovascular Medicine/ Department of Medicine, University of Utah and Department of Pathology (3115851.000.213115851.392300000.0000 for NSR), University of Alabama at Birmingham, AL.

Authors’ deeply thank Drs. Gobinath Shanmugam and Rajesh Kumar Radhakrishnan for their assistance with graphical art work, literature collection and citing bibliography using end-note.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Madhusudhanan Narasimhan or Namakkal-Soorappan Rajasekaran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Narasimhan, M., Rajasekaran, NS. (2017). Cardiac Aging – Benefits of Exercise, Nrf2 Activation and Antioxidant Signaling. In: Xiao, J. (eds) Exercise for Cardiovascular Disease Prevention and Treatment. Advances in Experimental Medicine and Biology, vol 999. Springer, Singapore. https://doi.org/10.1007/978-981-10-4307-9_13

Download citation

Publish with us

Policies and ethics